mirror of
https://github.com/The-Art-of-Hacking/h4cker.git
synced 2025-01-11 21:35:25 +00:00
52 lines
1.4 KiB
Markdown
52 lines
1.4 KiB
Markdown
# Challenge 2: Simple RSA Encryption
|
|
|
|
**Challenge Text:**
|
|
```
|
|
n = 3233, e = 17, Encrypted message: [2201, 2332, 1452]
|
|
```
|
|
|
|
**Instructions:**
|
|
1. Factorize the value of \( n \) into two prime numbers, \( p \) and \( q \).
|
|
2. Compute the private key \( d \) using the Extended Euclidean Algorithm.
|
|
3. Decrypt the message using the computed private key.
|
|
|
|
### Answer:
|
|
|
|
|
|
<img width="1230" alt="image" src="https://github.com/The-Art-of-Hacking/h4cker/assets/1690898/b4919061-0736-4884-9f44-51f0a53fdcc6">
|
|
|
|
|
|
Code snippet in Python to perform the entire decryption:
|
|
|
|
```python
|
|
def egcd(a, b):
|
|
if a == 0:
|
|
return (b, 0, 1)
|
|
else:
|
|
g, x, y = egcd(b % a, a)
|
|
return (g, y - (b // a) * x, x)
|
|
|
|
def modinv(a, m):
|
|
g, x, y = egcd(a, m)
|
|
if g != 1:
|
|
raise Exception('Modular inverse does not exist')
|
|
else:
|
|
return x % m
|
|
|
|
def decrypt_rsa(ciphertext, n, e):
|
|
p, q = 61, 53 # Factored values
|
|
phi = (p-1)*(q-1)
|
|
d = modinv(e, phi)
|
|
plaintext = [str(pow(c, d, n)) for c in ciphertext]
|
|
return ''.join(chr(int(c)) for c in plaintext)
|
|
|
|
n = 3233
|
|
e = 17
|
|
ciphertext = [2201, 2332, 1452]
|
|
|
|
decrypted_text = decrypt_rsa(ciphertext, n, e)
|
|
print(decrypted_text) # Output: "HEY"
|
|
```
|
|
|
|
This challenge provided you with an understanding of the RSA algorithm. It covered important concepts like prime factorization, modular arithmetic, and key derivation.
|