mirror of
https://github.com/The-Art-of-Hacking/h4cker.git
synced 2025-01-18 08:35:29 +00:00
2.7 KiB
2.7 KiB
Lab Guide: Image Recognition with TensorFlow and Keras
Objective
To provide students with hands-on experience in developing, training, and evaluating image recognition models using TensorFlow and Keras.
Prerequisites
- Basic understanding of Python programming.
- Familiarity with machine learning concepts.
- Python and necessary libraries installed: TensorFlow and Keras.
Lab Outline
Introduction to Image Recognition: - Discussing the basics of image recognition and convolutional neural networks (CNN).
Setting Up the Environment: - Installing TensorFlow and Keras:
pip install tensorflow keras
Image Data Preprocessing:
- Step 1: Importing Necessary Libraries:
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
- Step 2: Loading and Preprocessing Image Data:
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
# Normalize pixel values to be between 0 and 1
train_images, test_images = train_images / 255.0, test_images / 255.0
Building a Convolutional Neural Network (CNN):
- Step 3: Defining the CNN Architecture:
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu')
])
- Step 4: Adding Dense Layers:
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
Compiling and Training the Model:
- Step 5: Compiling the Model:
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
- Step 6: Training the Model:
history = model.fit(train_images, train_labels, epochs=10,
validation_data=(test_images, test_labels))
Evaluating the Model:
- Step 7: Evaluating the Model and Visualizing Results:
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
import matplotlib.pyplot as plt
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()