regluit/test/booktests.py

274 lines
11 KiB
Python
Raw Normal View History

2013-06-03 16:31:39 +00:00
"""
external library imports
"""
import datetime
import json
import logging
import warnings
from collections import OrderedDict, defaultdict, namedtuple
2013-06-03 16:31:39 +00:00
from datetime import datetime
from itertools import izip, islice, repeat
2013-06-03 16:31:39 +00:00
"""
django imports
"""
2012-01-28 01:06:10 +00:00
import django
from django.contrib.comments.models import Comment
2013-06-03 16:31:39 +00:00
from django.db.models import Q, F
2013-06-03 16:31:39 +00:00
"""
regluit imports
"""
from regluit import experimental
2013-06-03 16:31:39 +00:00
from regluit.core import librarything, bookloader, models, tasks
from regluit.experimental import bookdata
logger = logging.getLogger(__name__)
def dictset(itertuple):
s = defaultdict(set)
for (k, v) in itertuple:
s[k].add(v)
return s
def dictlist(itertuple):
d = defaultdict(list)
for (k, v) in itertuple:
d[k].append(v)
return d
EdInfo = namedtuple('EdInfo', ['isbn', 'ed_id', 'ed_title', 'ed_created', 'work_id', 'work_created', 'lang'])
def ry_lt_books():
2012-01-28 01:06:10 +00:00
"""return parsing of rdhyee's LibraryThing collection"""
lt = librarything.LibraryThing('rdhyee')
books = lt.parse_user_catalog(view_style=5)
return books
def editions_for_lt(books):
2012-01-28 01:06:10 +00:00
"""return the Editions that correspond to the list of LibraryThing books"""
editions = [bookloader.add_by_isbn(b["isbn"]) for b in books]
return editions
2012-01-28 01:06:10 +00:00
def ry_lt_not_loaded():
"""Calculate which of the books on rdhyee's librarything list don't yield Editions"""
books = list(ry_lt_books())
editions = editions_for_lt(books)
not_loaded_books = [b for (b, ed) in izip(books, editions) if ed is None]
2012-01-28 01:06:10 +00:00
return not_loaded_books
def ry_wish_list_equal_loadable_lt_books():
"""returnwhether the set of works in the user's wishlist is the same as the works in a user's loadable editions from LT"""
editions = editions_for_lt(ry_lt_books())
# assume only one user -- and that we have run a LT book loading process for that user
ry = django.contrib.auth.models.User.objects.all()[0]
return set([ed.work for ed in filter(None, editions)]) == set(ry.wishlist.works.all())
def clear_works_editions_ebooks():
models.Ebook.objects.all().delete()
models.Work.objects.all().delete()
models.Edition.objects.all().delete()
def load_penguin_moby_dick():
seed_isbn = '9780142000083'
ed = bookloader.add_by_isbn(seed_isbn)
if ed.new:
2012-02-16 18:19:36 +00:00
ed = tasks.populate_edition.delay(ed.isbn_13)
def load_gutenberg_moby_dick():
title = "Moby Dick"
ol_work_id = "/works/OL102749W"
gutenberg_etext_id = 2701
epub_url = "http://www.gutenberg.org/cache/epub/2701/pg2701.epub"
license = 'http://www.gutenberg.org/license'
lang = 'en'
format = 'epub'
publication_date = datetime(2001,7,1)
seed_isbn = '9780142000083' # http://www.amazon.com/Moby-Dick-Whale-Penguin-Classics-Deluxe/dp/0142000086
ebook = bookloader.load_gutenberg_edition(title, gutenberg_etext_id, ol_work_id, seed_isbn,
epub_url, format, license, lang, publication_date)
return ebook
def load_gutenberg_books(fname="{0}/gutenberg/g_seed_isbn.json".format(experimental.__path__[0]),
max_num=None):
headers = ()
f = open(fname)
records = json.load(f)
f.close()
for (i, record) in enumerate(islice(records,max_num)):
if record['format'] == 'application/epub+zip':
record['format'] = 'epub'
elif record['format'] == 'application/pdf':
record['format'] = 'pdf'
if record['seed_isbn'] is not None:
ebook = bookloader.load_gutenberg_edition(**record)
logger.info("%d loaded ebook %s %s", i, ebook, record)
else:
logger.info("%d null seed_isbn: ebook %s", i, ebook)
def cluster_status(max_num=None):
"""Look at the current Work, Edition instances to figure out what needs to be fixed"""
results = OrderedDict([
('number of Works', models.Work.objects.count()),
('number of Works w/o Identifier', models.Work.objects.filter(identifiers__isnull=True).count()),
('number of Editions', models.Edition.objects.count()),
('number of Editions with ISBN', models.Edition.objects.filter(identifiers__type='isbn').count()),
('number of Editions without ISBNs', models.Edition.objects.exclude(identifiers__type='isbn').count()),
('number of Edition that have both Google Books id and ISBNs',
models.Edition.objects.filter(identifiers__type='isbn').filter(identifiers__type='goog').count()),
('number of Editions with Google Books IDs but not ISBNs',
models.Edition.objects.filter(identifiers__type='goog').exclude(identifiers__type='isbn').count()),
])
# models.Identifier.objects.filter(type='isbn').values_list('value', 'edition__id', 'edition__work__id', 'edition__work__language').count()
# 4 classes -- Edition have ISBN or not & ISBN is recognized or not by LT
# a) ISBN recognized by LT, b) ISBN not recognized by LT, c) no ISBN at all
# [w._meta.get_all_related_objects() for w in works_no_ids] -- try to figure out whether any related objects before deleting
# Are there Edition without ISBNs? Look up the corresponding ISBNs from Google Books and Are they all singletons?
# identify Editions that should be merged (e.g., if one Edition has a Google Books ID and another Edition has one with
# an ISBN tied to that Google Books ID)
import shutil
import time
import operator
# let's form a key to map all the Editions into
# (lt_work_id (or None), lang, ISBN (if lt_work_id is None or None if we don't know it), ed_id (or None) )
work_clusters = defaultdict(set)
current_map = defaultdict(set)
#backup = '/Users/raymondyee/D/Document/Gluejar/Gluejar.github/regluit/experimental/lt_data_back.json'
backup = '{0}/lt_data_back.json'.format(experimental.__path__[0])
#fname = '/Users/raymondyee/D/Document/Gluejar/Gluejar.github/regluit/experimental/lt_data.json'
fname = '{0}/lt_data.json'.format(experimental.__path__[0])
shutil.copy(fname, backup)
lt = bookdata.LibraryThing(fname)
try:
input_file = open(fname, "r")
success = lt.load()
print "success: %s" % (success)
input_file.close()
except Exception, e:
print e
for (i, (isbn, ed_id, ed_title, ed_created, work_id, work_created, lang)) in enumerate(
islice(models.Identifier.objects.filter(type='isbn').values_list('value', 'edition__id',
'edition__title', 'edition__created', 'edition__work__id',
'edition__work__created', 'edition__work__language'), max_num)):
lt_work_id = lt.thingisbn(isbn, return_work_id=True)
key = (lt_work_id, lang, isbn if lt_work_id is None else None, None)
print i, isbn, lt_work_id, key
work_clusters[key].add(EdInfo(isbn=isbn, ed_id=ed_id, ed_title=ed_title, ed_created=ed_created,
work_id=work_id, work_created=work_created, lang=lang))
current_map[work_id].add(key)
lt.save()
# Now add the Editions without any ISBNs
print "editions w/o isbn"
for (i, (ed_id, ed_title, ed_created, work_id, work_created, lang)) in enumerate(
islice(models.Edition.objects.exclude(identifiers__type='isbn').values_list('id',
'title', 'created', 'work__id', 'work__created', 'work__language' ), None)):
key = (None, lang, None, ed_id)
print i, ed_id, ed_title.encode('ascii','ignore'), key
work_clusters[key].add(EdInfo(isbn=None, ed_id=ed_id, ed_title=ed_title, ed_created=ed_created,
work_id=work_id, work_created=work_created, lang=lang))
current_map[work_id].add(key)
print "number of clusters", len(work_clusters)
# all unglue.it Works that contain Editions belonging to more than one newly calculated cluster are "FrankenWorks"
franken_works = sorted([k for (k,v) in current_map.items() if len(v) > 1])
# let's calculate the list of users affected if delete the Frankenworks, the number of works deleted from their wishlist
# specifically a list of emails to send out
affected_works = [models.Work.objects.get(id=w_id) for w_id in franken_works]
affected_wishlists = set(reduce(operator.add, [list(w.wishlists.all()) for w in affected_works])) if len(affected_works) else set()
affected_emails = [w.user.email for w in affected_wishlists]
affected_editions = reduce(operator.add, [list(w.editions.all()) for w in affected_works]) if len(affected_works) else []
# calculate the Comments that would have to be deleted too.
affected_comments = reduce(operator.add, [list(Comment.objects.for_model(w)) for w in affected_works]) if len(affected_works) else []
# calculate the inverse of work_clusters
wcp = dict(reduce(operator.add, [ list( izip([ed.ed_id for ed in eds], repeat(k))) for (k,eds) in work_clusters.items()]))
# (I'm not completely sure of this calc -- but the datetime of the latest franken-event)
latest_franken_event = max([ max([min(map(lambda x: x[1], v)) for v in dictlist([(wcp[ed["id"]], (ed["id"], ed["created"].isoformat()))
for ed in models.Work.objects.get(id=w_id).editions.values('id', 'created')]).values()])
for w_id in franken_works]) if len(franken_works) else None
scattered_clusters = [(k, len(set(([e.work_id for e in v])))) for (k,v) in work_clusters.items() if len(set(([e.work_id for e in v]))) <> 1 ]
s = {'work_clusters':work_clusters, 'current_map':current_map, 'results':results, 'franken_works': franken_works,
'wcp':wcp, 'latest_franken_event': latest_franken_event, 'affected_works':affected_works,
'affected_comments': affected_comments, 'scattered_clusters': scattered_clusters,
'affected_emails': affected_emails}
return s
def clean_frankenworks(s, do=False):
# list out the email addresses of accounts with wishlists to be affected
print "number of email addresses: ", len(s['affected_emails'])
print ", ".join(s['affected_emails'])
# list the works we delete
print "number of FrankenWorks", len(s['franken_works'])
print s['franken_works']
# delete the affected comments
print "deleting comments"
for (i, comment) in enumerate(s['affected_comments']):
print i, "deleting ", comment
if do:
comment.delete()
# delete the Frankenworks
print "deleting Frankenworks"
for (i, work) in enumerate(s['affected_works']):
print i, "deleting ", work.id
if do:
work.delete()
# run reclustering surgically -- calculate a set of ISBNs to feed to bookloader.add_related
# assuming x is a set
popisbn = lambda x: list(x)[0].isbn if len(x) else None
# group scattered_clusters by LT work id
scattered_lt = dictlist([(k[0], k) for (k,v) in s['scattered_clusters']])
isbns = map(popisbn, [s['work_clusters'][k[0]] for k in scattered_lt.values()])
print "running bookloader"
for (i, isbn) in enumerate(isbns):
print i, isbn
if do:
bookloader.add_related(isbn)