76 lines
3.1 KiB
Ruby
76 lines
3.1 KiB
Ruby
class Fann < Formula
|
|
desc "Fast artificial neural network library"
|
|
homepage "https://sourceforge.net/projects/fann"
|
|
url "https://downloads.sourceforge.net/project/fann/fann/2.2.0/FANN-2.2.0-Source.tar.gz"
|
|
sha256 "3d6ee056dab91f3b34a3f233de6a15331737848a4cbdb4e0552123d95eed4485"
|
|
license "LGPL-2.1-or-later"
|
|
|
|
bottle do
|
|
sha256 cellar: :any, arm64_ventura: "5d06935d9df379bbb543080a1cfb15503854cd88cb88c6d14186187fdd18607a"
|
|
sha256 cellar: :any, arm64_monterey: "dd693aef10b32db6fe84a9eabfbd1e05c1d4ed83c4e48e936745fa76b2af7a4f"
|
|
sha256 cellar: :any, arm64_big_sur: "2fc8447731fd2a1c7f4957b55e3906041796fd5c9c528c611048f48558e644fc"
|
|
sha256 cellar: :any, ventura: "f7df3b27256ce1656e6ccd36986dd65ee5b0bb8d9b5d0c5f3871bfe8c87ccfe6"
|
|
sha256 cellar: :any, monterey: "468d340a979831b709a4a67defc13796a7763019836d15d98f723aa1b8cb1981"
|
|
sha256 cellar: :any, big_sur: "4d7d975ad6d820ce4938ba6235881b11cfebb93ad8f5ac4cb5dabf2356f2ffa0"
|
|
sha256 cellar: :any, catalina: "61d506a68652f81b0f93120b7ed1fb049510f18381e35a52abe52f0170e589a6"
|
|
sha256 cellar: :any, mojave: "f4ff7eaa67aad30f4c544b3c9e20d4b4f9204807d97b900004ec65a27a2b6175"
|
|
sha256 cellar: :any_skip_relocation, x86_64_linux: "1596e86f9b80da14fc97d5841253dc22c3ffe2e47991ef0c161d4512ef72f65d"
|
|
end
|
|
|
|
depends_on "cmake" => :build
|
|
|
|
def install
|
|
system "cmake", "-S", ".", "-B", "build", *std_cmake_args
|
|
system "cmake", "--build", "build"
|
|
system "cmake", "--install", "build"
|
|
end
|
|
|
|
test do
|
|
(testpath/"xor.data").write <<~EOS
|
|
4 2 1
|
|
-1 -1
|
|
-1
|
|
-1 1
|
|
1
|
|
1 -1
|
|
1
|
|
1 1
|
|
-1
|
|
EOS
|
|
|
|
desired_error = 0.001
|
|
max_epochs = 500000
|
|
|
|
(testpath/"test.c").write <<~EOS
|
|
#include <fann.h>
|
|
int main()
|
|
{
|
|
const unsigned int num_input = 2;
|
|
const unsigned int num_output = 1;
|
|
const unsigned int num_layers = 3;
|
|
const unsigned int num_neurons_hidden = 3;
|
|
const float desired_error = (const float) #{desired_error};
|
|
const unsigned int max_epochs = #{max_epochs};
|
|
const unsigned int epochs_between_reports = 1000;
|
|
struct fann *ann = fann_create_standard(num_layers, num_input,
|
|
num_neurons_hidden, num_output);
|
|
fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC);
|
|
fann_set_activation_function_output(ann, FANN_SIGMOID_SYMMETRIC);
|
|
fann_train_on_file(ann, "xor.data", max_epochs,
|
|
epochs_between_reports, desired_error);
|
|
fann_save(ann, "xor_float.net");
|
|
fann_destroy(ann);
|
|
return 0;
|
|
}
|
|
EOS
|
|
|
|
system ENV.cc, "test.c", "-I#{include}", "-L#{lib}", "-lfann", "-lm", "-o", "test"
|
|
output = shell_output(testpath/"test")
|
|
epoch, error = output.lines.last.match(/Epochs\s+(\d+)\.\s+Current error:\s+(\d+\.\d+)\. Bit fail 0\./).captures
|
|
|
|
assert epoch.to_i <= max_epochs
|
|
assert error.to_f <= desired_error
|
|
assert_predicate testpath/"xor_float.net", :exist?
|
|
end
|
|
end
|