homebrew-core/Formula/coq.rb

58 lines
1.7 KiB
Ruby

class Coq < Formula
desc "Proof assistant for higher-order logic"
homepage "https://coq.inria.fr/"
url "https://github.com/coq/coq/archive/V8.10.2.tar.gz"
sha256 "693c188f045d21f83114239dbb8af8def01b42a157c7d828087d055c32ec6e86"
revision 1
head "https://github.com/coq/coq.git"
bottle do
sha256 "268fcfac9a8f64f6f325470d59b6ccc4b5e1ee810c169fc06160545685e9ff7c" => :catalina
sha256 "53934e4ddee99ebc7543d18c70e4a26f7559da79812a6ef1134ea61d4f266cea" => :mojave
sha256 "833591e4d6b564f728afa5f869b5f8135f1e56ebb36b3536ff20252ca1d07640" => :high_sierra
end
depends_on "ocaml-findlib" => :build
depends_on "ocaml"
depends_on "ocaml-num"
def install
system "./configure", "-prefix", prefix,
"-mandir", man,
"-coqdocdir", "#{pkgshare}/latex",
"-coqide", "no",
"-with-doc", "no"
system "make", "world"
ENV.deparallelize { system "make", "install" }
end
test do
(testpath/"testing.v").write <<~EOS
Require Coq.omega.Omega.
Require Coq.ZArith.ZArith.
Inductive nat : Set :=
| O : nat
| S : nat -> nat.
Fixpoint add (n m: nat) : nat :=
match n with
| O => m
| S n' => S (add n' m)
end.
Lemma add_O_r : forall (n: nat), add n O = n.
Proof.
intros n; induction n; simpl; auto; rewrite IHn; auto.
Qed.
Import Coq.omega.Omega.
Import Coq.ZArith.ZArith.
Open Scope Z.
Lemma add_O_r_Z : forall (n: Z), n + 0 = n.
Proof.
intros; omega.
Qed.
EOS
system("#{bin}/coqc", "#{testpath}/testing.v")
end
end