72 lines
2.2 KiB
Ruby
72 lines
2.2 KiB
Ruby
class Coq < Formula
|
|
desc "Proof assistant for higher-order logic"
|
|
homepage "https://coq.inria.fr/"
|
|
url "https://github.com/coq/coq/archive/V8.15.2.tar.gz"
|
|
sha256 "13a67c0a4559ae22e9765c8fdb88957b16c2b335a2d5f47e4d6d9b4b8b299926"
|
|
license "LGPL-2.1-only"
|
|
head "https://github.com/coq/coq.git", branch: "master"
|
|
|
|
livecheck do
|
|
url :stable
|
|
regex(/^v?(\d+(?:\.\d+)+)$/i)
|
|
end
|
|
|
|
bottle do
|
|
sha256 arm64_monterey: "49ab12e191b51e815c80b695c207813eb17a33698d3814387cfaa92776726367"
|
|
sha256 arm64_big_sur: "1ff641d832c407834e85a5e518c3afe29adc8d82f9f1c4ebc69caaf91e99c033"
|
|
sha256 monterey: "ffdd7527e08e32012f2c49295aa45955d937ba7e97dd3bd085635f15b51463c9"
|
|
sha256 big_sur: "77ab0ab206936dae52fee15b2d38e457c30ac7bbf29ce0521f7b1db4e8d5b974"
|
|
sha256 catalina: "355dabbfa119eff9e1ff8fa10864cda98a4182ab4ade1d07d05d450ccaba4344"
|
|
sha256 x86_64_linux: "6a6a6986f7c285b95c13235b146fd3bc7bf85838864e253a7659a1b96d98d2c1"
|
|
end
|
|
|
|
depends_on "dune" => :build
|
|
depends_on "ocaml-findlib" => :build
|
|
depends_on "gmp"
|
|
depends_on "ocaml"
|
|
depends_on "ocaml-zarith"
|
|
|
|
uses_from_macos "m4" => :build
|
|
uses_from_macos "unzip" => :build
|
|
|
|
def install
|
|
ENV.prepend_path "OCAMLPATH", Formula["ocaml-zarith"].opt_lib/"ocaml"
|
|
system "./configure", "-prefix", prefix,
|
|
"-mandir", man,
|
|
"-docdir", pkgshare/"latex",
|
|
"-coqide", "no",
|
|
"-with-doc", "no"
|
|
system "make", "world"
|
|
ENV.deparallelize { system "make", "install" }
|
|
end
|
|
|
|
test do
|
|
(testpath/"testing.v").write <<~EOS
|
|
Require Coq.micromega.Lia.
|
|
Require Coq.ZArith.ZArith.
|
|
|
|
Inductive nat : Set :=
|
|
| O : nat
|
|
| S : nat -> nat.
|
|
Fixpoint add (n m: nat) : nat :=
|
|
match n with
|
|
| O => m
|
|
| S n' => S (add n' m)
|
|
end.
|
|
Lemma add_O_r : forall (n: nat), add n O = n.
|
|
Proof.
|
|
intros n; induction n; simpl; auto; rewrite IHn; auto.
|
|
Qed.
|
|
|
|
Import Coq.micromega.Lia.
|
|
Import Coq.ZArith.ZArith.
|
|
Open Scope Z.
|
|
Lemma add_O_r_Z : forall (n: Z), n + 0 = n.
|
|
Proof.
|
|
intros; lia.
|
|
Qed.
|
|
EOS
|
|
system bin/"coqc", testpath/"testing.v"
|
|
end
|
|
end
|