57 lines
2.2 KiB
Ruby
57 lines
2.2 KiB
Ruby
class Eigenpy < Formula
|
|
desc "Python bindings of Eigen library with Numpy support"
|
|
homepage "https://github.com/stack-of-tasks/eigenpy"
|
|
url "https://github.com/stack-of-tasks/eigenpy/releases/download/v2.6.9/eigenpy-2.6.9.tar.gz"
|
|
sha256 "fa73023f30e3ad341fddbd984e22260fdae5a84656e08d7dbf0045c909fdf9a7"
|
|
license "BSD-2-Clause"
|
|
head "https://github.com/stack-of-tasks/eigenpy.git", branch: "master"
|
|
|
|
bottle do
|
|
sha256 cellar: :any, arm64_big_sur: "1bc55f1d1204c796c907e83a4d3a879386332047a10562ab511302be825ccdec"
|
|
sha256 cellar: :any, monterey: "33a468df036e701063635d80317d8377c2b6764fc835ee42f6b2b19ced73e785"
|
|
sha256 cellar: :any, big_sur: "cd6488d937b6767a37cab99b4672ff01620c6179083e2edcbf8c2068a0e89bd7"
|
|
sha256 cellar: :any, catalina: "1f638c3ed39e9861039f919c168fd78a124d0b67952da7e9ad3deec576cb6587"
|
|
sha256 cellar: :any_skip_relocation, x86_64_linux: "34dab627a99e3a2da59e87d17da5990feb047f6c55eb7ac83bc9501a604f5b62"
|
|
end
|
|
|
|
depends_on "boost" => :build
|
|
depends_on "cmake" => :build
|
|
depends_on "doxygen" => :build
|
|
depends_on "boost-python3"
|
|
depends_on "eigen"
|
|
depends_on "numpy"
|
|
depends_on "python@3.9"
|
|
|
|
def install
|
|
pyver = Language::Python.major_minor_version "python3"
|
|
python = Formula["python@#{pyver}"].opt_bin/"python#{pyver}"
|
|
ENV.prepend_path "PYTHONPATH", Formula["numpy"].opt_prefix/Language::Python.site_packages("python3")
|
|
ENV.prepend_path "Eigen3_DIR", Formula["eigen"].opt_share/"eigen3/cmake"
|
|
|
|
mkdir "build" do
|
|
args = *std_cmake_args
|
|
args << "-DPYTHON_EXECUTABLE=#{python}"
|
|
args << "-DBUILD_UNIT_TESTS=OFF"
|
|
system "cmake", "..", *args
|
|
system "make"
|
|
system "make", "install"
|
|
end
|
|
end
|
|
|
|
test do
|
|
system Formula["python@3.9"].opt_bin/"python3", "-c", <<~EOS
|
|
import numpy as np
|
|
import eigenpy
|
|
|
|
A = np.random.rand(10,10)
|
|
A = 0.5*(A + A.T)
|
|
ldlt = eigenpy.LDLT(A)
|
|
L = ldlt.matrixL()
|
|
D = ldlt.vectorD()
|
|
P = ldlt.transpositionsP()
|
|
|
|
assert eigenpy.is_approx(np.transpose(P).dot(L.dot(np.diag(D).dot(np.transpose(L).dot(P)))),A)
|
|
EOS
|
|
end
|
|
end
|