betaflight-configurator/js/msp.js

537 lines
20 KiB
JavaScript

'use strict';
// MSP_codes needs to be re-integrated inside MSP object
var MSP_codes = {
MSP_IDENT: 100,
MSP_STATUS: 101,
MSP_RAW_IMU: 102,
MSP_SERVO: 103,
MSP_MOTOR: 104,
MSP_RC: 105,
MSP_RAW_GPS: 106,
MSP_COMP_GPS: 107,
MSP_ATTITUDE: 108,
MSP_ALTITUDE: 109,
MSP_ANALOG: 110,
MSP_RC_TUNING: 111,
MSP_PID: 112,
MSP_BOX: 113,
MSP_MISC: 114,
MSP_MOTOR_PINS: 115,
MSP_BOXNAMES: 116,
MSP_PIDNAMES: 117,
MSP_WP: 118,
MSP_BOXIDS: 119,
MSP_SERVO_CONF: 120,
MSP_SET_RAW_RC: 200,
MSP_SET_RAW_GPS: 201,
MSP_SET_PID: 202,
MSP_SET_BOX: 203,
MSP_SET_RC_TUNING: 204,
MSP_ACC_CALIBRATION: 205,
MSP_MAG_CALIBRATION: 206,
MSP_SET_MISC: 207,
MSP_RESET_CONF: 208,
MSP_SET_WP: 209,
MSP_SELECT_SETTING: 210,
MSP_SET_HEAD: 211,
MSP_SET_SERVO_CONF: 212,
MSP_SET_MOTOR: 214,
// MSP_BIND: 240,
MSP_EEPROM_WRITE: 250,
MSP_DEBUGMSG: 253,
MSP_DEBUG: 254,
// Additional baseflight commands that are not compatible with MultiWii
MSP_UID: 160, // Unique device ID
MSP_ACC_TRIM: 240, // get acc angle trim values
MSP_SET_ACC_TRIM: 239, // set acc angle trim values
MSP_GPSSVINFO: 164 // get Signal Strength (only U-Blox)
};
var MSP = {
state: 0,
message_direction: 1,
code: 0,
message_length_expected: 0,
message_length_received: 0,
message_buffer: null,
message_buffer_uint8_view: null,
message_checksum: 0,
callbacks: [],
packet_error: 0,
callbacks_cleanup: function () {
for (var i = 0; i < this.callbacks.length; i++) {
clearInterval(this.callbacks[i].timer);
}
this.callbacks = [];
},
disconnect_cleanup: function () {
this.state = 0; // reset packet state for "clean" initial entry (this is only required if user hot-disconnects)
this.packet_error = 0; // reset CRC packet error counter for next session
this.callbacks_cleanup();
}
};
MSP.read = function (readInfo) {
var data = new Uint8Array(readInfo.data);
for (var i = 0; i < data.length; i++) {
switch (this.state) {
case 0: // sync char 1
if (data[i] == 36) { // $
this.state++;
}
break;
case 1: // sync char 2
if (data[i] == 77) { // M
this.state++;
} else { // restart and try again
this.state = 0;
}
break;
case 2: // direction (should be >)
if (data[i] == 62) { // >
this.message_direction = 1;
} else { // <
this.message_direction = 0;
}
this.state++;
break;
case 3:
this.message_length_expected = data[i];
this.message_checksum = data[i];
// setup arraybuffer
this.message_buffer = new ArrayBuffer(this.message_length_expected);
this.message_buffer_uint8_view = new Uint8Array(this.message_buffer);
this.state++;
break;
case 4:
this.code = data[i];
this.message_checksum ^= data[i];
if (this.message_length_expected != 0) { // standard message
this.state++;
} else { // MSP_ACC_CALIBRATION, etc...
this.state += 2;
}
break;
case 5: // payload
this.message_buffer_uint8_view[this.message_length_received] = data[i];
this.message_checksum ^= data[i];
this.message_length_received++;
if (this.message_length_received >= this.message_length_expected) {
this.state++;
}
break;
case 6:
if (this.message_checksum == data[i]) {
// message received, process
this.process_data(this.code, this.message_buffer, this.message_length_expected);
} else {
console.log('code: ' + this.code + ' - crc failed');
this.packet_error++;
$('span.packet-error').html(this.packet_error);
}
// Reset variables
this.message_length_received = 0;
this.state = 0;
break;
}
}
};
MSP.process_data = function(code, message_buffer, message_length) {
var data = new DataView(message_buffer, 0); // DataView (allowing us to view arrayBuffer as struct/union)
switch (code) {
case MSP_codes.MSP_IDENT:
CONFIG.version = parseFloat((data.getUint8(0) / 100).toFixed(2));
CONFIG.multiType = data.getUint8(1);
CONFIG.msp_version = data.getUint8(2);
CONFIG.capability = data.getUint32(3, 1);
break;
case MSP_codes.MSP_STATUS:
CONFIG.cycleTime = data.getUint16(0, 1);
CONFIG.i2cError = data.getUint16(2, 1);
CONFIG.activeSensors = data.getUint16(4, 1);
CONFIG.mode = data.getUint32(6, 1);
CONFIG.profile = data.getUint8(10);
sensor_status(CONFIG.activeSensors);
$('span.i2c-error').text(CONFIG.i2cError);
$('span.cycle-time').text(CONFIG.cycleTime);
break;
case MSP_codes.MSP_RAW_IMU:
// 512 for mpu6050, 256 for mma
// currently we are unable to differentiate between the sensor types, so we are goign with 512
SENSOR_DATA.accelerometer[0] = data.getInt16(0, 1) / 512;
SENSOR_DATA.accelerometer[1] = data.getInt16(2, 1) / 512;
SENSOR_DATA.accelerometer[2] = data.getInt16(4, 1) / 512;
// properly scaled
SENSOR_DATA.gyroscope[0] = data.getInt16(6, 1) * (4 / 16.4);
SENSOR_DATA.gyroscope[1] = data.getInt16(8, 1) * (4 / 16.4);
SENSOR_DATA.gyroscope[2] = data.getInt16(10, 1) * (4 / 16.4);
// no clue about scaling factor
SENSOR_DATA.magnetometer[0] = data.getInt16(12, 1) / 1090;
SENSOR_DATA.magnetometer[1] = data.getInt16(14, 1) / 1090;
SENSOR_DATA.magnetometer[2] = data.getInt16(16, 1) / 1090;
break;
case MSP_codes.MSP_SERVO:
var needle = 0;
for (var i = 0; i < 8; i++) {
SERVO_DATA[i] = data.getUint16(needle, 1);
needle += 2;
}
break;
case MSP_codes.MSP_MOTOR:
var needle = 0;
for (var i = 0; i < 8; i++) {
MOTOR_DATA[i] = data.getUint16(needle, 1);
needle += 2;
}
break;
case MSP_codes.MSP_RC:
RC.active_channels = message_length / 2;
for (var i = 0; i < RC.active_channels; i++) {
RC.channels[i] = data.getUint16((i * 2), 1);
}
break;
case MSP_codes.MSP_RAW_GPS:
GPS_DATA.fix = data.getUint8(0);
GPS_DATA.numSat = data.getUint8(1);
GPS_DATA.lat = data.getInt32(2, 1);
GPS_DATA.lon = data.getInt32(6, 1);
GPS_DATA.alt = data.getUint16(10, 1);
GPS_DATA.speed = data.getUint16(12, 1);
GPS_DATA.ground_course = data.getUint16(14, 1);
break;
case MSP_codes.MSP_COMP_GPS:
GPS_DATA.distanceToHome = data.getUint16(0, 1);
GPS_DATA.directionToHome = data.getUint16(2, 1);
GPS_DATA.update = data.getUint8(4);
break;
case MSP_codes.MSP_ATTITUDE:
SENSOR_DATA.kinematics[0] = data.getInt16(0, 1) / 10.0; // x
SENSOR_DATA.kinematics[1] = data.getInt16(2, 1) / 10.0; // y
SENSOR_DATA.kinematics[2] = data.getInt16(4, 1); // z
break;
case MSP_codes.MSP_ALTITUDE:
SENSOR_DATA.altitude = parseFloat((data.getInt32(0, 1) / 100.0).toFixed(2)); // correct scale factor
break;
case MSP_codes.MSP_ANALOG:
ANALOG.voltage = data.getUint8(0) / 10.0;
ANALOG.mAhdrawn = data.getUint16(1, 1);
ANALOG.rssi = data.getUint16(3, 1); // 0-1023
ANALOG.amperage = data.getUint16(5, 1) / 100; // A
break;
case MSP_codes.MSP_RC_TUNING:
RC_tuning.RC_RATE = parseFloat((data.getUint8(0) / 100).toFixed(2));
RC_tuning.RC_EXPO = parseFloat((data.getUint8(1) / 100).toFixed(2));
RC_tuning.roll_pitch_rate = parseFloat((data.getUint8(2) / 100).toFixed(2));
RC_tuning.yaw_rate = parseFloat((data.getUint8(3) / 100).toFixed(2));
RC_tuning.dynamic_THR_PID = parseFloat((data.getUint8(4) / 100).toFixed(2));
RC_tuning.throttle_MID = parseFloat((data.getUint8(5) / 100).toFixed(2));
RC_tuning.throttle_EXPO = parseFloat((data.getUint8(6) / 100).toFixed(2));
break;
case MSP_codes.MSP_PID:
// PID data arrived, we need to scale it and save to appropriate bank / array
for (var i = 0, needle = 0; i < (message_length / 3); i++, needle += 3) {
// main for loop selecting the pid section
switch (i) {
case 0:
case 1:
case 2:
case 3:
case 7:
case 8:
case 9:
PIDs[i][0] = data.getUint8(needle) / 10;
PIDs[i][1] = data.getUint8(needle + 1) / 1000;
PIDs[i][2] = data.getUint8(needle + 2);
break;
case 4:
PIDs[i][0] = data.getUint8(needle) / 100;
PIDs[i][1] = data.getUint8(needle + 1) / 100;
PIDs[i][2] = data.getUint8(needle + 2) / 1000;
break;
case 5:
case 6:
PIDs[i][0] = data.getUint8(needle) / 10;
PIDs[i][1] = data.getUint8(needle + 1) / 100;
PIDs[i][2] = data.getUint8(needle + 2) / 1000;
break;
}
}
break;
case MSP_codes.MSP_BOX:
AUX_CONFIG_values = []; // empty the array as new data is coming in
// fill in current data
for (var i = 0; i < data.byteLength; i += 2) { // + 2 because uint16_t = 2 bytes
AUX_CONFIG_values.push(data.getUint16(i, 1));
}
break;
case MSP_codes.MSP_MISC: // 22 bytes
MISC.PowerTrigger1 = data.getInt16(0, 1);
MISC.minthrottle = data.getUint16(2, 1); // 0-2000
MISC.maxthrottle = data.getUint16(4, 1); // 0-2000
MISC.mincommand = data.getUint16(6, 1); // 0-2000
MISC.failsafe_throttle = data.getUint16(8, 1); // 1000-2000
MISC.plog0 = data.getUint16(10, 1);
MISC.plog1 = data.getUint32(12, 1);
MISC.mag_declination = data.getInt16(16, 1); // -18000-18000
MISC.vbatscale = data.getUint8(18, 1); // 10-200
MISC.vbatmincellvoltage = data.getUint8(19, 1) / 10; // 10-50
MISC.vbatmaxcellvoltage = data.getUint8(20, 1) / 10; // 10-50
MISC.empty = data.getUint8(21, 1);
break;
case MSP_codes.MSP_MOTOR_PINS:
console.log(data);
break;
case MSP_codes.MSP_BOXNAMES:
AUX_CONFIG = []; // empty the array as new data is coming in
var buff = [];
for (var i = 0; i < data.byteLength; i++) {
if (data.getUint8(i) == 0x3B) { // ; (delimeter char)
AUX_CONFIG.push(String.fromCharCode.apply(null, buff)); // convert bytes into ASCII and save as strings
// empty buffer
buff = [];
} else {
buff.push(data.getUint8(i));
}
}
break;
case MSP_codes.MSP_PIDNAMES:
PID_names = []; // empty the array as new data is coming in
var buff = [];
for (var i = 0; i < data.byteLength; i++) {
if (data.getUint8(i) == 0x3B) { // ; (delimeter char)
PID_names.push(String.fromCharCode.apply(null, buff)); // convert bytes into ASCII and save as strings
// empty buffer
buff = [];
} else {
buff.push(data.getUint8(i));
}
}
break;
case MSP_codes.MSP_WP:
console.log(data);
break;
case MSP_codes.MSP_BOXIDS:
AUX_CONFIG_IDS = []; // empty the array as new data is coming in
for (var i = 0; i < data.byteLength; i++) {
AUX_CONFIG_IDS.push(data.getUint8(i));
}
break;
case MSP_codes.MSP_SERVO_CONF:
SERVO_CONFIG = []; // empty the array as new data is coming in
for (var i = 0; i < 56; i += 7) {
var arr = {
'min': data.getInt16(i, 1),
'max': data.getInt16(i + 2, 1),
'middle': data.getInt16(i + 4, 1),
'rate': data.getInt8(i + 6)
};
SERVO_CONFIG.push(arr);
}
break;
case MSP_codes.MSP_SET_RAW_RC:
break;
case MSP_codes.MSP_SET_RAW_GPS:
break;
case MSP_codes.MSP_SET_PID:
console.log('PID settings saved');
break;
case MSP_codes.MSP_SET_BOX:
console.log('AUX Configuration saved');
break;
case MSP_codes.MSP_SET_RC_TUNING:
console.log('RC Tuning saved');
break;
case MSP_codes.MSP_ACC_CALIBRATION:
console.log('Accel calibration executed');
break;
case MSP_codes.MSP_MAG_CALIBRATION:
console.log('Mag calibration executed');
break;
case MSP_codes.MSP_SET_MISC:
console.log('MISC Configuration saved');
break;
case MSP_codes.MSP_RESET_CONF:
console.log('Settings Reset');
// With new flight software settings in place, we have to re-pull
// latest values
MSP.send_message(MSP_codes.MSP_IDENT);
MSP.send_message(MSP_codes.MSP_STATUS);
MSP.send_message(MSP_codes.MSP_PID);
MSP.send_message(MSP_codes.MSP_RC_TUNING);
MSP.send_message(MSP_codes.MSP_BOXNAMES);
MSP.send_message(MSP_codes.MSP_BOX);
// baseflight specific
MSP.send_message(MSP_codes.MSP_UID);
MSP.send_message(MSP_codes.MSP_ACC_TRIM);
break;
case MSP_codes.MSP_SELECT_SETTING:
console.log('Profile selected');
break;
case MSP_codes.MSP_SET_SERVO_CONF:
console.log('Servo Configuration saved');
break;
case MSP_codes.MSP_EEPROM_WRITE:
console.log('Settings Saved in EEPROM');
break;
case MSP_codes.MSP_DEBUGMSG:
break;
case MSP_codes.MSP_DEBUG:
for (var i = 0; i < 4; i++)
SENSOR_DATA.debug[i] = data.getInt16((2 * i), 1);
break;
case MSP_codes.MSP_SET_MOTOR:
console.log('Motor Speeds Updated');
break;
// Additional baseflight commands that are not compatible with MultiWii
case MSP_codes.MSP_UID:
CONFIG.uid[0] = data.getUint32(0, 1);
CONFIG.uid[1] = data.getUint32(4, 1);
CONFIG.uid[2] = data.getUint32(8, 1);
break;
case MSP_codes.MSP_ACC_TRIM:
CONFIG.accelerometerTrims[0] = data.getInt16(0, 1); // pitch
CONFIG.accelerometerTrims[1] = data.getInt16(2, 1); // roll
break;
case MSP_codes.MSP_SET_ACC_TRIM:
console.log('Accelerometer trimms saved.');
break;
case MSP_codes.MSP_GPSSVINFO:
if (data.byteLength > 0) {
var numCh = data.getUint8(0);
var needle = 1;
for (var i = 0; i < numCh; i++) {
GPS_DATA.chn[i] = data.getUint8(needle);
GPS_DATA.svid[i] = data.getUint8(needle + 1);
GPS_DATA.quality[i] = data.getUint8(needle + 2);
GPS_DATA.cno[i] = data.getUint8(needle + 3);
needle += 4;
}
}
break;
default:
console.log('Unknown code detected: ' + code);
}
// trigger callbacks, cleanup/remove callback after trigger
for (var i = this.callbacks.length - 1; i >= 0; i--) { // itterating in reverse because we use .splice which modifies array length
if (this.callbacks[i].code == code) {
// save callback reference
var callback = this.callbacks[i].callback;
// remove timeout
clearInterval(this.callbacks[i].timer);
// remove object from array
this.callbacks.splice(i, 1);
// fire callback
if (callback) callback({'command': code, 'data': data, 'length': message_length});
}
}
};
MSP.send_message = function(code, data, callback_sent, callback_msp) {
var bufferOut;
var bufView;
// always reserve 6 bytes for protocol overhead !
if (data) {
var size = data.length + 6;
var checksum = 0;
bufferOut = new ArrayBuffer(size);
bufView = new Uint8Array(bufferOut);
bufView[0] = 36; // $
bufView[1] = 77; // M
bufView[2] = 60; // <
bufView[3] = data.length;
bufView[4] = code;
checksum = bufView[3] ^ bufView[4];
for (var i = 0; i < data.length; i++) {
bufView[i + 5] = data[i];
checksum ^= bufView[i + 5];
}
bufView[5 + data.length] = checksum;
} else {
bufferOut = new ArrayBuffer(6);
bufView = new Uint8Array(bufferOut);
bufView[0] = 36; // $
bufView[1] = 77; // M
bufView[2] = 60; // <
bufView[3] = 0; // data length
bufView[4] = code; // code
bufView[5] = bufView[3] ^ bufView[4]; // checksum
}
// utilizing callback/timeout system for all commands
for (var i = 0; i < MSP.callbacks.length; i++) {
if (MSP.callbacks[i].code == code) {
// request already exist
return false; // skips the code below
}
}
var obj = {'code': code, 'callback': (callback_msp) ? callback_msp : false};
obj.timer = setInterval(function() {
console.log('MSP data request timed-out: ' + code);
serial.send(bufferOut, function(sendInfo) {});
}, 1000); // we should be able to define timeout in the future
MSP.callbacks.push(obj);
serial.send(bufferOut, function(sendInfo) {
if (sendInfo.bytesSent > 0) {
if (callback_sent) callback_sent();
}
});
return true;
}