Verify target has all addresses found in the hex file instead of

verifying the size.

As noted in PR #2512 simply verifying the size of the hex file is not
extensible and is not how hex files are designed to be used.

A hex file can contains many non-contiguous blocks of data.

This also supports targets with any partition layout.

Additionally, this provides a more flexible way of providing hex files
which can now contain data for non-contiguous blocks, e.g. firmware +
config or firmware + osd fonts.
10.8-maintenance
Hydra 2021-07-01 13:32:34 +02:00 committed by Dominic Clifton
parent bd2640b2af
commit 2683824b64
2 changed files with 80 additions and 43 deletions

View File

@ -670,7 +670,10 @@
"dfu_device_flash_info": {
"message": "Detected device with total flash size $1 KiB"
},
"dfu_error_image_size": {
"dfu_hex_address_errors": {
"message": "<span class=\"message-negative\">Error</span>: Firmware image contains addresses not found on target device"
},
"dfu_error_image_size": {
"message": "<span class=\"message-negative\">Error</span>: Supplied image is larger then flash available on the chip! Image: $1 KiB, limit = $2 KiB"
},

View File

@ -549,6 +549,47 @@ STM32DFU_protocol.prototype.verify_flash = function (first_array, second_array)
return true;
};
STM32DFU_protocol.prototype.isBlockUsable = function(startAddress, length) {
var self = this;
let result = false;
let searchAddress = startAddress;
let remainingLength = length;
let restart;
do {
restart = false;
for (const sector of self.flash_layout.sectors) {
const sectorStart = sector.start_address;
const sectorLength = sector.num_pages * sector.page_size;
const sectorEnd = sectorStart + sectorLength - 1; // - 1 for inclusive
const addressInSector = (searchAddress >= sectorStart) && (searchAddress <= sectorEnd);
if (addressInSector) {
const endAddress = searchAddress + remainingLength - 1; // - 1 for inclusive
const endAddressInSector = (endAddress <= sectorEnd);
if (endAddressInSector) {
result = true;
restart = false;
break;
}
// some of the block is in this sector, search for the another sector that contains the next part of the block
searchAddress = sectorEnd + 1;
remainingLength -= sectorLength;
restart = true;
break;
}
}
} while (restart);
return result;
};
STM32DFU_protocol.prototype.upload_procedure = function (step) {
var self = this;
@ -559,60 +600,53 @@ STM32DFU_protocol.prototype.upload_procedure = function (step) {
console.log('Failed to detect chip info, resultCode: ' + resultCode);
self.cleanup();
} else {
let nextAction;
if (typeof chipInfo.internal_flash !== "undefined") {
// internal flash
nextAction = 1;
self.chipInfo = chipInfo;
self.flash_layout = chipInfo.internal_flash;
self.available_flash_size = self.flash_layout.total_size - (self.hex.start_linear_address - self.flash_layout.start_address);
GUI.log(i18n.getMessage('dfu_device_flash_info', (self.flash_layout.total_size / 1024).toString()));
if (self.hex.bytes_total > self.available_flash_size) {
GUI.log(i18n.getMessage('dfu_error_image_size',
[(self.hex.bytes_total / 1024.0).toFixed(1),
(self.available_flash_size / 1024.0).toFixed(1)]));
self.cleanup();
} else {
self.getFunctionalDescriptor(0, function (descriptor, resultCode) {
self.transferSize = resultCode ? 2048 : descriptor.wTransferSize;
console.log('Using transfer size: ' + self.transferSize);
self.clearStatus(function () {
self.upload_procedure(1);
});
});
}
} else if (typeof chipInfo.external_flash !== "undefined") {
// external flash, flash to the 3rd partition.
// external flash
nextAction = 2; // no option bytes
self.chipInfo = chipInfo;
self.flash_layout = chipInfo.external_flash;
var firmware_partition_index = 2;
var firmware_sectors = self.flash_layout.sectors[firmware_partition_index];
var firmware_partition_size = firmware_sectors.total_size;
self.available_flash_size = firmware_partition_size;
GUI.log(i18n.getMessage('dfu_device_flash_info', (self.flash_layout.total_size / 1024).toString()));
if (self.hex.bytes_total > self.available_flash_size) {
GUI.log(i18n.getMessage('dfu_error_image_size',
[(self.hex.bytes_total / 1024.0).toFixed(1),
(self.available_flash_size / 1024.0).toFixed(1)]));
self.cleanup();
} else {
self.getFunctionalDescriptor(0, function (descriptor, resultCode) {
self.transferSize = resultCode ? 2048 : descriptor.wTransferSize;
console.log('Using transfer size: ' + self.transferSize);
self.clearStatus(function () {
self.upload_procedure(2); // no option bytes to deal with
});
});
}
} else {
console.log('Failed to detect internal or external flash');
self.cleanup();
}
if (typeof nextAction !== "undefined") {
GUI.log(i18n.getMessage('dfu_device_flash_info', (self.flash_layout.total_size / 1024).toString()));
// verify all addresses in the hex are writable.
const unusableBlocks = [];
for (const block of self.hex.data) {
const usable = self.isBlockUsable(block.address, block.bytes);
if (!usable) {
unusableBlocks.push(block);
}
}
if (unusableBlocks.length > 0) {
GUI.log(i18n.getMessage('dfu_hex_address_errors'));
self.cleanup();
} else {
self.getFunctionalDescriptor(0, function (descriptor, resultCode) {
self.transferSize = resultCode ? 2048 : descriptor.wTransferSize;
console.log('Using transfer size: ' + self.transferSize);
self.clearStatus(function () {
self.upload_procedure(nextAction);
});
});
}
}
}
});
break;