// Package : omnithread // omnithread/nt.cc Created : 6/95 tjr // // Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved. // // This file is part of the omnithread library // // The omnithread library is free software; you can redistribute it and/or // modify it under the terms of the GNU Library General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Library General Public License for more details. // // You should have received a copy of the GNU Library General Public // License along with this library; if not, write to the Free // Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA // 02111-1307, USA // // // Implementation of OMNI thread abstraction for NT threads // #include #include #include "omnithread.h" #include #define DB(x) // x //#include or #include if DB is on. static void get_time_now(unsigned long* abs_sec, unsigned long* abs_nsec); /////////////////////////////////////////////////////////////////////////// // // Mutex // /////////////////////////////////////////////////////////////////////////// omni_mutex::omni_mutex(void) { InitializeCriticalSection(&crit); } omni_mutex::~omni_mutex(void) { DeleteCriticalSection(&crit); } void omni_mutex::lock(void) { EnterCriticalSection(&crit); } void omni_mutex::unlock(void) { LeaveCriticalSection(&crit); } /////////////////////////////////////////////////////////////////////////// // // Condition variable // /////////////////////////////////////////////////////////////////////////// // // Condition variables are tricky to implement using NT synchronisation // primitives, since none of them have the atomic "release mutex and wait to be // signalled" which is central to the idea of a condition variable. To get // around this the solution is to record which threads are waiting and // explicitly wake up those threads. // // Here we implement a condition variable using a list of waiting threads // (protected by a critical section), and a per-thread semaphore (which // actually only needs to be a binary semaphore). // // To wait on the cv, a thread puts itself on the list of waiting threads for // that cv, then releases the mutex and waits on its own personal semaphore. A // signalling thread simply takes a thread from the head of the list and kicks // that thread's semaphore. Broadcast is simply implemented by kicking the // semaphore of each waiting thread. // // The only other tricky part comes when a thread gets a timeout from a timed // wait on its semaphore. Between returning with a timeout from the wait and // entering the critical section, a signalling thread could get in, kick the // waiting thread's semaphore and remove it from the list. If this happens, // the waiting thread's semaphore is now out of step so it needs resetting, and // the thread should indicate that it was signalled rather than that it timed // out. // // It is possible that the thread calling wait or timedwait is not a // omni_thread. In this case we have to provide a temporary data structure, // i.e. for the duration of the call, for the thread to link itself on the // list of waiting threads. _internal_omni_thread_dummy provides such // a data structure and _internal_omni_thread_helper is a helper class to // deal with this special case for wait() and timedwait(). Once created, // the _internal_omni_thread_dummy is cached for use by the next wait() or // timedwait() call from a non-omni_thread. This is probably worth doing // because creating a Semaphore is quite heavy weight. class _internal_omni_thread_helper; class _internal_omni_thread_dummy : public omni_thread { public: inline _internal_omni_thread_dummy() : next(0) { } inline ~_internal_omni_thread_dummy() { } friend class _internal_omni_thread_helper; private: _internal_omni_thread_dummy* next; }; class _internal_omni_thread_helper { public: inline _internal_omni_thread_helper() { d = 0; t = omni_thread::self(); if (!t) { omni_mutex_lock sync(cachelock); if (cache) { d = cache; cache = cache->next; } else { d = new _internal_omni_thread_dummy; } t = d; } } inline ~_internal_omni_thread_helper() { if (d) { omni_mutex_lock sync(cachelock); d->next = cache; cache = d; } } inline operator omni_thread* () { return t; } inline omni_thread* operator->() { return t; } static _internal_omni_thread_dummy* cache; static omni_mutex cachelock; private: _internal_omni_thread_dummy* d; omni_thread* t; }; _internal_omni_thread_dummy* _internal_omni_thread_helper::cache = 0; omni_mutex _internal_omni_thread_helper::cachelock; omni_condition::omni_condition(omni_mutex* m) : mutex(m) { InitializeCriticalSection(&crit); waiting_head = waiting_tail = NULL; } omni_condition::~omni_condition(void) { DeleteCriticalSection(&crit); DB( if (waiting_head != NULL) { cerr << "omni_condition::~omni_condition: list of waiting threads " << "is not empty\n"; } ) } void omni_condition::wait(void) { _internal_omni_thread_helper me; EnterCriticalSection(&crit); me->cond_next = NULL; me->cond_prev = waiting_tail; if (waiting_head == NULL) waiting_head = me; else waiting_tail->cond_next = me; waiting_tail = me; me->cond_waiting = TRUE; LeaveCriticalSection(&crit); mutex->unlock(); DWORD result = WaitForSingleObject(me->cond_semaphore, INFINITE); mutex->lock(); if (result != WAIT_OBJECT_0) throw omni_thread_fatal(GetLastError()); } int omni_condition::timedwait(unsigned long abs_sec, unsigned long abs_nsec) { _internal_omni_thread_helper me; EnterCriticalSection(&crit); me->cond_next = NULL; me->cond_prev = waiting_tail; if (waiting_head == NULL) waiting_head = me; else waiting_tail->cond_next = me; waiting_tail = me; me->cond_waiting = TRUE; LeaveCriticalSection(&crit); mutex->unlock(); unsigned long now_sec, now_nsec; get_time_now(&now_sec, &now_nsec); DWORD timeout = (abs_sec-now_sec) * 1000 + (abs_nsec-now_nsec) / 1000000; if ((abs_sec <= now_sec) && ((abs_sec < now_sec) || (abs_nsec < abs_nsec))) timeout = 0; DWORD result = WaitForSingleObject(me->cond_semaphore, timeout); if (result == WAIT_TIMEOUT) { EnterCriticalSection(&crit); if (me->cond_waiting) { if (me->cond_prev != NULL) me->cond_prev->cond_next = me->cond_next; else waiting_head = me->cond_next; if (me->cond_next != NULL) me->cond_next->cond_prev = me->cond_prev; else waiting_tail = me->cond_prev; me->cond_waiting = FALSE; LeaveCriticalSection(&crit); mutex->lock(); return 0; } // // We timed out but another thread still signalled us. Wait for // the semaphore (it _must_ have been signalled) to decrement it // again. Return that we were signalled, not that we timed out. // LeaveCriticalSection(&crit); result = WaitForSingleObject(me->cond_semaphore, INFINITE); } if (result != WAIT_OBJECT_0) throw omni_thread_fatal(GetLastError()); mutex->lock(); return 1; } void omni_condition::signal(void) { EnterCriticalSection(&crit); if (waiting_head != NULL) { omni_thread* t = waiting_head; waiting_head = t->cond_next; if (waiting_head == NULL) waiting_tail = NULL; else waiting_head->cond_prev = NULL; t->cond_waiting = FALSE; if (!ReleaseSemaphore(t->cond_semaphore, 1, NULL)) { int rc = GetLastError(); LeaveCriticalSection(&crit); throw omni_thread_fatal(rc); } } LeaveCriticalSection(&crit); } void omni_condition::broadcast(void) { EnterCriticalSection(&crit); while (waiting_head != NULL) { omni_thread* t = waiting_head; waiting_head = t->cond_next; if (waiting_head == NULL) waiting_tail = NULL; else waiting_head->cond_prev = NULL; t->cond_waiting = FALSE; if (!ReleaseSemaphore(t->cond_semaphore, 1, NULL)) { int rc = GetLastError(); LeaveCriticalSection(&crit); throw omni_thread_fatal(rc); } } LeaveCriticalSection(&crit); } /////////////////////////////////////////////////////////////////////////// // // Counting semaphore // /////////////////////////////////////////////////////////////////////////// #define SEMAPHORE_MAX 0x7fffffff omni_semaphore::omni_semaphore(unsigned int initial) { nt_sem = CreateSemaphore(NULL, initial, SEMAPHORE_MAX, NULL); if (nt_sem == NULL) { DB( cerr << "omni_semaphore::omni_semaphore: CreateSemaphore error " << GetLastError() << endl ); throw omni_thread_fatal(GetLastError()); } } omni_semaphore::~omni_semaphore(void) { if (!CloseHandle(nt_sem)) { DB( cerr << "omni_semaphore::~omni_semaphore: CloseHandle error " << GetLastError() << endl ); throw omni_thread_fatal(GetLastError()); } } void omni_semaphore::wait(void) { if (WaitForSingleObject(nt_sem, INFINITE) != WAIT_OBJECT_0) throw omni_thread_fatal(GetLastError()); } int omni_semaphore::trywait(void) { switch (WaitForSingleObject(nt_sem, 0)) { case WAIT_OBJECT_0: return 1; case WAIT_TIMEOUT: return 0; } throw omni_thread_fatal(GetLastError()); return 0; /* keep msvc++ happy */ } void omni_semaphore::post(void) { if (!ReleaseSemaphore(nt_sem, 1, NULL)) throw omni_thread_fatal(GetLastError()); } /////////////////////////////////////////////////////////////////////////// // // Thread // /////////////////////////////////////////////////////////////////////////// // // Static variables // int omni_thread::init_t::count = 0; omni_mutex* omni_thread::next_id_mutex; int omni_thread::next_id = 0; static DWORD self_tls_index; // // Initialisation function (gets called before any user code). // omni_thread::init_t::init_t(void) { if (count++ != 0) // only do it once however many objects get created. return; DB(cerr << "omni_thread::init: NT implementation initialising\n"); self_tls_index = TlsAlloc(); if (self_tls_index == 0xffffffff) throw omni_thread_fatal(GetLastError()); next_id_mutex = new omni_mutex; // // Create object for this (i.e. initial) thread. // omni_thread* t = new omni_thread; t->_state = STATE_RUNNING; if (!DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), GetCurrentProcess(), &t->handle, 0, FALSE, DUPLICATE_SAME_ACCESS)) throw omni_thread_fatal(GetLastError()); t->nt_id = GetCurrentThreadId(); DB(cerr << "initial thread " << t->id() << " NT thread id " << t->nt_id << endl); if (!TlsSetValue(self_tls_index, (LPVOID)t)) throw omni_thread_fatal(GetLastError()); if (!SetThreadPriority(t->handle, nt_priority(PRIORITY_NORMAL))) throw omni_thread_fatal(GetLastError()); } // // Wrapper for thread creation. // extern "C" unsigned __stdcall omni_thread_wrapper(void* ptr) { omni_thread* me = (omni_thread*)ptr; DB(cerr << "omni_thread_wrapper: thread " << me->id() << " started\n"); TlsSetValue(self_tls_index, (LPVOID)me); //if (!TlsSetValue(self_tls_index, (LPVOID)me)) // throw omni_thread_fatal(GetLastError()); // // Now invoke the thread function with the given argument. // if (me->fn_void != NULL) { (*me->fn_void)(me->thread_arg); omni_thread::exit(); } if (me->fn_ret != NULL) { void* return_value = (*me->fn_ret)(me->thread_arg); omni_thread::exit(return_value); } if (me->detached) { me->run(me->thread_arg); omni_thread::exit(); } else { void* return_value = me->run_undetached(me->thread_arg); omni_thread::exit(return_value); } // should never get here. return 0; } // // Constructors for omni_thread - set up the thread object but don't // start it running. // // construct a detached thread running a given function. omni_thread::omni_thread(void (*fn)(void*), void* arg, priority_t pri) { common_constructor(arg, pri, 1); fn_void = fn; fn_ret = NULL; } // construct an undetached thread running a given function. omni_thread::omni_thread(void* (*fn)(void*), void* arg, priority_t pri) { common_constructor(arg, pri, 0); fn_void = NULL; fn_ret = fn; } // construct a thread which will run either run() or run_undetached(). omni_thread::omni_thread(void* arg, priority_t pri) { common_constructor(arg, pri, 1); fn_void = NULL; fn_ret = NULL; } // common part of all constructors. void omni_thread::common_constructor(void* arg, priority_t pri, int det) { _state = STATE_NEW; _priority = pri; next_id_mutex->lock(); _id = next_id++; next_id_mutex->unlock(); thread_arg = arg; detached = det; // may be altered in start_undetached() cond_semaphore = CreateSemaphore(NULL, 0, SEMAPHORE_MAX, NULL); if (cond_semaphore == NULL) throw omni_thread_fatal(GetLastError()); cond_next = cond_prev = NULL; cond_waiting = FALSE; handle = NULL; } // // Destructor for omni_thread. // omni_thread::~omni_thread(void) { DB(cerr << "destructor called for thread " << id() << endl); if ((handle != NULL) && !CloseHandle(handle)) throw omni_thread_fatal(GetLastError()); if (!CloseHandle(cond_semaphore)) throw omni_thread_fatal(GetLastError()); } // // Start the thread // void omni_thread::start(void) { omni_mutex_lock l(mutex); if (_state != STATE_NEW) throw omni_thread_invalid(); unsigned int t; handle = (HANDLE)_beginthreadex( NULL, 0, omni_thread_wrapper, (LPVOID)this, CREATE_SUSPENDED, &t); nt_id = t; if (handle == NULL) throw omni_thread_fatal(GetLastError()); if (!SetThreadPriority(handle, _priority)) throw omni_thread_fatal(GetLastError()); if (ResumeThread(handle) == 0xffffffff) throw omni_thread_fatal(GetLastError()); _state = STATE_RUNNING; } // // Start a thread which will run the member function run_undetached(). // void omni_thread::start_undetached(void) { if ((fn_void != NULL) || (fn_ret != NULL)) throw omni_thread_invalid(); detached = 0; start(); } // // join - simply check error conditions & call WaitForSingleObject. // void omni_thread::join(void** status) { mutex.lock(); if ((_state != STATE_RUNNING) && (_state != STATE_TERMINATED)) { mutex.unlock(); throw omni_thread_invalid(); } mutex.unlock(); if (this == self()) throw omni_thread_invalid(); if (detached) throw omni_thread_invalid(); DB(cerr << "omni_thread::join: doing WaitForSingleObject\n"); if (WaitForSingleObject(handle, INFINITE) != WAIT_OBJECT_0) throw omni_thread_fatal(GetLastError()); DB(cerr << "omni_thread::join: WaitForSingleObject succeeded\n"); if (status) *status = return_val; delete this; } // // Change this thread's priority. // void omni_thread::set_priority(priority_t pri) { omni_mutex_lock l(mutex); if (_state != STATE_RUNNING) throw omni_thread_invalid(); _priority = pri; if (!SetThreadPriority(handle, nt_priority(pri))) throw omni_thread_fatal(GetLastError()); } // // create - construct a new thread object and start it running. Returns thread // object if successful, null pointer if not. // // detached version omni_thread* omni_thread::create(void (*fn)(void*), void* arg, priority_t pri) { omni_thread* t = new omni_thread(fn, arg, pri); t->start(); return t; } // undetached version omni_thread* omni_thread::create(void* (*fn)(void*), void* arg, priority_t pri) { omni_thread* t = new omni_thread(fn, arg, pri); t->start(); return t; } // // exit() _must_ lock the mutex even in the case of a detached thread. This is // because a thread may run to completion before the thread that created it has // had a chance to get out of start(). By locking the mutex we ensure that the // creating thread must have reached the end of start() before we delete the // thread object. Of course, once the call to start() returns, the user can // still incorrectly refer to the thread object, but that's their problem. // void omni_thread::exit(void* return_value) { omni_thread* me = self(); if (me) { me->mutex.lock(); me->_state = STATE_TERMINATED; me->mutex.unlock(); DB(cerr << "omni_thread::exit: thread " << me->id() << " detached " << me->detached << " return value " << return_value << endl); if (me->detached) { delete me; } else { me->return_val = return_value; } } else { DB(cerr << "omni_thread::exit: called with a non-omnithread. Exit quietly." << endl); } // _endthreadex() does not automatically closes the thread handle. // The omni_thread dtor closes the thread handle. _endthreadex(0); } omni_thread* omni_thread::self(void) { LPVOID me; me = TlsGetValue(self_tls_index); if (me == NULL) { DB(cerr << "omni_thread::self: called with a non-ominthread. NULL is returned." << endl); } return (omni_thread*)me; } void omni_thread::yield(void) { Sleep(0); } #define MAX_SLEEP_SECONDS (DWORD)4294966 // (2**32-2)/1000 void omni_thread::sleep(unsigned long secs, unsigned long nanosecs) { if (secs <= MAX_SLEEP_SECONDS) { Sleep(secs * 1000 + nanosecs / 1000000); return; } DWORD no_of_max_sleeps = secs / MAX_SLEEP_SECONDS; for (DWORD i = 0; i < no_of_max_sleeps; i++) Sleep(MAX_SLEEP_SECONDS * 1000); Sleep((secs % MAX_SLEEP_SECONDS) * 1000 + nanosecs / 1000000); } void omni_thread::get_time(unsigned long* abs_sec, unsigned long* abs_nsec, unsigned long rel_sec, unsigned long rel_nsec) { get_time_now(abs_sec, abs_nsec); *abs_nsec += rel_nsec; *abs_sec += rel_sec + *abs_nsec / 1000000000; *abs_nsec = *abs_nsec % 1000000000; } int omni_thread::nt_priority(priority_t pri) { switch (pri) { case PRIORITY_LOW: return THREAD_PRIORITY_LOWEST; case PRIORITY_NORMAL: return THREAD_PRIORITY_NORMAL; case PRIORITY_HIGH: return THREAD_PRIORITY_HIGHEST; } throw omni_thread_invalid(); return 0; /* keep msvc++ happy */ } static void get_time_now(unsigned long* abs_sec, unsigned long* abs_nsec) { static int days_in_preceding_months[12] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; static int days_in_preceding_months_leap[12] = { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 }; SYSTEMTIME st; GetSystemTime(&st); *abs_nsec = st.wMilliseconds * 1000000; // this formula should work until 1st March 2100 DWORD days = ((st.wYear - 1970) * 365 + (st.wYear - 1969) / 4 + ((st.wYear % 4) ? days_in_preceding_months[st.wMonth - 1] : days_in_preceding_months_leap[st.wMonth - 1]) + st.wDay - 1); *abs_sec = st.wSecond + 60 * (st.wMinute + 60 * (st.wHour + 24 * days)); }