require 'rex/socket' module Rex module Socket ### # # This class provides an interface to enumerating an IP range # # This class uses start,stop pairs to represent ranges of addresses. This # is very efficient for large numbers of consecutive addresses, and not # show-stoppingly inefficient when storing a bunch of non-consecutive # addresses, which should be a somewhat unusual case. # ### class RangeWalker # # Initializes a walker instance using the supplied range # def initialize(parseme) if parseme.is_a? RangeWalker @ranges = parseme.ranges.dup else @ranges = parse(parseme) end reset end # # Calls the instance method # # This is basically only useful for determining if a range can be parsed # def self.parse(parseme) self.new.parse(parseme) end # # Turn a human-readable range string into ranges we can step through one address at a time. # # Allow the following formats: # "a.b.c.d e.f.g.h" # "a.b.c.d, e.f.g.h" # where each chunk is CIDR notation, (e.g. '10.1.1.0/24') or a range in nmap format (see expand_nmap) # # OR this format # "a.b.c.d-e.f.g.h" # where a.b.c.d and e.f.g.h are single IPs and the second must be # bigger than the first. # def parse(parseme) return nil if not parseme ranges = [] parseme.split(', ').map{ |a| a.split(' ') }.flatten.each { |arg| if arg.include?("/") # Then it's CIDR notation and needs special case return false if arg =~ /[,-]/ # Improper CIDR notation (can't mix with 1,3 or 1-3 style IP ranges) return false if arg.scan("/").size > 1 # ..but there are too many slashes ip_part,mask_part = arg.split("/") return false if ip_part.nil? or ip_part.empty? or mask_part.nil? or mask_part.empty? return false if mask_part !~ /^[0-9]{1,2}$/ # Illegal mask -- numerals only return false if mask_part.to_i > 32 # This too -- between 0 and 32. begin Rex::Socket.addr_atoi(ip_part) # This allows for "www.metasploit.com/24" which is fun. rescue Resolv::ResolvError return false # Can't resolve the ip_part, so bail. end expanded = expand_cidr(arg) if expanded ranges += expanded else return false end elsif arg.include?(":") # Then it's IPv6 # Can't really do much with IPv6 right now, just return it and # hope for the best addr = Rex::Socket.addr_atoi(arg) ranges.push [addr, addr, true] elsif arg =~ /[^-0-9,.*]/ # Then it's a domain name and we should send it on to addr_atoi # unmolested to force a DNS lookup. addr = Rex::Socket.addr_atoi(arg) ranges.push [addr, addr] elsif arg =~ /^([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)-([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)$/ # Then it's in the format of 1.2.3.4-5.6.7.8 # Note, this will /not/ deal with DNS names, or the fancy/obscure 10...1-10...2 begin addrs = [Rex::Socket.addr_atoi($1), Rex::Socket.addr_atoi($2)] return false if addrs[0] > addrs[1] # The end is greater than the beginning. ranges.push [addrs[0], addrs[1]] rescue Resolv::ResolvError # Something's broken, forget it. return false end else expanded = expand_nmap(arg) if expanded ranges += expanded else return false end end } return ranges end # # Resets the subnet walker back to its original state. # def reset return false if not valid? @curr_range = 0 @curr_addr = @ranges[0][0] @length = 0 @ranges.each { |r| @length += r[1] - r[0] + 1 } end # # Returns the next IP address. # def next_ip return false if not valid? if (@curr_addr > @ranges[@curr_range][1]) if (@curr_range >= @ranges.length - 1) return nil end @curr_range += 1 @curr_addr = @ranges[@curr_range][0] end addr = Rex::Socket.addr_itoa(@curr_addr, @ranges[@curr_range][2]) @curr_addr += 1 return addr end def valid? (@ranges and not @ranges.empty?) end # # Returns true if the argument is an ip address that falls within any of # the stored ranges. # def include?(addr) return false if not @ranges if (addr.is_a? String) addr = Rex::Socket.addr_atoi(addr) end @ranges.map { |r| if r.start <= addr and addr <= r.stop return true end } return false end # # Calls the given block with each address # def each(&block) while (ip = next_ip) block.call(ip) end end # # Returns an array with one element, a Range defined by the given CIDR # block. # def expand_cidr(arg) start,stop = Rex::Socket.cidr_crack(arg) if !start or !stop return false end range = Range.new range.start = Rex::Socket.addr_atoi(start) range.stop = Rex::Socket.addr_atoi(stop) range.ipv6 = (arg.include?(":")) return [range] end # # Expands an nmap-style host range x.x.x.x where x can be simply "*" which # means 0-255 or any combination and repitition of: # i,n # n-m # i,n-m # n-m,i # ensuring that n is never greater than m. # # non-unique elements will be removed # e.g.: # 10.1.1.1-3,2-2,2 => ["10.1.1.1", "10.1.1.2", "10.1.1.3"] # 10.1.1.1-3,7 => ["10.1.1.1", "10.1.1.2", "10.1.1.3", "10.1.1.7"] # # Returns an array of Ranges # def expand_nmap(arg) # Can't really do anything with IPv6 return false if arg.include?(":") # nmap calls these errors, but it's hard to catch them with our # splitting below, so short-cut them here return false if arg.include?(",-") or arg.include?("-,") bytes = [] sections = arg.split('.') if sections.length != 4 # Too many or not enough dots return false end sections.each { |section| if section.empty? # pretty sure this is an unintentional artifact of the C # functions that turn strings into ints, but it sort of makes # sense, so why not # "10...1" => "10.0.0.1" section = "0" end if section == "*" # I think this ought to be 1-254, but this is how nmap does it. section = "0-255" elsif section.include?("*") return false end # Break down the sections into ranges like so # "1-3,5-7" => ["1-3", "5-7"] ranges = section.split(',', -1) sets = [] ranges.each { |r| bounds = [] if r.include?('-') # Then it's an actual range, break it down into start,stop # pairs: # "1-3" => [ 1, 3 ] # if the lower bound is empty, start at 0 # if the upper bound is empty, stop at 255 # bounds = r.split('-', -1) return false if (bounds.length > 2) bounds[0] = 0 if bounds[0].nil? or bounds[0].empty? bounds[1] = 255 if bounds[1].nil? or bounds[1].empty? bounds.map!{|b| b.to_i} return false if bounds[0] > bounds[1] else # Then it's a single value bounds[0] = r.to_i end return false if bounds[0] > 255 or (bounds[1] and bounds[1] > 255) return false if bounds[1] and bounds[0] > bounds[1] if bounds[1] bounds[0].upto(bounds[1]) do |i| sets.push(i) end elsif bounds[0] sets.push(bounds[0]) end } bytes.push(sets.sort.uniq) } # # Combinitorically squish all of the quads together into a big list of # ip addresses, stored as ints # # e.g.: # [[1],[1],[1,2],[1,2]] # => # [atoi("1.1.1.1"),atoi("1.1.1.2"),atoi("1.1.2.1"),atoi("1.1.2.2")] addrs = [] for a in bytes[0] for b in bytes[1] for c in bytes[2] for d in bytes[3] ip = (a << 24) + (b << 16) + (c << 8) + d addrs.push ip end end end end addrs.sort! addrs.uniq! rng = Range.new rng.start = addrs[0] ranges = [] 1.upto(addrs.length - 1) do |idx| if addrs[idx - 1] + 1 == addrs[idx] # Then this address is contained in the current range next else # Then this address is the upper bound for the current range rng.stop = addrs[idx - 1] ranges.push(rng.dup) rng.start = addrs[idx] end end rng.stop = addrs[addrs.length - 1] ranges.push(rng.dup) return ranges end # # The total number of IPs within the range # attr_reader :length # for backwards compatibility alias :num_ips :length attr_reader :ranges end # :nodoc: class Range < Array def start; self[0]; end def stop; self[1]; end def ipv6; self[2]; end def start=(val); self[0] = val; end def stop=(val); self[1] = val; end def ipv6=(val); self[2] = val; end end end end