## # $Id$ ## ## # This file is part of the Metasploit Framework and may be subject to # redistribution and commercial restrictions. Please see the Metasploit # Framework web site for more information on licensing and terms of use. # http://metasploit.com/framework/ ## require 'msf/core' class Metasploit3 < Msf::Nop def initialize super( 'Name' => 'Simple', 'Alias' => 'x64_simple', 'Version' => '$Revision$', 'Description' => 'An x64 single/multi byte NOP instruction generator.', 'Author' => [ 'sf' ], 'License' => MSF_LICENSE, 'Arch' => ARCH_X86_64 ) register_advanced_options( [ OptBool.new( 'RandomNops', [ false, "Generate a random NOP sled", true ] ) ], self.class ) register_advanced_options( [ OptBool.new( 'MultiByte', [ false, "Generate a multi byte instruction NOP sled", false ] ) ], self.class ) end # This instruction list is far from complete (Only single byte instructions and some multi byte ADD/MOV instructions are used). # A more complete list might warrent an pseudo assembler (Rex::Arch::X64) instead of hardcoding these. INSTRUCTIONS = [ [ "\x90", 0, "nop" ], [ "\x91", 0, "xchg eax, ecx" ], [ "\x92", 0, "xchg eax, edx" ], [ "\x93", 0, "xchg eax, ebx" ], [ "\x94", 0, "xchg eax, esp" ], [ "\x95", 0, "xchg eax, ebp" ], [ "\x96", 0, "xchg eax, esi" ], [ "\x97", 0, "xchg eax, edi" ], [ "\x98", 0, "cwde" ], [ "\x99", 0, "cdq" ], [ "\x9B", 0, "wait" ], [ "\x9C", 0, "pushfq" ], [ "\x9D", 0, "popfq" ], [ "\x9E", 0, "sahf" ], [ "\x9F", 0, "lahf" ], [ "\xFC", 0, "cld" ], [ "\xFD", 0, "std" ], [ "\xF8", 0, "clc" ], [ "\xF9", 0, "cmc" ], [ "\x50", 0, "push rax" ], [ "\x51", 0, "push rcx" ], [ "\x52", 0, "push rdx" ], [ "\x53", 0, "push rbx" ], [ "\x54", 0, "push rsp" ], [ "\x55", 0, "push rbp" ], [ "\x56", 0, "push rsi" ], [ "\x57", 0, "push rdi" ], [ "\x58", 0, "pop rax" ], [ "\x59", 0, "pop rcx" ], [ "\x5A", 0, "pop rdx" ], [ "\x5B", 0, "pop rbx" ], [ "\x5C", 0, "pop rsp" ], [ "\x5D", 0, "pop rbp" ], [ "\x5E", 0, "pop rsi" ], [ "\x5F", 0, "pop rdi" ], [ "\x04", 1, "add al, 0x??" ], [ "\x80\xC3", 1, "add bl, 0x??" ], [ "\x80\xC1", 1, "add cl, 0x??" ], [ "\x80\xC2", 1, "add dl, 0x??" ], [ "\x80\xC4", 1, "add ah, 0x??" ], [ "\x80\xC7", 1, "add bh, 0x??" ], [ "\x80\xC5", 1, "add ch, 0x??" ], [ "\x80\xC6", 1, "add dh, 0x??" ], [ "\x66\x05", 2, "add ax, 0x????" ], [ "\x66\x81\xC3", 2, "add bx, 0x????" ], [ "\x66\x81\xC1", 2, "add cx, 0x????" ], [ "\x66\x81\xC2", 2, "add dx, 0x????" ], [ "\x66\x81\xC6", 2, "add si, 0x????" ], [ "\x66\x81\xC7", 2, "add di, 0x????" ], [ "\x66\x41\x81\xC0", 2, "add r8w, 0x????" ], [ "\x66\x41\x81\xC1", 2, "add r9w, 0x????" ], [ "\x66\x41\x81\xC2", 2, "add r10w, 0x????" ], [ "\x66\x41\x81\xC3", 2, "add r11w, 0x????" ], [ "\x66\x41\x81\xC4", 2, "add r12w, 0x????" ], [ "\x66\x41\x81\xC5", 2, "add r13w, 0x????" ], [ "\x66\x41\x81\xC6", 2, "add r14w, 0x????" ], [ "\x66\x41\x81\xC7", 2, "add r15w, 0x????" ], [ "\x05", 4, "add eax, 0x????????" ], [ "\x81\xC3", 4, "add ebx, 0x????????" ], [ "\x81\xC1", 4, "add ecx, 0x????????" ], [ "\x81\xC2", 4, "add edx, 0x????????" ], [ "\x81\xC6", 4, "add esi, 0x????????" ], [ "\x81\xC7", 4, "add edi, 0x????????" ], [ "\x41\x81\xC0", 4, "add r8d, 0x????????" ], [ "\x41\x81\xC1", 4, "add r9d, 0x????????" ], [ "\x41\x81\xC2", 4, "add r10d, 0x????????" ], [ "\x41\x81\xC3", 4, "add r11d, 0x????????" ], [ "\x41\x81\xC4", 4, "add r12d, 0x????????" ], [ "\x41\x81\xC5", 4, "add r13d, 0x????????" ], [ "\x41\x81\xC6", 4, "add r14d, 0x????????" ], [ "\x41\x81\xC7", 4, "add r15d, 0x????????" ], [ "\x48\xB8", 8, "mov rax, 0x????????????????" ], [ "\x48\xBB", 8, "mov rbx, 0x????????????????" ], [ "\x48\xB9", 8, "mov rcx, 0x????????????????" ], [ "\x48\xBA", 8, "mov rdx, 0x????????????????" ], [ "\x48\xBE", 8, "mov rsi, 0x????????????????" ], [ "\x48\xBF", 8, "mov rdi, 0x????????????????" ], [ "\x49\xB8", 8, "mov r8, 0x????????????????" ], [ "\x49\xB9", 8, "mov r8, 0x????????????????" ], [ "\x49\xBA", 8, "mov r10, 0x????????????????" ], [ "\x49\xBB", 8, "mov r11, 0x????????????????" ], [ "\x49\xBC", 8, "mov r12, 0x????????????????" ], [ "\x49\xBD", 8, "mov r13, 0x????????????????" ], [ "\x49\xBE", 8, "mov r14, 0x????????????????" ], [ "\x49\xBF", 8, "mov r15, 0x????????????????" ], ] I_OP = 0 I_SIZE = 1 I_TEXT = 2 REGISTERS = [ [ "rsp", "esp", "sp" ], [ "rbp", "ebp", "bp" ], [ "rax", "eax", "ax", "al", "ah" ], [ "rbx", "ebx", "bx", "bl", "bh" ], [ "rcx", "ecx", "cx", "cl", "ch" ], [ "rdx", "edx", "dx", "dl", "dh" ], [ "rsi", "esi", "si" ], [ "rdi", "edi", "di" ], [ "r8", "r8d", "r8w", "r8b" ], [ "r9", "r9d", "r9w", "r9b" ], [ "r10", "r10d", "r10w", "r10b" ], [ "r11", "r11d", "r11w", "r11b" ], [ "r12", "r12d", "r12w", "r12b" ], [ "r13", "r13d", "r13w", "r13b" ], [ "r14", "r14d", "r14w", "r14b" ], [ "r15", "r15d", "r15w", "r15b" ], ] def generate_random_sled( length, instructions, badchars, badregs ) opcodes_stack = [] total_size = 0 sled = '' try_count = 0 good_bytes = [] # Fixup SaveRegisters so for example, if we wish to preserve RSP we also should also preserve ESP and SP REGISTERS.each { | reg | reg.each { |x| badregs += reg if badregs.include?( x ) } } badregs = badregs.uniq() # If we are preserving RSP we should avoid all PUSH/POP instructions... if badregs.include?( "rsp" ) badregs.push( 'push' ) badregs.push( 'pop' ) end # Loop while we still have bytes to fill in the sled... while true # Pick a random instruction and see if we can use it... instruction = instructions[ rand(instructions.length) ] # Avoid using any bad mnemonics/registers... try_another = false badregs.each do | bad | try_another = true if instruction[I_TEXT].include?( bad.downcase() ) break if try_another end next if try_another # Get the first bytes of the chosed instructions opcodes... opcodes = instruction[I_OP] # If their are additional bytes to append, do it now... 1.upto( instruction[I_SIZE] ) do | i | opcodes += Rex::Text.rand_char( badchars ) end # If we have gone over the requested sled length, try again. if total_size + opcodes.length > length try_count -= 1 # If we have tried unsuccessfully 32 times we start unwinding the chosen opcode_stack to speed things up if try_count == 0 pop_count = 4 while opcodes_stack.length and pop_count total_size -= opcodes_stack.pop().length pop_count -= 1 end end next end # Reset the try_count for the next itteration. try_count = 32 # save the opcodes we just generated. opcodes_stack.push( opcodes ) # Increment the total size appropriately. total_size += opcodes.length # Once we have generated the requested amount of bytes we can finish. break if total_size == length end # Now that we have chosen all the instructions to use we must generate the actual sled. opcodes_stack.each do | opcodes | sled += opcodes end return sled end def generate_sled( length, opts ) badchars = opts['BadChars'] || '' random = opts['Random'] || datastore['RandomNops'] badregs = opts['SaveRegisters'] || [] good_instructions = [] sled = '' # Weed out any instructions which will contain a bad char/instruction... INSTRUCTIONS.each do | instruction | good = true; # If the instruction contains some bad chars we wont use it... badchars.each do | bc | if instruction[I_OP].include?( bc ) good = false break end end # if we are only to generate single byte instructions, weed out the multi byte ones... good = false if instruction[I_SIZE] > 0 and not datastore['MultiByte'] good_instructions.push( instruction ) if good end # After we have pruned the instruction list we can proceed to generate a sled... if good_instructions.empty? # If we are left with no valid instructions to use we simple cant generate a sled. sled = nil elsif not random if not badchars.include?( "\x90" ) sled += "\x90" * length else sled = nil end else sled += generate_random_sled( length, good_instructions, badchars, badregs ) end return sled end end