// Copyright (C) 2000 Tridia Corporation. All Rights Reserved. // Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved. // // This file is part of the VNC system. // // The VNC system is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // // TightVNC distribution homepage on the Web: http://www.tightvnc.com/ // // If the source code for the VNC system is not available from the place // whence you received this file, check http://www.uk.research.att.com/vnc or contact // the authors on vnc@uk.research.att.com for information on obtaining it. // vncEncodeCoRRE // This file implements the vncEncoder-derived vncEncodeCoRRE class. // This class overrides some vncEncoder functions to produce a // Compact RRE encoder. Compact RRE (CoRRE) uses fewer bytes to // encode each subrect, which makes it faster in general. It also // splits large rectangles up into ones of at most 256 pixels width // & height. This results in better granularity to use for deciding // whether to send RAW or CoRRE/RRE. #include "vncEncodeCoRRE.h" #include "rfb.h" #include "MinMax.h" #include #include vncEncodeCoRRE::vncEncodeCoRRE() { m_buffer = NULL; m_bufflen = 0; // Set some sensible defaults m_maxwidth = 24; m_maxheight = 24; m_maxadjust = 1; // Set the threshold up/down probability m_threshold = 50; // Seed the random number generator srand((unsigned)time(NULL)); m_statsready = FALSE; m_encodedbytes = 0; m_rectbytes = 0; } vncEncodeCoRRE::~vncEncodeCoRRE() { if (m_buffer != NULL) { delete [] m_buffer; m_buffer = NULL; } } void vncEncodeCoRRE::Init() { vncEncoder::Init(); } UINT vncEncodeCoRRE::RequiredBuffSize(UINT width, UINT height) { RECT fullscreen; UINT codedrects; // Work out how many rectangles the entire screen would // be re-encoded to... fullscreen.left = 0; fullscreen.top = 0; fullscreen.right = width; fullscreen.bottom = height; codedrects = NumCodedRects(fullscreen); // The buffer size required is the size of raw data for the whole // screen plus enough space for the required number of rectangle // headers. // This is inherently always greater than the RAW encoded size of // the whole screen! return (codedrects * sz_rfbFramebufferUpdateRectHeader) + (width * height * m_remoteformat.bitsPerPixel)/8; } UINT vncEncodeCoRRE::NumCodedRects(RECT &rect) { // If we have any statistical data handy then adjust the CoRRE sizes if (m_statsready) { m_statsready = FALSE; UINT newscore = m_encodedbytes * m_lastrectbytes; UINT oldscore = m_lastencodedbytes * m_rectbytes; if (newscore <= oldscore) { // The change was a good one, so adjust the threshold accordingly! m_threshold = Max(5, Min(95, m_threshold + m_maxadjust)); m_maxwidth = Max(8, Min(255, m_maxwidth + m_maxadjust)); m_maxheight = Max(8, Min(255, m_maxheight + m_maxadjust)); } else { // The change was a bad one, so adjust the threshold accordingly! // m_threshold = Max(5, Min(95, m_threshold - m_maxadjust)); } // Now calculate a new adjustment and apply it m_maxadjust = ((rand() % 99) m_maxheight) { RECT subrect1, subrect2; // Find how many rects the two subrects would take subrect1.left = rect.left; subrect1.right = rect.right; subrect1.top = rect.top; subrect1.bottom = rect.top + m_maxheight; subrect2.left = rect.left; subrect2.right = rect.right; subrect2.top = rect.top + m_maxheight; subrect2.bottom = rect.bottom; return NumCodedRects(subrect1) + NumCodedRects(subrect2); } if ((rect.right-rect.left) > m_maxwidth) { RECT subrect1, subrect2; // Find how many rects the two subrects would take subrect1.left = rect.left; subrect1.right = rect.left + m_maxwidth; subrect1.top = rect.top; subrect1.bottom = rect.bottom; subrect2.left = rect.left + m_maxwidth; subrect2.right = rect.right; subrect2.top = rect.top; subrect2.bottom = rect.bottom; return NumCodedRects(subrect1) + NumCodedRects(subrect2); } // This rectangle is small enough not to require splitting return 1; } /* * corre.c * * Routines to implement Compact Rise-and-Run-length Encoding (CoRRE). This * code is based on krw's original javatel rfbserver. */ /* * This version modified for WinVNC by jnw. */ static int rreAfterBufLen; static int subrectEncode8 (CARD8 *source, CARD8 *dest, int w, int h, int max); static int subrectEncode16 (CARD16 *source, CARD8 *dest, int w, int h, int max); static int subrectEncode32 (CARD32 *source, CARD8 *dest, int w, int h, int max); static CARD32 getBgColour (char *data, int size, int bpp); /* * vncEncodeCoRRE::EncodeRect - send an arbitrary size rectangle using CoRRE * encoding. */ UINT vncEncodeCoRRE::EncodeRect(BYTE *source, BYTE *dest, const RECT &rect, int offx, int offy) { // Do the encoding UINT size = InternalEncodeRect(source, dest, rect); const int rectW = rect.right - rect.left; const int rectH = rect.bottom - rect.top; offsetx = offx; offsety = offy; // Will this rectangle have been split for encoding? if ((rectW>m_maxwidth) || (rectH>m_maxheight)) { // Yes : Once we return, the stats will be valid! m_statsready = TRUE; // Update the stats m_encodedbytes += size; m_rectbytes += sz_rfbFramebufferUpdateRectHeader + (rectW*rectH*m_remoteformat.bitsPerPixel/8); } return size; } UINT vncEncodeCoRRE::InternalEncodeRect(BYTE *source, BYTE *dest, const RECT &rect) { int size = 0; if ((rect.bottom-rect.top) > m_maxheight) { RECT subrect; // Rectangle is too high - split it into two subrects to send subrect.left = rect.left; subrect.right = rect.right; subrect.top = rect.top; subrect.bottom = rect.top + m_maxheight; size += InternalEncodeRect(source, dest + size, subrect); subrect.left = rect.left; subrect.right = rect.right; subrect.top = rect.top + m_maxheight; subrect.bottom = rect.bottom; size += InternalEncodeRect(source, dest + size, subrect); return size; } if ((rect.right-rect.left) > m_maxwidth) { RECT subrect; // Rectangle is too high - split it into two subrects to send subrect.left = rect.left; subrect.right = rect.left + m_maxwidth; subrect.top = rect.top; subrect.bottom = rect.bottom; size += InternalEncodeRect(source, dest + size, subrect); subrect.left = rect.left + m_maxwidth; subrect.right = rect.right; subrect.top = rect.top; subrect.bottom = rect.bottom; size += InternalEncodeRect(source, dest + size, subrect); return size; } return EncodeSmallRect(source, dest, rect); } void vncEncodeCoRRE::SetCoRREMax(BYTE width, BYTE height) { m_maxwidth = width; m_maxheight = height; } /* * EncodeSmallRect - send a small (guaranteed < 256x256) * rectangle using CoRRE encoding. */ UINT vncEncodeCoRRE::EncodeSmallRect(BYTE *source, BYTE *dest, const RECT &rect) { int subrects = -1; const UINT rectW = rect.right - rect.left; const UINT rectH = rect.bottom - rect.top; // Create the rectangle header rfbFramebufferUpdateRectHeader *surh=(rfbFramebufferUpdateRectHeader *)dest; surh->r.x = (CARD16) rect.left; surh->r.y = (CARD16) rect.top; surh->r.w = (CARD16) (rectW); surh->r.h = (CARD16) (rectH); surh->r.x = Swap16IfLE(surh->r.x - offsetx); surh->r.y = Swap16IfLE(surh->r.y - offsety); surh->r.w = Swap16IfLE(surh->r.w); surh->r.h = Swap16IfLE(surh->r.h); surh->encoding = Swap32IfLE(rfbEncodingCoRRE); // create a space big enough for the CoRRE encoded pixels size_t rectSize = rectW * rectH * (m_remoteformat.bitsPerPixel / 8); if (m_bufflen < rectSize) { if (m_buffer != NULL) { delete [] m_buffer; m_buffer = NULL; } m_buffer = new BYTE [rectSize + 1]; if (m_buffer == NULL) return vncEncoder::EncodeRect(source, dest, rect, offsetx, offsety); m_bufflen = rectSize; } // Translate the data into our new buffer Translate(source, m_buffer, rect); // The Buffer object will have ensured that the destination buffer is // big enough using RequiredBuffSize // Choose the appropriate encoding routine (for speed...) switch(m_remoteformat.bitsPerPixel) { case 8: subrects = subrectEncode8( m_buffer, dest+sz_rfbFramebufferUpdateRectHeader+sz_rfbRREHeader, rectW, rectH, (int)(m_bufflen-sz_rfbFramebufferUpdateRectHeader-sz_rfbRREHeader) ); break; case 16: subrects = subrectEncode16( (CARD16 *)m_buffer, (CARD8 *)(dest+sz_rfbFramebufferUpdateRectHeader+sz_rfbRREHeader), rectW, rectH, (int)(m_bufflen-sz_rfbFramebufferUpdateRectHeader-sz_rfbRREHeader) ); break; case 32: subrects = subrectEncode32( (CARD32 *)m_buffer, (CARD8 *)(dest+sz_rfbFramebufferUpdateRectHeader+sz_rfbRREHeader), rectW, rectH, (int)(m_bufflen-sz_rfbFramebufferUpdateRectHeader-sz_rfbRREHeader) ); break; } // If we couldn't encode the rectangles then just send the data raw if (subrects < 0) return vncEncoder::EncodeRect(source, dest, rect, offsetx, offsety); // Send the RREHeader rfbRREHeader *rreh=(rfbRREHeader *)(dest+sz_rfbFramebufferUpdateRectHeader); rreh->nSubrects = Swap32IfLE(subrects); // Update the statistics for this rectangle. encodedSize += sz_rfbRREHeader + rreAfterBufLen; rectangleOverhead += sz_rfbFramebufferUpdateRectHeader; dataSize += ( rectW * rectH * m_remoteformat.bitsPerPixel) / 8; transmittedSize += sz_rfbFramebufferUpdateRectHeader + sz_rfbRREHeader + rreAfterBufLen; // Calculate the size of the buffer produced return sz_rfbFramebufferUpdateRectHeader + sz_rfbRREHeader + rreAfterBufLen; } /* * subrectEncode() encodes the given multicoloured rectangle as a background * colour overwritten by single-coloured rectangles. It returns the number * of subrectangles in the encoded buffer, or -1 if subrect encoding won't * fit in the buffer. It puts the encoded rectangles in rreAfterBuf. The * single-colour rectangle partition is not optimal, but does find the biggest * horizontal or vertical rectangle top-left anchored to each consecutive * coordinate position. * * The coding scheme is simply [...] where each * is []. */ #define DEFINE_SUBRECT_ENCODE(bpp) \ static int \ subrectEncode##bpp( \ CARD##bpp *source, \ CARD8 *dest, \ int w, \ int h, \ int maxbytes) \ { \ CARD##bpp cl; \ rfbCoRRERectangle subrect; \ int x,y; \ int i,j; \ int hx=0,hy,vx=0,vy; \ int hyflag; \ CARD##bpp *seg; \ CARD##bpp *line; \ int hw,hh,vw,vh; \ int thex,they,thew,theh; \ int numsubs = 0; \ int newLen; \ CARD##bpp bg = (CARD##bpp)getBgColour((char*)source,w*h,bpp); \ \ *((CARD##bpp*)dest) = bg; \ \ rreAfterBufLen = (bpp/8); \ \ for (y=0; y 0) && (i >= hx)) {hy += 1;} else {hyflag = 0;} \ } \ vy = j-1; \ \ /* We now have two possible subrects: (x,y,hx,hy) and (x,y,vx,vy) \ * We'll choose the bigger of the two. \ */ \ hw = hx-x+1; \ hh = hy-y+1; \ vw = vx-x+1; \ vh = vy-y+1; \ \ thex = x; \ they = y; \ \ if ((hw*hh) > (vw*vh)) { \ thew = hw; \ theh = hh; \ } else { \ thew = vw; \ theh = vh; \ } \ \ subrect.x = thex; \ subrect.y = they; \ subrect.w = thew; \ subrect.h = theh; \ \ newLen = rreAfterBufLen + (bpp/8) + sz_rfbCoRRERectangle; \ if ((newLen > (w * h * (bpp/8))) || (newLen > maxbytes)) \ return -1; \ \ numsubs += 1; \ *((CARD##bpp*)(dest + rreAfterBufLen)) = cl; \ rreAfterBufLen += (bpp/8); \ memcpy(&dest[rreAfterBufLen],&subrect,sz_rfbCoRRERectangle); \ rreAfterBufLen += sz_rfbCoRRERectangle; \ \ /* \ * Now mark the subrect as done. \ */ \ for (j=they; j < (they+theh); j++) { \ for (i=thex; i < (thex+thew); i++) { \ source[j*w+i] = bg; \ } \ } \ } \ } \ } \ \ return numsubs; \ } DEFINE_SUBRECT_ENCODE(8) DEFINE_SUBRECT_ENCODE(16) DEFINE_SUBRECT_ENCODE(32) /* * getBgColour() gets the most prevalent colour in a byte array. */ static CARD32 getBgColour( char *data, int size, int bpp) { #define NUMCLRS 256 static int counts[NUMCLRS]; int i,j,k; int maxcount = 0; CARD8 maxclr = 0; if (bpp != 8) { if (bpp == 16) { return ((CARD16 *)data)[0]; } else if (bpp == 32) { return ((CARD32 *)data)[0]; } else { fprintf(stderr,"getBgColour: bpp %d?\n",bpp); exit(1); } } for (i=0; i= NUMCLRS) { fprintf(stderr, "%s: unusual colour = %d\n", "getBgColour",k); exit(1); } counts[k] += 1; if (counts[k] > maxcount) { maxcount = counts[k]; maxclr = ((CARD8 *)data)[j]; } } return maxclr; }