Remove packetfu and pcaprub libaries

These should be handled by bundler's Gemfile.
unstable
Tod Beardsley 2013-06-10 14:12:18 -05:00
parent 31faf65271
commit 7dafcc76df
27 changed files with 0 additions and 7722 deletions

View File

@ -1,459 +0,0 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS

View File

@ -1,43 +0,0 @@
This goal of this project is to provide a consistent interface to LBL's libpcap
packet capture library. This project was created because the currently
available ruby-pcap library is poorly designed and has been unmaintained since
2000. This does not provide packet processing functionality, it simply provides
the interface for capturing packets. For packet processing capability, see the
PacketRub project (http://packetrub.rubyforge.org).
Requirements:
libpcap - http://www.tcpdump.org
Build & Install:
ruby extconf.rb && make && make install
The latest version can be obtained from Subversion:
svn checkout http://pcaprub.rubyforge.org/svn/trunk/
The Metasploit Project also provides a Subversion repository:
svn checkout http://metasploit.com/svn/framework3/trunk/external/pcaprub/
The Metasploit Project also added some code from the python netifaces c extension
Original c/python netifaces code is under MIT-style license.
Here goes:
Copyright (c) 2007, 2008 Alastair Houghton
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,117 +0,0 @@
require 'mkmf'
puts("platform is #{RUBY_PLATFORM}")
########################
# Netifaces
########################
puts "\n[*] Running checks for netifaces code added by metasploit project"
puts "-----------------------------------------------------------------"
#uncoment to force ioctl on non windows systems
#@force_ioctl = true
@supported_archs = [ "i386-mingw32", "i486-linux", "x86_64-linux",
"universal-darwin10.0", "i386-openbsd4.8", "i386-freebsd8",
"arm-linux-eabi" ]
#arm-linux-eabi tested on maemo5 / N900
puts "[*] Warning : this platform as not been tested" unless @supported_archs.include? RUBY_PLATFORM
if RUBY_PLATFORM =~ /i386-mingw32/
unless have_library("ws2_32" ) and
have_library("iphlpapi") and
have_header("windows.h") and
have_header("winsock2.h") and
have_header("iphlpapi.h")
puts "\nNot all dependencies are satisfied, please check logs"
exit
end
else
headers = ['net/if_dl.h', 'netash/ash.h','netatalk/at.h', 'netax25/ax25.h',
'neteconet/ec.h', 'netipx/ipx.h','netpacket/packet.h', 'netrose/rose.h']
if RUBY_PLATFORM =~ /linux/
headers += [ 'linux/irda.h', 'linux/atm.h',
'linux/llc.h', 'linux/tipc.h',
'linux/dn.h']
end
additionnal_headers = ["sys/types.h","sys/socket.h","sys/un.h","net/if.h","netinet/in.h"]
optional_headers = []
sockaddrs = [ 'at', 'ax25', 'dl', 'eon', 'in', 'in6',
'inarp', 'ipx', 'iso', 'ns', 'un', 'x25',
'rose', 'ash', 'ec', 'll', 'atmpvc', 'atmsvc',
'dn', 'irda', 'llc']
# 1) Check for getifaddrs
unless @force_ioctl
need_ioctl = !(have_func("getifaddrs"))
end
# 2) Check for getnameinfo or redefine it in netifaces.c
have_func("getnameinfo")
# 3) Whitout getifaddrs we'll have to deal with ioctls
if need_ioctl or @force_ioctl
ioctls = [
'SIOCGIFCONF','SIOCGSIZIFCONF','SIOCGIFHWADDR','SIOCGIFADDR','SIOCGIFFLAGS','SIOCGIFDSTADDR',
'SIOCGIFBRDADDR','SIOCGIFNETMASK','SIOCGLIFNUM','SIOCGLIFCONF','SIOCGLIFFLAGS']
ioctls_headers = ['sys/types.h','sys/socket.h','sys/ioctl.h','net/if.h','netinet/in.h','arpa/inet.h']
#TODO Test this on sunos
#if RUBY_PLATFORM =~ /sunos/
# ioctls_headers += ['unistd.h','stropts.h','sys/sockio.h']
#end
$defs.push '-DHAVE_SOCKET_IOCTLS'
ioctls.each do |ioctl|
if have_macro(ioctl, ioctls_headers)
$defs.push "-DHAVE_#{ioctl}"
end
end
end
# 4) Check for optionnal headers
headers.each do |header|
if have_header(header)
optional_headers.push(header)
end
end
# 5) On certain platforms (Linux), there's no sa_len.
# Unfortunately, getifaddrs() doesn't return the
# lengths, because they're in the sa_len field on just about
# everything but Linux.
# In this case we will define a macro that will return the sa_len from
# the sockaddr_xx structure if they are available
if (!have_struct_member("struct sockaddr", "sa_len", ["sys/types.h","sys/socket.h","net/if.h"]))
sockaddrs.each do |sockaddr|
have_type("struct sockaddr_" + sockaddr, additionnal_headers + optional_headers)
end
end
end
#rework the defs to make them compatible with the original netifaces.c code
$defs = $defs.map do |a|
if a =~ /^-DHAVE_TYPE_STRUCT_SOCKADDR_.*$/ then a.gsub("TYPE_STRUCT_","")
elsif a == "-DHAVE_ST_SA_LEN" then a.gsub("HAVE_ST_","HAVE_SOCKADDR_")
else a
end
end
########################
# Pcap
########################
puts "\n[*] Running checks for pcap code..."
puts "-----------------------------------"
if /i386-mingw32/ =~ RUBY_PLATFORM
dir_config("pcap","C:/WpdPack/include","C:/WpdPack/lib")
have_library("wpcap", "pcap_open_live")
have_library("wpcap", "pcap_setnonblock")
else
have_library("pcap", "pcap_open_live")
have_library("pcap", "pcap_setnonblock")
end
if ( RUBY_VERSION =~ /^1\.9/ )
$CFLAGS += " -DRUBY_19"
end
create_makefile("pcaprub")

View File

@ -1,816 +0,0 @@
#include "ruby.h"
#ifndef RUBY_19
#include "rubysig.h"
#endif
#include "netifaces.h"
#if !defined(WIN32)
#if !HAVE_GETNAMEINFO
#undef getnameinfo
#undef NI_NUMERICHOST
#define getnameinfo our_getnameinfo
#define NI_NUMERICHOST 1
/* A very simple getnameinfo() for platforms without */
static int
getnameinfo (const struct sockaddr *addr, int addr_len,
char *buffer, int buflen,
char *buf2, int buf2len,
int flags)
{
switch (addr->sa_family)
{
case AF_INET:
{
const struct sockaddr_in *sin = (struct sockaddr_in *)addr;
const unsigned char *bytes = (unsigned char *)&sin->sin_addr.s_addr;
char tmpbuf[20];
sprintf (tmpbuf, "%d.%d.%d.%d",
bytes[0], bytes[1], bytes[2], bytes[3]);
strncpy (buffer, tmpbuf, buflen);
}
break;
#ifdef AF_INET6
case AF_INET6:
{
const struct sockaddr_in6 *sin = (const struct sockaddr_in6 *)addr;
const unsigned char *bytes = sin->sin6_addr.s6_addr;
int n;
char tmpbuf[80], *ptr = tmpbuf;
int done_double_colon = FALSE;
int colon_mode = FALSE;
for (n = 0; n < 8; ++n)
{
unsigned char b1 = bytes[2 * n];
unsigned char b2 = bytes[2 * n + 1];
if (b1)
{
if (colon_mode)
{
colon_mode = FALSE;
*ptr++ = ':';
}
sprintf (ptr, "%x%02x", b1, b2);
ptr += strlen (ptr);
*ptr++ = ':';
}
else if (b2)
{
if (colon_mode)
{
colon_mode = FALSE;
*ptr++ = ':';
}
sprintf (ptr, "%x", b2);
ptr += strlen (ptr);
*ptr++ = ':';
}
else {
if (!colon_mode)
{
if (done_double_colon)
{
*ptr++ = '0';
*ptr++ = ':';
}
else
{
if (n == 0)
*ptr++ = ':';
colon_mode = TRUE;
done_double_colon = TRUE;
}
}
}
}
if (colon_mode)
{
colon_mode = FALSE;
*ptr++ = ':';
*ptr++ = '\0';
}
else
{
*--ptr = '\0';
}
strncpy (buffer, tmpbuf, buflen);
}
break;
#endif /* AF_INET6 */
default:
return -1;
}
return 0;
}
#endif
static int
string_from_sockaddr (struct sockaddr *addr,
char *buffer,
int buflen)
{
if (!addr || addr->sa_family == AF_UNSPEC)
return -1;
if (getnameinfo (addr, SA_LEN(addr),
buffer, buflen,
NULL, 0,
NI_NUMERICHOST) != 0)
{
int n, len;
char *ptr;
const char *data;
len = SA_LEN(addr);
#if HAVE_AF_LINK
/* BSD-like systems have AF_LINK */
if (addr->sa_family == AF_LINK)
{
struct sockaddr_dl *dladdr = (struct sockaddr_dl *)addr;
len = dladdr->sdl_alen;
if(len >=0)
data = LLADDR(dladdr);
}
else
{
#endif
#if defined(AF_PACKET)
/* Linux has AF_PACKET instead */
if (addr->sa_family == AF_PACKET)
{
struct sockaddr_ll *lladdr = (struct sockaddr_ll *)addr;
len = lladdr->sll_halen;
//amaloteaux: openbsd and maybe other systems have a len of 0 for enc0,pflog0 .. interfaces
if(len >=0)
data = (const char *)lladdr->sll_addr;
}
else
{
#endif
/* We don't know anything about this sockaddr, so just display
the entire data area in binary. */
len -= (sizeof (struct sockaddr) - sizeof (addr->sa_data));
data = addr->sa_data;
#if defined(AF_PACKET)
}
#endif
#if HAVE_AF_LINK
}
#endif
if ((buflen < 3 * len) || len <= 0)
return -1;
ptr = buffer;
buffer[0] = '\0';
for (n = 0; n < len; ++n)
{
sprintf (ptr, "%02x:", data[n] & 0xff);
ptr += 3;
}
*--ptr = '\0';
}
return 0;
}
#endif /* !defined(WIN32) */
static VALUE add_to_family(VALUE result, VALUE family, VALUE value)
{
Check_Type(result, T_HASH);
Check_Type(family, T_FIXNUM);
Check_Type(value, T_HASH);
VALUE list;
list = rb_hash_aref(result, family);
if (list == Qnil)
list = rb_ary_new();
else
Check_Type(list, T_ARRAY);
rb_ary_push(list, value);
rb_hash_aset(result, family, list);
return result;
}
VALUE
rbnetifaces_s_addresses (VALUE class, VALUE dev)
{
Check_Type(dev, T_STRING);
VALUE result;
int found = FALSE;
result = rb_hash_new();
#if defined(WIN32)
PIP_ADAPTER_INFO pAdapterInfo = NULL;
PIP_ADAPTER_INFO pInfo = NULL;
ULONG ulBufferLength = 0;
DWORD dwRet;
PIP_ADDR_STRING str;
//First, retrieve the adapter information. We do this in a loop, in
//case someone adds or removes adapters in the meantime.
do
{
dwRet = GetAdaptersInfo(pAdapterInfo, &ulBufferLength);
if (dwRet == ERROR_BUFFER_OVERFLOW)
{
if (pAdapterInfo)
free (pAdapterInfo);
pAdapterInfo = (PIP_ADAPTER_INFO)malloc (ulBufferLength);
if (!pAdapterInfo)
{
rb_raise(rb_eRuntimeError, "Unknow error at OS level");
return Qnil;
}
}
} while (dwRet == ERROR_BUFFER_OVERFLOW);
// If we failed, then fail in Ruby too
if (dwRet != ERROR_SUCCESS && dwRet != ERROR_NO_DATA)
{
if (pAdapterInfo)
free (pAdapterInfo);
rb_raise(rb_eRuntimeError, "Unable to obtain adapter information.");
return Qnil;
}
for (pInfo = pAdapterInfo; pInfo; pInfo = pInfo->Next)
{
char buffer[256];
//dev is the iface GUID on windows with "\\Device\\NPF_" prefix
int cmpAdapterNamelen = (MAX_ADAPTER_NAME_LENGTH + 4) + 12;
char cmpAdapterName[cmpAdapterNamelen];
memset(cmpAdapterName, 0x00, cmpAdapterNamelen);
strncpy(cmpAdapterName, "\\Device\\NPF_", 12);
int AdapterName_len = strlen(pInfo->AdapterName);
strncpy(cmpAdapterName + 12, pInfo->AdapterName, AdapterName_len);
if (strcmp (cmpAdapterName, StringValuePtr(dev)) != 0)
continue;
VALUE rbhardw = Qnil;
VALUE rbaddr = Qnil;
VALUE rbnetmask = Qnil;
VALUE rbbraddr = Qnil;
found = TRUE;
// Do the physical address
if (256 >= 3 * pInfo->AddressLength)
{
VALUE hash_hardw;
hash_hardw = rb_hash_new();
char *ptr = buffer;
unsigned n;
*ptr = '\0';
for (n = 0; n < pInfo->AddressLength; ++n)
{
sprintf (ptr, "%02x:", pInfo->Address[n] & 0xff);
ptr += 3;
}
*--ptr = '\0';
rbhardw = rb_str_new2(buffer);
rb_hash_aset(hash_hardw, rb_str_new2("addr"), rbhardw);
result = add_to_family(result, INT2FIX(AF_LINK), hash_hardw);
}
for (str = &pInfo->IpAddressList; str; str = str->Next)
{
VALUE result2;
result2 = rb_hash_new();
if(str->IpAddress.String)
rbaddr = rb_str_new2(str->IpAddress.String);
if(str->IpMask.String)
rbnetmask = rb_str_new2(str->IpMask.String);
//If this isn't the loopback interface, work out the broadcast
//address, for better compatibility with other platforms.
if (pInfo->Type != MIB_IF_TYPE_LOOPBACK)
{
unsigned long inaddr = inet_addr (str->IpAddress.String);
unsigned long inmask = inet_addr (str->IpMask.String);
struct in_addr in;
char *brstr;
in.S_un.S_addr = (inaddr | ~inmask) & 0xfffffffful;
brstr = inet_ntoa (in);
if (brstr)
rbbraddr = rb_str_new2(brstr);
}
if (rbaddr)
rb_hash_aset(result2, rb_str_new2("addr"), rbaddr);
if (rbnetmask)
rb_hash_aset(result2, rb_str_new2("netmask"), rbnetmask);
if (rbbraddr)
rb_hash_aset(result2, rb_str_new2("broadcast"), rbbraddr);
result = add_to_family(result, INT2FIX(AF_INET), result2);
}
} // for
free (pAdapterInfo);
#elif HAVE_GETIFADDRS
struct ifaddrs *addrs = NULL;
struct ifaddrs *addr = NULL;
if (getifaddrs (&addrs) < 0)
{
rb_raise(rb_eRuntimeError, "Unknow error at OS level");
}
for (addr = addrs; addr; addr = addr->ifa_next)
{
char buffer[256];
VALUE rbaddr = Qnil;
VALUE rbnetmask = Qnil;
VALUE rbbraddr = Qnil;
if (strcmp (addr->ifa_name, StringValuePtr(dev)) != 0)
continue;
/* Sometimes there are records without addresses (e.g. in the case of a
dial-up connection via ppp, which on Linux can have a link address
record with no actual address). We skip these as they aren't useful.
Thanks to Christian Kauhaus for reporting this issue. */
if (!addr->ifa_addr)
continue;
found = TRUE;
if (string_from_sockaddr (addr->ifa_addr, buffer, sizeof (buffer)) == 0)
rbaddr = rb_str_new2(buffer);
if (string_from_sockaddr (addr->ifa_netmask, buffer, sizeof (buffer)) == 0)
rbnetmask = rb_str_new2(buffer);
if (string_from_sockaddr (addr->ifa_broadaddr, buffer, sizeof (buffer)) == 0)
rbbraddr = rb_str_new2(buffer);
VALUE result2;
result2 = rb_hash_new();
if (rbaddr)
rb_hash_aset(result2, rb_str_new2("addr"), rbaddr);
if (rbnetmask)
rb_hash_aset(result2, rb_str_new2("netmask"), rbnetmask);
if (rbbraddr)
{
if (addr->ifa_flags & (IFF_POINTOPOINT | IFF_LOOPBACK))
rb_hash_aset(result2, rb_str_new2("peer"), rbbraddr);
else
rb_hash_aset(result2, rb_str_new2("broadcast"), rbbraddr);
}
if (rbaddr || rbnetmask || rbbraddr)
result = add_to_family(result, INT2FIX(addr->ifa_addr->sa_family), result2);
}
freeifaddrs (addrs);
#elif HAVE_SOCKET_IOCTLS
int sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0)
{
rb_raise(rb_eRuntimeError, "Unknow error at OS level");
return Qnil;
}
struct CNAME(ifreq) ifr;
char buffer[256];
int is_p2p = FALSE;
VALUE rbaddr = Qnil;
VALUE rbnetmask = Qnil;
VALUE rbbraddr = Qnil;
VALUE rbdstaddr = Qnil;
strncpy (ifr.CNAME(ifr_name), StringValuePtr(dev), IFNAMSIZ);
#if HAVE_SIOCGIFHWADDR
if (ioctl (sock, SIOCGIFHWADDR, &ifr) == 0)
{
if (string_from_sockaddr (&(ifr.CNAME(ifr_addr)), buffer, sizeof (buffer)) == 0)
{
found = TRUE;
VALUE rbhardw = Qnil;
VALUE hash_hardw;
hash_hardw = rb_hash_new();
rbhardw = rb_str_new2(buffer);
rb_hash_aset(hash_hardw, rb_str_new2("addr"), rbhardw);
result = add_to_family(result, INT2FIX(AF_LINK), hash_hardw);
}
}
#endif
#if HAVE_SIOCGIFADDR
#if HAVE_SIOCGLIFNUM
if (ioctl (sock, SIOCGLIFADDR, &ifr) == 0)
{
#else
if (ioctl (sock, SIOCGIFADDR, &ifr) == 0)
{
#endif
if (string_from_sockaddr ((struct sockaddr *)&ifr.CNAME(ifr_addr), buffer, sizeof (buffer)) == 0)
{
found = TRUE;
rbaddr = rb_str_new2(buffer);
}
}
#endif
#if HAVE_SIOCGIFNETMASK
#if HAVE_SIOCGLIFNUM
if (ioctl (sock, SIOCGLIFNETMASK, &ifr) == 0)
{
#else
if (ioctl (sock, SIOCGIFNETMASK, &ifr) == 0)
{
#endif
if (string_from_sockaddr ((struct sockaddr *)&ifr.CNAME(ifr_addr), buffer, sizeof (buffer)) == 0)
{
found = TRUE;
rbnetmask = rb_str_new2(buffer);
}
}
#endif
#if HAVE_SIOCGIFFLAGS
#if HAVE_SIOCGLIFNUM
if (ioctl (sock, SIOCGLIFFLAGS, &ifr) == 0)
{
#else
if (ioctl (sock, SIOCGIFFLAGS, &ifr) == 0)
{
#endif
if (ifr.CNAME(ifr_flags) & IFF_POINTOPOINT)
{
is_p2p = TRUE;
}
}
#endif
#if HAVE_SIOCGIFBRDADDR
#if HAVE_SIOCGLIFNUM
if (!is_p2p && ioctl (sock, SIOCGLIFBRDADDR, &ifr) == 0)
{
#else
if (!is_p2p && ioctl (sock, SIOCGIFBRDADDR, &ifr) == 0)
{
#endif
if (string_from_sockaddr ((struct sockaddr *)&ifr.CNAME(ifr_addr), buffer, sizeof (buffer)) == 0)
{
found = TRUE;
rbbraddr = rb_str_new2(buffer);
}
}
#endif
#if HAVE_SIOCGIFDSTADDR
#if HAVE_SIOCGLIFNUM
if (is_p2p && ioctl (sock, SIOCGLIFBRDADDR, &ifr) == 0)
{
#else
if (is_p2p && ioctl (sock, SIOCGIFBRDADDR, &ifr) == 0)
{
#endif
if (string_from_sockaddr ((struct sockaddr *)&ifr.CNAME(ifr_addr), buffer, sizeof (buffer)) == 0)
{
found = TRUE;
rbdstaddr = rb_str_new2(buffer);
}
}
#endif
VALUE result2;
result2 = rb_hash_new();
if (rbaddr)
rb_hash_aset(result2, rb_str_new2("addr"), rbaddr);
if (rbnetmask)
rb_hash_aset(result2, rb_str_new2("netmask"), rbnetmask);
if (rbbraddr)
rb_hash_aset(result2, rb_str_new2("broadcast"), rbbraddr);
if (rbdstaddr)
rb_hash_aset(result2, rb_str_new2("peer"), rbbraddr);
if (rbaddr || rbnetmask || rbbraddr || rbdstaddr)
result = add_to_family(result, INT2FIX(AF_INET), result2);
close (sock);
#endif /* HAVE_SOCKET_IOCTLS */
if (found)
return result;
else
return Qnil;
}
VALUE
rbnetifaces_s_interfaces (VALUE self)
{
VALUE result;
result = rb_ary_new();
#if defined(WIN32)
PIP_ADAPTER_INFO pAdapterInfo = NULL;
PIP_ADAPTER_INFO pInfo = NULL;
ULONG ulBufferLength = 0;
DWORD dwRet;
// First, retrieve the adapter information
do {
dwRet = GetAdaptersInfo(pAdapterInfo, &ulBufferLength);
if (dwRet == ERROR_BUFFER_OVERFLOW)
{
if (pAdapterInfo)
free (pAdapterInfo);
pAdapterInfo = (PIP_ADAPTER_INFO)malloc (ulBufferLength);
if (!pAdapterInfo)
{
rb_raise(rb_eRuntimeError, "Unknow error at OS level");
}
}
} while (dwRet == ERROR_BUFFER_OVERFLOW);
// If we failed, then fail in Ruby too
if (dwRet != ERROR_SUCCESS && dwRet != ERROR_NO_DATA)
{
if (pAdapterInfo)
free (pAdapterInfo);
rb_raise(rb_eRuntimeError, "Unknow error at OS level");
return Qnil;
}
if (dwRet == ERROR_NO_DATA)
{
free (pAdapterInfo);
return result;
}
for (pInfo = pAdapterInfo; pInfo; pInfo = pInfo->Next)
{
int outputnamelen = (MAX_ADAPTER_NAME_LENGTH + 4) + 12;
char outputname[outputnamelen];
memset(outputname, 0x00, outputnamelen);
strncpy(outputname, "\\Device\\NPF_", 12);
int AdapterName_len = strlen(pInfo->AdapterName);
strncpy(outputname + 12, pInfo->AdapterName, AdapterName_len);
VALUE ifname = rb_str_new2(outputname) ;
if(!rb_ary_includes(result, ifname))
rb_ary_push(result, ifname);
}
free (pAdapterInfo);
#elif HAVE_GETIFADDRS
const char *prev_name = NULL;
struct ifaddrs *addrs = NULL;
struct ifaddrs *addr = NULL;
if (getifaddrs (&addrs) < 0)
{
rb_raise(rb_eRuntimeError, "Unknow error at OS level");
}
for (addr = addrs; addr; addr = addr->ifa_next)
{
if (!prev_name || strncmp (addr->ifa_name, prev_name, IFNAMSIZ) != 0)
{
VALUE ifname = rb_str_new2(addr->ifa_name);
if(!rb_ary_includes(result, ifname))
rb_ary_push(result, ifname);
prev_name = addr->ifa_name;
}
}
freeifaddrs (addrs);
#elif HAVE_SIOCGIFCONF
const char *prev_name = NULL;
int fd = socket (AF_INET, SOCK_DGRAM, 0);
struct CNAME(ifconf) ifc;
int len = -1, n;
if (fd < 0) {
rb_raise(rb_eRuntimeError, "Unknow error at OS level");
return Qnil;
}
// Try to find out how much space we need
#if HAVE_SIOCGSIZIFCONF
if (ioctl (fd, SIOCGSIZIFCONF, &len) < 0)
len = -1;
#elif HAVE_SIOCGLIFNUM
#error This code need to be checked first
/*
{ struct lifnum lifn;
lifn.lifn_family = AF_UNSPEC;
lifn.lifn_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES;
ifc.lifc_family = AF_UNSPEC;
ifc.lifc_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES;
if (ioctl (fd, SIOCGLIFNUM, (char *)&lifn) < 0)
len = -1;
else
len = lifn.lifn_count;
}
*/
#endif
// As a last resort, guess
if (len < 0)
len = 64;
ifc.CNAME(ifc_len) = len * sizeof (struct CNAME(ifreq));
ifc.CNAME(ifc_buf) = malloc (ifc.CNAME(ifc_len));
if (!ifc.CNAME(ifc_buf)) {
close (fd);
rb_raise(rb_eRuntimeError, "Not enough memory");
return Qnil;
}
#if HAVE_SIOCGLIFNUM
if (ioctl (fd, SIOCGLIFCONF, &ifc) < 0) {
#else
if (ioctl (fd, SIOCGIFCONF, &ifc) < 0) {
#endif
free (ifc.CNAME(ifc_req));
close (fd);
rb_raise(rb_eRuntimeError, "Unknow error at OS level");
return Qnil;
}
struct CNAME(ifreq) *pfreq = ifc.CNAME(ifc_req);
for (n = 0; n < ifc.CNAME(ifc_len)/sizeof(struct CNAME(ifreq));n++,pfreq++)
{
if (!prev_name || strncmp (prev_name, pfreq->CNAME(ifr_name), IFNAMSIZ) != 0)
{
VALUE ifname = rb_str_new2(pfreq->CNAME(ifr_name));
if(!rb_ary_includes(result, ifname))
rb_ary_push(result, ifname);
prev_name = pfreq->CNAME(ifr_name);
}
}
free (ifc.CNAME(ifc_buf));
close (fd);
#endif //
return result;
}
//This function is usefull only under windows to retrieve some additionnal interfaces informations
VALUE
rbnetifaces_s_interface_info (VALUE self, VALUE dev)
{
VALUE result = Qnil;
#if defined(WIN32)
PIP_ADAPTER_INFO pAdapterInfo = NULL;
PIP_ADAPTER_INFO pInfo = NULL;
ULONG ulBufferLength = 0;
DWORD dwRet;
// First, retrieve the adapter information
do {
dwRet = GetAdaptersInfo(pAdapterInfo, &ulBufferLength);
if (dwRet == ERROR_BUFFER_OVERFLOW)
{
if (pAdapterInfo)
free (pAdapterInfo);
pAdapterInfo = (PIP_ADAPTER_INFO)malloc (ulBufferLength);
if (!pAdapterInfo)
{
rb_raise(rb_eRuntimeError, "Unknow error at OS level");
}
}
} while (dwRet == ERROR_BUFFER_OVERFLOW);
// If we failed, then fail in Ruby too
if (dwRet != ERROR_SUCCESS && dwRet != ERROR_NO_DATA)
{
if (pAdapterInfo)
free (pAdapterInfo);
rb_raise(rb_eRuntimeError, "Unknow error at OS level");
return Qnil;
}
if (dwRet == ERROR_NO_DATA)
{
free (pAdapterInfo);
return result;
}
for (pInfo = pAdapterInfo; pInfo; pInfo = pInfo->Next)
{
//dev is the iface GUID on windows with "\\Device\\NPF_" prefix
int cmpAdapterNamelen = (MAX_ADAPTER_NAME_LENGTH + 4) + 12;
char cmpAdapterName[cmpAdapterNamelen];
memset(cmpAdapterName, 0x00, cmpAdapterNamelen);
strncpy(cmpAdapterName, "\\Device\\NPF_", 12);
int AdapterName_len = strlen(pInfo->AdapterName);
strncpy(cmpAdapterName + 12, pInfo->AdapterName, AdapterName_len);
if (strcmp (cmpAdapterName, StringValuePtr(dev)) != 0)
continue;
result = rb_hash_new();
rb_hash_aset(result, rb_str_new2("description"), rb_str_new2(pInfo->Description));
rb_hash_aset(result, rb_str_new2("guid"), rb_str_new2(pInfo->AdapterName));
// Get the name from the registry
const char* prefix = "SYSTEM\\CurrentControlSet\\Control\\Network\\{4D36E972-E325-11CE-BFC1-08002BE10318}\\";
const char* sufix = "\\Connection";
int prefix_len = strlen(prefix);
int sufix_len = strlen(sufix);
int adaptername_len = strlen(pInfo->AdapterName);
char* keypath = NULL;
keypath = malloc(prefix_len + sufix_len + adaptername_len + 1);
memset(keypath, 0x00, prefix_len + sufix_len + adaptername_len + 1);
strncpy(keypath, prefix, prefix_len);
strncpy(keypath + prefix_len, pInfo->AdapterName, adaptername_len);
strncpy(keypath + prefix_len + adaptername_len, sufix, sufix_len);
HKEY hKey;
LONG lRet = 0;
LPBYTE buffer = NULL;
DWORD dwSize = 0;
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, keypath, 0, KEY_READ, &hKey) == ERROR_SUCCESS)
{
// obtain current value size
lRet = RegQueryValueEx(hKey, "Name", NULL, NULL, NULL, &dwSize);
if (dwSize > 0 && ERROR_SUCCESS == lRet)
{
buffer = malloc((dwSize * sizeof(BYTE)) + 4);
memset(buffer, 0x00, (dwSize * sizeof(BYTE)) + 4);
lRet = RegQueryValueEx(hKey, "Name", NULL, NULL, buffer, &dwSize);
if (ERROR_SUCCESS == lRet)
{
rb_hash_aset(result, rb_str_new2("name"), rb_str_new2(buffer));
}
else
{
rb_hash_aset(result, rb_str_new2("name"), rb_str_new2(""));
}
free(buffer);
}
else
{
rb_hash_aset(result, rb_str_new2("name"), rb_str_new2(""));
}
RegCloseKey(hKey);
}
else
{
rb_hash_aset(result, rb_str_new2("name"), rb_str_new2(""));
}
free(keypath);
}
free (pAdapterInfo);
#endif
return result;
}

View File

@ -1,184 +0,0 @@
#ifndef WIN32
# include <sys/types.h>
# include <sys/socket.h>
# include <net/if.h>
# include <netdb.h>
# if HAVE_SOCKET_IOCTLS
# include <sys/ioctl.h>
# include <netinet/in.h>
# include <arpa/inet.h>
#if defined(__sun)
#include <unistd.h>
#include <stropts.h>
#include <sys/sockio.h>
#endif
# endif /* HAVE_SOCKET_IOCTLS */
/* For logical interfaces support we convert all names to same name prefixed with l */
#if HAVE_SIOCGLIFNUM
#define CNAME(x) l##x
#else
#define CNAME(x) x
#endif
#if HAVE_NET_IF_DL_H
# include <net/if_dl.h>
#endif
/* For Linux, include all the sockaddr
definitions we can lay our hands on. */
#if !HAVE_SOCKADDR_SA_LEN
# if HAVE_NETASH_ASH_H
# include <netash/ash.h>
# endif
# if HAVE_NETATALK_AT_H
# include <netatalk/at.h>
# endif
# if HAVE_NETAX25_AX25_H
# include <netax25/ax25.h>
# endif
# if HAVE_NETECONET_EC_H
# include <neteconet/ec.h>
# endif
# if HAVE_NETIPX_IPX_H
# include <netipx/ipx.h>
# endif
# if HAVE_NETPACKET_PACKET_H
# include <netpacket/packet.h>
# endif
# if HAVE_NETROSE_ROSE_H
# include <netrose/rose.h>
# endif
# if HAVE_LINUX_IRDA_H
# include <linux/irda.h>
# endif
# if HAVE_LINUX_ATM_H
# include <linux/atm.h>
# endif
# if HAVE_LINUX_LLC_H
# include <linux/llc.h>
# endif
# if HAVE_LINUX_TIPC_H
# include <linux/tipc.h>
# endif
# if HAVE_LINUX_DN_H
# include <linux/dn.h>
# endif
/* Map address families to sizes of sockaddr structs */
static int af_to_len(int af)
{
switch (af)
{
case AF_INET: return sizeof (struct sockaddr_in);
#if defined(AF_INET6) && HAVE_SOCKADDR_IN6
case AF_INET6: return sizeof (struct sockaddr_in6);
#endif
#if defined(AF_AX25) && HAVE_SOCKADDR_AX25
# if defined(AF_NETROM)
case AF_NETROM: /* I'm assuming this is carried over x25 */
# endif
case AF_AX25: return sizeof (struct sockaddr_ax25);
#endif
#if defined(AF_IPX) && HAVE_SOCKADDR_IPX
case AF_IPX: return sizeof (struct sockaddr_ipx);
#endif
#if defined(AF_APPLETALK) && HAVE_SOCKADDR_AT
case AF_APPLETALK: return sizeof (struct sockaddr_at);
#endif
#if defined(AF_ATMPVC) && HAVE_SOCKADDR_ATMPVC
case AF_ATMPVC: return sizeof (struct sockaddr_atmpvc);
#endif
#if defined(AF_ATMSVC) && HAVE_SOCKADDR_ATMSVC
case AF_ATMSVC: return sizeof (struct sockaddr_atmsvc);
#endif
#if defined(AF_X25) && HAVE_SOCKADDR_X25
case AF_X25: return sizeof (struct sockaddr_x25);
#endif
#if defined(AF_ROSE) && HAVE_SOCKADDR_ROSE
case AF_ROSE: return sizeof (struct sockaddr_rose);
#endif
#if defined(AF_DECnet) && HAVE_SOCKADDR_DN
case AF_DECnet: return sizeof (struct sockaddr_dn);
#endif
#if defined(AF_PACKET) && HAVE_SOCKADDR_LL
case AF_PACKET: return sizeof (struct sockaddr_ll);
#endif
#if defined(AF_ASH) && HAVE_SOCKADDR_ASH
case AF_ASH: return sizeof (struct sockaddr_ash);
#endif
#if defined(AF_ECONET) && HAVE_SOCKADDR_EC
case AF_ECONET: return sizeof (struct sockaddr_ec);
#endif
#if defined(AF_IRDA) && HAVE_SOCKADDR_IRDA
case AF_IRDA: return sizeof (struct sockaddr_irda);
#endif
}
return sizeof (struct sockaddr);
}
#define SA_LEN(sa) af_to_len(sa->sa_family)
#if HAVE_SIOCGLIFNUM
#define SS_LEN(sa) af_to_len(sa->ss_family)
#else
#define SS_LEN(sa) SA_LEN(sa)
#endif
#else
//remove a warning on openbsd
#ifndef SA_LEN
#define SA_LEN(sa) sa->sa_len
#endif
#endif /* !HAVE_SOCKADDR_SA_LEN */
# if HAVE_GETIFADDRS
# include <ifaddrs.h>
# endif /* HAVE_GETIFADDRS */
# if !HAVE_GETIFADDRS && (!HAVE_SOCKET_IOCTLS || !HAVE_SIOCGIFCONF)
/* If the platform doesn't define, what we need, barf. If you're seeing this,
it means you need to write suitable code to retrieve interface information
on your system. */
# error You need to add code for your platform.
# endif
#else /* defined(WIN32) */
#include <windows.h>
#include <winsock2.h>
#include <iphlpapi.h>
#endif /* defined(WIN32) */
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
/* On systems without AF_LINK (Windows, for instance), define it anyway, but
give it a crazy value. On Linux, which has AF_PACKET but not AF_LINK,
define AF_LINK as the latter instead. */
#ifndef AF_LINK
# ifdef AF_PACKET
# define AF_LINK AF_PACKET
# else
# define AF_LINK -1000
# endif
# define HAVE_AF_LINK 0
#else
# define HAVE_AF_LINK 1
#endif
//Prototypes
//Get a list of the adresses for a network interface
VALUE rbnetifaces_s_addresses (VALUE class, VALUE dev);
//Get a list of the network interfaces
VALUE rbnetifaces_s_interfaces (VALUE self);
//This function is usefull only under windows to retrieve some additionnal interfaces informations
VALUE rbnetifaces_s_interface_info (VALUE self, VALUE dev);

View File

@ -1,783 +0,0 @@
#include "ruby.h"
#ifndef RUBY_19
#include "rubysig.h"
#endif
#include "netifaces.h"
#include <pcap.h>
#if !defined(WIN32)
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/time.h>
#endif
#if !defined(DLT_IEEE802_11_RADIO_AVS)
#define DLT_IEEE802_11_RADIO_AVS 163
#endif
#if !defined(DLT_LINUX_SLL)
#define DLT_LINUX_SLL 113
#endif
#if !defined(DLT_PRISM_HEADER)
#define DLT_PRISM_HEADER 119
#endif
#if !defined(DLT_AIRONET_HEADER)
#define DLT_AIRONET_HEADER 120
#endif
#if !defined(PCAP_NETMASK_UNKNOWN)
/*
* Value to pass to pcap_compile() as the netmask if you don't know what
* the netmask is.
*/
#define PCAP_NETMASK_UNKNOWN 0xffffffff
#endif
static VALUE rb_cPcap;
#define PCAPRUB_VERSION "0.9-dev"
#define OFFLINE 1
#define LIVE 2
typedef struct rbpcap {
pcap_t *pd;
pcap_dumper_t *pdt;
char iface[256];
char type;
} rbpcap_t;
typedef struct rbpcapjob {
struct pcap_pkthdr hdr;
unsigned char *pkt;
int wtf;
} rbpcapjob_t;
static VALUE
rbpcap_s_version(VALUE class)
{
return rb_str_new2(PCAPRUB_VERSION);
}
static VALUE
rbpcap_s_lookupdev(VALUE self)
{
char *dev = NULL;
char eb[PCAP_ERRBUF_SIZE];
VALUE ret_dev; /* device string to return */
#if defined(WIN32) /* pcap_lookupdev is broken on windows */
pcap_if_t *alldevs;
pcap_if_t *d;
/* Retrieve the device list from the local machine */
if (pcap_findalldevs(&alldevs,eb) == -1) {
rb_raise(rb_eRuntimeError,"%s",eb);
}
/* Find the first interface with an address and not loopback */
for(d = alldevs; d != NULL; d= d->next) {
if(d->name && d->addresses && !(d->flags & PCAP_IF_LOOPBACK)) {
dev=d->name;
break;
}
}
if (dev == NULL) {
rb_raise(rb_eRuntimeError,"%s","No valid interfaces found, Make sure WinPcap is installed.\n");
}
ret_dev = rb_str_new2(dev);
/* We don't need any more the device list. Free it */
pcap_freealldevs(alldevs);
#else
dev = pcap_lookupdev(eb);
if (dev == NULL) {
rb_raise(rb_eRuntimeError, "%s", eb);
}
ret_dev = rb_str_new2(dev);
#endif
return ret_dev;
}
static VALUE
rbpcap_s_lookupaddrs(VALUE self,VALUE dev)
{
char *ldev = NULL;
pcap_addr_t *addresses, *a = NULL;
char eb[PCAP_ERRBUF_SIZE];
VALUE ret_dev; /* device string to return */
pcap_if_t *alldevs;
pcap_if_t *d;
VALUE list;
/* Retrieve the device list from the local machine */
if (pcap_findalldevs(&alldevs,eb) == -1) {
rb_raise(rb_eRuntimeError,"%s",eb);
}
/* Find the first interface with an address and not loopback */
for(d = alldevs; d != NULL; d= d->next) {
if(strcmp(d->name,StringValuePtr(dev)) == 0 && d->addresses && !(d->flags & PCAP_IF_LOOPBACK)) {
ldev=d->name;
addresses=d->addresses;
break;
}
}
if (ldev == NULL) {
rb_raise(rb_eRuntimeError,"%s","No valid interfaces found.\n");
}
list = rb_ary_new();
for(a = addresses; a != NULL; a= a->next) {
switch(a->addr->sa_family)
{
case AF_INET:
if (a->addr)
rb_ary_push(list, rb_str_new2(inet_ntoa((((struct sockaddr_in *)a->addr)->sin_addr))));
break;
/* Don't like the __MINGW32__ comment for the moment need some testing ...
case AF_INET6:
#ifndef __MINGW32__ // Cygnus doesn't have IPv6
if (a->addr)
printf("\tAddress: %s\n", ip6tos(a->addr, ip6str, sizeof(ip6str)));
#endif
break;
*/
default:
break;
}
}
pcap_freealldevs(alldevs);
return(list);
}
static VALUE
rbpcap_s_lookupnet(VALUE self, VALUE dev)
{
bpf_u_int32 net, mask, m;
struct in_addr addr;
char eb[PCAP_ERRBUF_SIZE];
VALUE list;
Check_Type(dev, T_STRING);
if (pcap_lookupnet(StringValuePtr(dev), &net, &mask, eb) == -1) {
rb_raise(rb_eRuntimeError, "%s", eb);
}
addr.s_addr = net;
m = ntohl(mask);
list = rb_ary_new();
rb_ary_push(list, rb_str_new2((char *) inet_ntoa(addr)));
rb_ary_push(list, UINT2NUM(m));
return(list);
}
static int rbpcap_ready(rbpcap_t *rbp) {
if(! rbp->pd) {
rb_raise(rb_eArgError, "a device or pcap file must be opened first");
return 0;
}
return 1;
}
static void rbpcap_free(rbpcap_t *rbp) {
if (rbp->pd)
pcap_close(rbp->pd);
if (rbp->pdt)
pcap_dump_close(rbp->pdt);
rbp->pd = NULL;
rbp->pdt = NULL;
free(rbp);
}
static VALUE
rbpcap_new_s(VALUE class)
{
VALUE self;
rbpcap_t *rbp;
// need to make destructor do a pcap_close later
self = Data_Make_Struct(class, rbpcap_t, 0, rbpcap_free, rbp);
rb_obj_call_init(self, 0, 0);
memset(rbp, 0, sizeof(rbpcap_t));
return self;
}
static VALUE
rbpcap_setfilter(VALUE self, VALUE filter)
{
char eb[PCAP_ERRBUF_SIZE];
rbpcap_t *rbp;
u_int32_t mask = 0, netid = 0;
struct bpf_program bpf;
Data_Get_Struct(self, rbpcap_t, rbp);
if(TYPE(filter) != T_STRING)
rb_raise(rb_eArgError, "filter must be a string");
if(! rbpcap_ready(rbp)) return self;
if(rbp->type == LIVE)
if(pcap_lookupnet(rbp->iface, &netid, &mask, eb) < 0)
rb_raise(rb_eRuntimeError, "%s", eb);
if(pcap_compile(rbp->pd, &bpf, RSTRING_PTR(filter), 0, mask) < 0)
rb_raise(rb_eRuntimeError, "invalid bpf filter");
if(pcap_setfilter(rbp->pd, &bpf) < 0)
rb_raise(rb_eRuntimeError, "unable to set bpf filter");
return self;
}
static VALUE
rbpcap_open_live(VALUE self, VALUE iface,VALUE snaplen,VALUE promisc, VALUE timeout)
{
char eb[PCAP_ERRBUF_SIZE];
rbpcap_t *rbp;
int promisc_value = 0;
if(TYPE(iface) != T_STRING)
rb_raise(rb_eArgError, "interface must be a string");
if(TYPE(snaplen) != T_FIXNUM)
rb_raise(rb_eArgError, "snaplen must be a fixnum");
if(TYPE(timeout) != T_FIXNUM)
rb_raise(rb_eArgError, "timeout must be a fixnum");
switch(promisc) {
case Qtrue:
promisc_value = 1;
break;
case Qfalse:
promisc_value = 0;
break;
default:
rb_raise(rb_eTypeError, "Argument not boolean");
}
Data_Get_Struct(self, rbpcap_t, rbp);
rbp->type = LIVE;
memset(rbp->iface, 0, sizeof(rbp->iface));
strncpy(rbp->iface, RSTRING_PTR(iface), sizeof(rbp->iface) - 1);
if(rbp->pd) {
pcap_close(rbp->pd);
}
rbp->pd = pcap_open_live(
RSTRING_PTR(iface),
NUM2INT(snaplen),
promisc_value,
NUM2INT(timeout),
eb
);
if(!rbp->pd)
rb_raise(rb_eRuntimeError, "%s", eb);
return self;
}
static VALUE
rbpcap_open_live_s(VALUE class, VALUE iface, VALUE snaplen, VALUE promisc, VALUE timeout)
{
VALUE iPcap = rb_funcall(rb_cPcap, rb_intern("new"), 0);
return rbpcap_open_live(iPcap, iface, snaplen, promisc, timeout);
}
static VALUE
rbpcap_open_offline(VALUE self, VALUE filename)
{
char eb[PCAP_ERRBUF_SIZE];
rbpcap_t *rbp;
if(TYPE(filename) != T_STRING)
rb_raise(rb_eArgError, "filename must be a string");
Data_Get_Struct(self, rbpcap_t, rbp);
memset(rbp->iface, 0, sizeof(rbp->iface));
rbp->type = OFFLINE;
rbp->pd = pcap_open_offline(
RSTRING_PTR(filename),
eb
);
if(!rbp->pd)
rb_raise(rb_eRuntimeError, "%s", eb);
return self;
}
static VALUE
rbpcap_open_offline_s(VALUE class, VALUE filename)
{
VALUE iPcap = rb_funcall(rb_cPcap, rb_intern("new"), 0);
return rbpcap_open_offline(iPcap, filename);
}
static VALUE
rbpcap_open_dead(VALUE self, VALUE linktype, VALUE snaplen)
{
rbpcap_t *rbp;
if(TYPE(linktype) != T_FIXNUM)
rb_raise(rb_eArgError, "linktype must be a fixnum");
if(TYPE(snaplen) != T_FIXNUM)
rb_raise(rb_eArgError, "snaplen must be a fixnum");
Data_Get_Struct(self, rbpcap_t, rbp);
memset(rbp->iface, 0, sizeof(rbp->iface));
rbp->type = OFFLINE;
rbp->pd = pcap_open_dead(
NUM2INT(linktype),
NUM2INT(snaplen)
);
return self;
}
static VALUE
rbpcap_open_dead_s(VALUE class, VALUE linktype, VALUE snaplen)
{
VALUE iPcap = rb_funcall(rb_cPcap, rb_intern("new"), 0);
return rbpcap_open_dead(iPcap, linktype, snaplen);
}
static VALUE
rbpcap_dump_open(VALUE self, VALUE filename)
{
rbpcap_t *rbp;
if(TYPE(filename) != T_STRING)
rb_raise(rb_eArgError, "filename must be a string");
Data_Get_Struct(self, rbpcap_t, rbp);
rbp->pdt = pcap_dump_open(
rbp->pd,
RSTRING_PTR(filename)
);
return self;
}
//not sure if this deviates too much from the way the rest of this class works?
static VALUE
rbpcap_dump(VALUE self, VALUE caplen, VALUE pktlen, VALUE packet)
{
rbpcap_t *rbp;
struct pcap_pkthdr pcap_hdr;
if(TYPE(packet) != T_STRING)
rb_raise(rb_eArgError, "packet data must be a string");
if(TYPE(caplen) != T_FIXNUM)
rb_raise(rb_eArgError, "caplen must be a fixnum");
if(TYPE(pktlen) != T_FIXNUM)
rb_raise(rb_eArgError, "pktlen must be a fixnum");
Data_Get_Struct(self, rbpcap_t, rbp);
gettimeofday(&pcap_hdr.ts, NULL);
pcap_hdr.caplen = NUM2UINT(caplen);
pcap_hdr.len = NUM2UINT(pktlen);
pcap_dump(
(u_char*)rbp->pdt,
&pcap_hdr,
(unsigned char *)RSTRING_PTR(packet)
);
return self;
}
static VALUE
rbpcap_inject(VALUE self, VALUE payload)
{
rbpcap_t *rbp;
if(TYPE(payload) != T_STRING)
rb_raise(rb_eArgError, "payload must be a string");
Data_Get_Struct(self, rbpcap_t, rbp);
if(! rbpcap_ready(rbp)) return self;
#if defined(WIN32)
/* WinPcap does not have a pcap_inject call we use pcap_sendpacket, if it suceedes
* we simply return the amount of packets request to inject, else we fail.
*/
if(pcap_sendpacket(rbp->pd, RSTRING_PTR(payload), RSTRING_LEN(payload)) != 0) {
rb_raise(rb_eRuntimeError, "%s", pcap_geterr(rbp->pd));
}
return INT2NUM(RSTRING_LEN(payload));
#else
return INT2NUM(pcap_inject(rbp->pd, RSTRING_PTR(payload), RSTRING_LEN(payload)));
#endif
}
static void rbpcap_handler(rbpcapjob_t *job, struct pcap_pkthdr *hdr, u_char *pkt){
job->pkt = (unsigned char *)pkt;
job->hdr = *hdr;
}
static VALUE
rbpcap_next(VALUE self)
{
rbpcap_t *rbp;
rbpcapjob_t job;
char eb[PCAP_ERRBUF_SIZE];
int ret;
Data_Get_Struct(self, rbpcap_t, rbp);
if(! rbpcap_ready(rbp)) return self;
pcap_setnonblock(rbp->pd, 1, eb);
#ifndef RUBY_19
TRAP_BEG;
#endif
ret = pcap_dispatch(rbp->pd, 1, (pcap_handler) rbpcap_handler, (u_char *)&job);
#ifndef RUBY_19
TRAP_END;
#endif
if(rbp->type == OFFLINE && ret <= 0) return Qnil;
if(ret > 0 && job.hdr.caplen > 0)
return rb_str_new((char *) job.pkt, job.hdr.caplen);
return Qnil;
}
static VALUE
rbpcap_capture(VALUE self)
{
rbpcap_t *rbp;
int fno = -1;
Data_Get_Struct(self, rbpcap_t, rbp);
if(! rbpcap_ready(rbp)) return self;
#if !defined(WIN32)
fno = pcap_get_selectable_fd(rbp->pd);
#else
fno = pcap_fileno(rbp->pd);
#endif
for(;;) {
VALUE packet = rbpcap_next(self);
if(packet == Qnil && rbp->type == OFFLINE) break;
packet == Qnil ? rb_thread_wait_fd(fno) : rb_yield(packet);
}
return self;
}
static VALUE
rbpcap_datalink(VALUE self)
{
rbpcap_t *rbp;
Data_Get_Struct(self, rbpcap_t, rbp);
if(! rbpcap_ready(rbp)) return self;
return INT2NUM(pcap_datalink(rbp->pd));
}
static VALUE
rbpcap_snapshot(VALUE self)
{
rbpcap_t *rbp;
Data_Get_Struct(self, rbpcap_t, rbp);
if(! rbpcap_ready(rbp)) return self;
return INT2NUM(pcap_snapshot(rbp->pd));
}
static VALUE
rbpcap_stats(VALUE self)
{
rbpcap_t *rbp;
struct pcap_stat stat;
VALUE hash;
Data_Get_Struct(self, rbpcap_t, rbp);
if(! rbpcap_ready(rbp)) return self;
if (pcap_stats(rbp->pd, &stat) == -1)
return Qnil;
hash = rb_hash_new();
rb_hash_aset(hash, rb_str_new2("recv"), UINT2NUM(stat.ps_recv));
rb_hash_aset(hash, rb_str_new2("drop"), UINT2NUM(stat.ps_drop));
rb_hash_aset(hash, rb_str_new2("idrop"), UINT2NUM(stat.ps_ifdrop));
return hash;
}
void
Init_pcaprub()
{
// Pcap
rb_cPcap = rb_define_class("Pcap", rb_cObject);
rb_define_module_function(rb_cPcap, "version", rbpcap_s_version, 0);
rb_define_module_function(rb_cPcap, "lookupdev", rbpcap_s_lookupdev, 0);
rb_define_module_function(rb_cPcap, "lookupnet", rbpcap_s_lookupnet, 1);
rb_define_module_function(rb_cPcap, "lookupaddrs", rbpcap_s_lookupaddrs, 1);
rb_define_const(rb_cPcap, "DLT_NULL", INT2NUM(DLT_NULL));
rb_define_const(rb_cPcap, "DLT_EN10MB", INT2NUM(DLT_EN10MB));
rb_define_const(rb_cPcap, "DLT_EN3MB", INT2NUM(DLT_EN3MB));
rb_define_const(rb_cPcap, "DLT_AX25", INT2NUM(DLT_AX25));
rb_define_const(rb_cPcap, "DLT_PRONET", INT2NUM(DLT_PRONET));
rb_define_const(rb_cPcap, "DLT_CHAOS", INT2NUM(DLT_CHAOS));
rb_define_const(rb_cPcap, "DLT_IEEE802", INT2NUM(DLT_IEEE802));
rb_define_const(rb_cPcap, "DLT_ARCNET", INT2NUM(DLT_ARCNET));
rb_define_const(rb_cPcap, "DLT_SLIP", INT2NUM(DLT_SLIP));
rb_define_const(rb_cPcap, "DLT_PPP", INT2NUM(DLT_PPP));
rb_define_const(rb_cPcap, "DLT_FDDI", INT2NUM(DLT_FDDI));
rb_define_const(rb_cPcap, "DLT_ATM_RFC1483", INT2NUM(DLT_ATM_RFC1483));
rb_define_const(rb_cPcap, "DLT_RAW", INT2NUM(DLT_RAW));
rb_define_const(rb_cPcap, "DLT_SLIP_BSDOS", INT2NUM(DLT_SLIP_BSDOS));
rb_define_const(rb_cPcap, "DLT_PPP_BSDOS", INT2NUM(DLT_PPP_BSDOS));
rb_define_const(rb_cPcap, "DLT_IEEE802_11", INT2NUM(DLT_IEEE802_11));
rb_define_const(rb_cPcap, "DLT_IEEE802_11_RADIO", INT2NUM(DLT_IEEE802_11_RADIO));
rb_define_const(rb_cPcap, "DLT_IEEE802_11_RADIO_AVS", INT2NUM(DLT_IEEE802_11_RADIO_AVS));
rb_define_const(rb_cPcap, "DLT_LINUX_SLL", INT2NUM(DLT_LINUX_SLL));
rb_define_const(rb_cPcap, "DLT_PRISM_HEADER", INT2NUM(DLT_PRISM_HEADER));
rb_define_const(rb_cPcap, "DLT_AIRONET_HEADER", INT2NUM(DLT_AIRONET_HEADER));
rb_define_singleton_method(rb_cPcap, "new", rbpcap_new_s, 0);
rb_define_singleton_method(rb_cPcap, "open_live", rbpcap_open_live_s, 4);
rb_define_singleton_method(rb_cPcap, "open_offline", rbpcap_open_offline_s, 1);
rb_define_singleton_method(rb_cPcap, "open_dead", rbpcap_open_dead_s, 2);
rb_define_singleton_method(rb_cPcap, "dump_open", rbpcap_dump_open, 1);
rb_define_method(rb_cPcap, "dump", rbpcap_dump, 3);
rb_define_method(rb_cPcap, "each", rbpcap_capture, 0);
rb_define_method(rb_cPcap, "next", rbpcap_next, 0);
rb_define_method(rb_cPcap, "setfilter", rbpcap_setfilter, 1);
rb_define_method(rb_cPcap, "inject", rbpcap_inject, 1);
rb_define_method(rb_cPcap, "datalink", rbpcap_datalink, 0);
rb_define_method(rb_cPcap, "snapshot", rbpcap_snapshot, 0);
rb_define_method(rb_cPcap, "snaplen", rbpcap_snapshot, 0);
rb_define_method(rb_cPcap, "stats", rbpcap_stats, 0);
//Netifaces
rb_define_module_function(rb_cPcap, "interfaces", rbnetifaces_s_interfaces, 0);
rb_define_module_function(rb_cPcap, "addresses", rbnetifaces_s_addresses, 1);
rb_define_module_function(rb_cPcap, "interface_info", rbnetifaces_s_interface_info, 1);
//constants
// Address families (auto-detect using #ifdef)
#ifdef AF_INET
rb_define_const(rb_cPcap, "AF_INET", INT2NUM(AF_INET));
#endif
#ifdef AF_INET6
rb_define_const(rb_cPcap, "AF_INET6", INT2NUM(AF_INET6));
#endif
#ifdef AF_UNSPEC
rb_define_const(rb_cPcap, "AF_UNSPEC", INT2NUM(AF_UNSPEC));
#endif
#ifdef AF_UNIX
rb_define_const(rb_cPcap, "AF_UNIX", INT2NUM(AF_UNIX));
#endif
#ifdef AF_FILE
rb_define_const(rb_cPcap, "AF_FILE", INT2NUM(AF_FILE));
#endif
#ifdef AF_AX25
rb_define_const(rb_cPcap, "AF_AX25", INT2NUM(AF_AX25));
#endif
#ifdef AF_IMPLINK
rb_define_const(rb_cPcap, "AF_IMPLINK", INT2NUM(AF_IMPLINK));
#endif
#ifdef AF_PUP
rb_define_const(rb_cPcap, "AF_PUP", INT2NUM(AF_PUP));
#endif
#ifdef AF_CHAOS
rb_define_const(rb_cPcap, "AF_CHAOS", INT2NUM(AF_CHAOS));
#endif
#ifdef AF_NS
rb_define_const(rb_cPcap, "AF_NS", INT2NUM(AF_NS));
#endif
#ifdef AF_ISO
rb_define_const(rb_cPcap, "AF_ISO", INT2NUM(AF_ISO));
#endif
#ifdef AF_ECMA
rb_define_const(rb_cPcap, "AF_ECMA", INT2NUM(AF_ECMA));
#endif
#ifdef AF_DATAKIT
rb_define_const(rb_cPcap, "AF_DATAKIT", INT2NUM(AF_DATAKIT));
#endif
#ifdef AF_CCITT
rb_define_const(rb_cPcap, "AF_CCITT", INT2NUM(AF_CCITT));
#endif
#ifdef AF_SNA
rb_define_const(rb_cPcap, "AF_SNA", INT2NUM(AF_SNA));
#endif
#ifdef AF_DECnet
rb_define_const(rb_cPcap, "AF_DECnet", INT2NUM(AF_DECnet));
#endif
#ifdef AF_DLI
rb_define_const(rb_cPcap, "AF_DLI", INT2NUM(AF_DLI));
#endif
#ifdef AF_LAT
rb_define_const(rb_cPcap, "AF_LAT", INT2NUM(AF_LAT));
#endif
#ifdef AF_HYLINK
rb_define_const(rb_cPcap, "AF_HYLINK", INT2NUM(AF_HYLINK));
#endif
#ifdef AF_APPLETALK
rb_define_const(rb_cPcap, "AF_APPLETALK", INT2NUM(AF_APPLETALK));
#endif
#ifdef AF_ROUTE
rb_define_const(rb_cPcap, "AF_ROUTE", INT2NUM(AF_ROUTE));
#endif
#ifdef AF_LINK
rb_define_const(rb_cPcap, "AF_LINK", INT2NUM(AF_LINK));
#endif
#ifdef AF_PACKET
rb_define_const(rb_cPcap, "AF_PACKET", INT2NUM(AF_PACKET));
#endif
#ifdef AF_COIP
rb_define_const(rb_cPcap, "AF_COIP", INT2NUM(AF_COIP));
#endif
#ifdef AF_CNT
rb_define_const(rb_cPcap, "AF_CNT", INT2NUM(AF_CNT));
#endif
#ifdef AF_IPX
rb_define_const(rb_cPcap, "AF_IPX", INT2NUM(AF_IPX));
#endif
#ifdef AF_SIP
rb_define_const(rb_cPcap, "AF_SIP", INT2NUM(AF_SIP));
#endif
#ifdef AF_NDRV
rb_define_const(rb_cPcap, "AF_NDRV", INT2NUM(AF_NDRV));
#endif
#ifdef AF_ISDN
rb_define_const(rb_cPcap, "AF_ISDN", INT2NUM(AF_ISDN));
#endif
#ifdef AF_NATM
rb_define_const(rb_cPcap, "AF_NATM", INT2NUM(AF_NATM));
#endif
#ifdef AF_SYSTEM
rb_define_const(rb_cPcap, "AF_SYSTEM", INT2NUM(AF_SYSTEM));
#endif
#ifdef AF_NETBIOS
rb_define_const(rb_cPcap, "AF_NETBIOS", INT2NUM(AF_NETBIOS));
#endif
#ifdef AF_NETBEUI
rb_define_const(rb_cPcap, "AF_NETBEUI", INT2NUM(AF_NETBEUI));
#endif
#ifdef AF_PPP
rb_define_const(rb_cPcap, "AF_PPP", INT2NUM(AF_PPP));
#endif
#ifdef AF_ATM
rb_define_const(rb_cPcap, "AF_ATM", INT2NUM(AF_ATM));
#endif
#ifdef AF_ATMPVC
rb_define_const(rb_cPcap, "AF_ATMPVC", INT2NUM(AF_ATMPVC));
#endif
#ifdef AF_ATMSVC
rb_define_const(rb_cPcap, "AF_ATMSVC", INT2NUM(AF_ATMSVC));
#endif
#ifdef AF_NETGRAPH
rb_define_const(rb_cPcap, "AF_NETGRAPH", INT2NUM(AF_NETGRAPH));
#endif
#ifdef AF_VOICEVIEW
rb_define_const(rb_cPcap, "AF_VOICEVIEW", INT2NUM(AF_VOICEVIEW));
#endif
#ifdef AF_FIREFOX
rb_define_const(rb_cPcap, "AF_FIREFOX", INT2NUM(AF_FIREFOX));
#endif
#ifdef AF_UNKNOWN1
rb_define_const(rb_cPcap, "AF_UNKNOWN1", INT2NUM(AF_UNKNOWN1));
#endif
#ifdef AF_BAN
rb_define_const(rb_cPcap, "AF_BAN", INT2NUM(AF_BAN));
#endif
#ifdef AF_CLUSTER
rb_define_const(rb_cPcap, "AF_CLUSTER", INT2NUM(AF_CLUSTER));
#endif
#ifdef AF_12844
rb_define_const(rb_cPcap, "AF_12844", INT2NUM(AF_12844));
#endif
#ifdef AF_IRDA
rb_define_const(rb_cPcap, "AF_IRDA", INT2NUM(AF_IRDA));
#endif
#ifdef AF_NETDES
rb_define_const(rb_cPcap, "AF_NETDES", INT2NUM(AF_NETDES));
#endif
#ifdef AF_NETROM
rb_define_const(rb_cPcap, "AF_NETROM", INT2NUM(AF_NETROM));
#endif
#ifdef AF_BRIDGE
rb_define_const(rb_cPcap, "AF_BRIDGE", INT2NUM(AF_BRIDGE));
#endif
#ifdef AF_X25
rb_define_const(rb_cPcap, "AF_X25", INT2NUM(AF_X25));
#endif
#ifdef AF_ROSE
rb_define_const(rb_cPcap, "AF_ROSE", INT2NUM(AF_ROSE));
#endif
#ifdef AF_SECURITY
rb_define_const(rb_cPcap, "AF_SECURITY", INT2NUM(AF_SECURITY));
#endif
#ifdef AF_KEY
rb_define_const(rb_cPcap, "AF_KEY", INT2NUM(AF_KEY));
#endif
#ifdef AF_NETLINK
rb_define_const(rb_cPcap, "AF_NETLINK", INT2NUM(AF_NETLINK));
#endif
#ifdef AF_ASH
rb_define_const(rb_cPcap, "AF_ASH", INT2NUM(AF_ASH));
#endif
#ifdef AF_ECONET
rb_define_const(rb_cPcap, "AF_ECONET", INT2NUM(AF_ECONET));
#endif
#ifdef AF_PPPOX
rb_define_const(rb_cPcap, "AF_PPPOX", INT2NUM(AF_PPPOX));
#endif
#ifdef AF_WANPIPE
rb_define_const(rb_cPcap, "AF_WANPIPE", INT2NUM(AF_WANPIPE));
#endif
#ifdef AF_BLUETOOTH
rb_define_const(rb_cPcap, "AF_BLUETOOTH", INT2NUM(AF_BLUETOOTH));
#endif
}

View File

@ -1,125 +0,0 @@
#!/usr/bin/ruby
base = File.symlink?(__FILE__) ? File.readlink(__FILE__) : __FILE__
$:.unshift(File.join(File.dirname(base)))
require 'test/unit'
require 'pcaprub'
#
# Simple unit test, requires r00t.
#
class Pcap::UnitTest < Test::Unit::TestCase
def test_version
assert_equal(String, Pcap.version.class)
puts "Pcaprub version: #{Pcap.version}"
end
def test_lookupdev
assert_equal(String, Pcap.lookupdev.class)
puts "Pcaprub default device: #{Pcap.lookupdev}"
end
def test_lookupnet
dev = Pcap.lookupdev
assert_equal(Array, Pcap.lookupnet(dev).class)
net = Pcap.lookupnet(dev)
puts "Pcaprub net (#{dev}): #{net[0]} #{[net[1]].pack("N").unpack("H*")[0]}"
end
def test_pcap_new
o = Pcap.new
assert_equal(Pcap, o.class)
end
def test_pcap_setfilter_bad
e = nil
o = Pcap.new
begin
o.setfilter("not ip")
rescue ::Exception => e
end
assert_equal(e.class, ArgumentError)
end
def test_pcap_setfilter
d = Pcap.lookupdev
o = Pcap.open_live(d, 65535, true, 1)
r = o.setfilter("not ip")
assert_equal(Pcap, r.class)
end
def test_pcap_inject
d = Pcap.lookupdev
o = Pcap.open_live(d, 65535, true, 1)
r = o.inject("X" * 512)
assert_equal(512, r)
end
def test_pcap_datalink
d = Pcap.lookupdev
o = Pcap.open_live(d, 65535, true, 1)
r = o.datalink
assert_equal(Fixnum, r.class)
end
def test_pcap_snapshot
d = Pcap.lookupdev
o = Pcap.open_live(d, 1344, true, 1)
r = o.snapshot
assert_equal(1344, r)
end
def test_pcap_stats
d = Pcap.lookupdev
o = Pcap.open_live(d, 1344, true, 1)
r = o.stats
assert_equal(Hash, r.class)
end
def test_pcap_next
d = Pcap.lookupdev
o = Pcap.open_live(d, 1344, true, 1)
@c = 0
t = Thread.new { while(true); @c += 1; select(nil, nil, nil, 0.10); end; }
require 'timeout'
begin
Timeout.timeout(10) do
o.each do |pkt|
end
end
rescue ::Timeout::Error
end
t.kill
puts "Background thread ticked #{@c} times while capture was running"
true
end
def test_netifaces_constants
puts "AF_LINK Value is #{Pcap::AF_LINK}"
puts "AF_INET Value is #{Pcap::AF_INET}"
puts "AF_INET6 Value is #{Pcap::AF_INET6}" if Pcap.const_defined?(:AF_INET6)
end
def test_netifaces_functions
Pcap.interfaces.sort.each do |iface|
puts "#{iface} :"
Pcap.addresses(iface).sort.each do |family,values|
puts "\t#{family} :"
values.each do |val|
puts "\t\taddr : #{val['addr']}" if val.has_key?("addr")
puts "\t\tnetmask : #{val['netmask']}" if val.has_key?("netmask")
puts "\t\tbroadcast : #{val['broadcast']}" if val.has_key?("broadcast")
puts "\n"
end
end
end
end
end

View File

@ -1,5 +0,0 @@
# -*- coding: binary -*-
module PacketFu
end
require 'packetfu/packetfu'

View File

@ -1,28 +0,0 @@
== LICENSE
Copyright (c) 2008-2012, Tod Beardsley
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Tod Beardsley nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY TOD BEARDSLEY ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL TOD BEARDSLEY BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,149 +0,0 @@
# -*- coding: binary -*-
# :title: PacketFu Documentation
# :main: README
cwd = File.expand_path(File.dirname(__FILE__))
$: << cwd
require File.join(cwd,"packetfu","structfu")
require "ipaddr"
require 'rubygems' if RUBY_VERSION =~ /^1\.[0-8]/
module PacketFu
# Picks up all the protocols defined in the protos subdirectory
def self.require_protos(cwd)
protos_dir = File.join(cwd, "packetfu", "protos")
Dir.new(protos_dir).each do |fname|
next unless fname[/\.rb$/]
begin
require File.join(protos_dir,fname)
rescue
warn "Warning: Could not load `#{fname}'. Skipping."
end
end
end
# Deal with Ruby's encoding by ignoring it.
def self.force_binary(str)
str.force_encoding "binary" if str.respond_to? :force_encoding
end
# Sets the expected byte order for a pcap file. See PacketFu::Read.set_byte_order
@byte_order = :little
# Checks if pcaprub is loaded correctly.
@pcaprub_loaded = false
# PacketFu works best with Pcaprub version 0.8-dev (at least)
# The current (Aug 01, 2010) pcaprub gem is 0.9, so should be fine.
def self.pcaprub_platform_require
begin
require 'pcaprub'
rescue LoadError
return false
end
@pcaprub_loaded = true
end
pcaprub_platform_require
if @pcaprub_loaded
pcaprub_regex = /[0-9]\.([8-9]|[1-7][0-9])(-dev)?/ # Regex for 0.8 and beyond.
if Pcap.version !~ pcaprub_regex
@pcaprub_loaded = false # Don't bother with broken versions
raise LoadError, "PcapRub not at a minimum version of 0.8-dev"
end
require "packetfu/capture"
require "packetfu/inject"
end
# Returns the status of pcaprub
def self.pcaprub_loaded?
@pcaprub_loaded
end
# Returns an array of classes defined in PacketFu
def self.classes
constants.map { |const| const_get(const) if const_get(const).kind_of? Class}.compact
end
# Adds the class to PacketFu's list of packet classes -- used in packet parsing.
def self.add_packet_class(klass)
raise "Need a class" unless klass.kind_of? Class
if klass.name !~ /[A-Za-z0-9]Packet/
raise "Packet classes should be named 'ProtoPacket'"
end
@packet_classes ||= []
@packet_classes << klass
@packet_classes.sort! {|x,y| x.name <=> y.name}
end
# Presumably, there may be a time where you'd like to remove a packet class.
def self.remove_packet_class(klass)
raise "Need a class" unless klass.kind_of? Class
@packet_classes ||= []
@packet_classes.delete klass
@packet_classes
end
# Returns an array of packet classes
def self.packet_classes
@packet_classes || []
end
# Returns an array of packet types by packet prefix.
def self.packet_prefixes
return [] unless @packet_classes
@packet_classes.map {|p| p.to_s.split("::").last.to_s.downcase.gsub(/packet$/,"")}
end
# The current inspect style. One of :hex, :dissect, or :default
# Note that :default means Ruby's default, which is usually
# far too long to be useful.
def self.inspect_style
@inspect_style ||= :dissect
end
# Setter for PacketFu's @inspect_style
def self.inspect_style=(arg)
@inspect_style = case arg
when :hex, :pretty
:hex
when :dissect, :verbose
:dissect
when :default, :ugly
:default
else
:dissect
end
end
# Switches inspect styles in a round-robin fashion between
# :dissect, :default, and :hex
def toggle_inspect
case @inspect_style
when :hex, :pretty
@inspect_style = :dissect
when :dissect, :verbose
@inspect_style = :default
when :default, :ugly
@inspect_style = :hex
else
@inspect_style = :dissect
end
end
end
require File.join(cwd,"packetfu","version")
require File.join(cwd,"packetfu","pcap")
require File.join(cwd,"packetfu","packet")
PacketFu.require_protos(cwd)
require File.join(cwd,"packetfu","utils")
require File.join(cwd,"packetfu","config")
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,170 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# The Capture class is used to construct PcapRub objects in order to collect
# packets from an interface.
#
# This class requires PcapRub. In addition, you will need root (or root-like) privileges
# in order to capture from the interface.
#
# Note, on some wireless cards, setting :promisc => true will disable capturing.
#
# == Example
#
# # Typical use
# cap = PacketFu::Capture.new(:iface => 'eth0', :promisc => true)
# cap.start
# sleep 10
# cap.save
# first_packet = cap.array[0]
#
# # Tcpdump-like use
# cap = PacketFu::Capture.new(:start => true)
# cap.show_live(:save => true, :filter => 'tcp and not port 22')
#
# == See Also
#
# Read, Write
class Capture
attr_accessor :array, :stream # Leave these public and open.
attr_reader :iface, :snaplen, :promisc, :timeout # Cant change after the init.
def initialize(args={})
@array = [] # Where the packet array goes.
@stream = [] # Where the stream goes.
@iface = (args[:iface] || ENV['IFACE'] || Pcap.lookupdev || "lo").to_s
@snaplen = args[:snaplen] || 0xffff
@promisc = args[:promisc] || false # Sensible for some Intel wifi cards
@timeout = args[:timeout] || 1
setup_params(args)
end
# Used by new().
def setup_params(args={})
filter = args[:filter] # Not global; filter criteria can change.
start = args[:start] || false
capture if start
bpf(:filter=>filter) if filter
end
# capture() initializes the @stream varaible. Valid arguments are:
#
# :filter
# Provide a bpf filter to enable for the capture. For example, 'ip and not tcp'
# :start
# When true, start capturing packets to the @stream variable. Defaults to true
def capture(args={})
if Process.euid.zero?
filter = args[:filter]
start = args[:start] || true
if start
begin
@stream = Pcap.open_live(@iface,@snaplen,@promisc,@timeout)
rescue RuntimeError
$stderr.print "Are you sure you're root? Error: "
raise
end
bpf(:filter=>filter) if filter
else
@stream = []
end
@stream
else
raise RuntimeError,"Not root, so can't capture packets. Error: "
end
end
# start() is equivalent to capture().
def start(args={})
capture(args)
end
# clear() clears the @stream and @array variables, essentially starting the
# capture session over. Valid arguments are:
#
# :array
# If true, the @array is cleared.
# :stream
# If true, the @stream is cleared.
def clear(args={})
array = args[:array] || true
stream = args[:stream] || true
@array = [] if array
@stream = [] if stream
end
# bpf() sets a bpf filter on a capture session. Valid arugments are:
#
# :filter
# Provide a bpf filter to enable for the capture. For example, 'ip and not tcp'
def bpf(args={})
filter = args[:filter]
capture if @stream.class == Array
@stream.setfilter(filter)
end
# wire_to_array() saves a packet stream as an array of binary strings. From here,
# packets may accessed by other functions. Note that the wire_to_array empties
# the stream, so multiple calls will append new packets to @array.
# Valid arguments are:
#
# :filter
# Provide a bpf filter to apply to packets moving from @stream to @array.
def wire_to_array(args={})
filter = args[:filter]
bpf(:filter=>filter) if filter
while this_pkt = @stream.next
@array << this_pkt
end
@array.size
end
# next() exposes the Stream object's next method to the outside world.
def next
return @stream.next
end
# w2a() is a equivalent to wire_to_array()
def w2a(args={})
wire_to_array(args)
end
# save() is a equivalent to wire_to_array()
def save(args={})
wire_to_array(args)
end
# show_live() is a method to capture packets and display peek() data to stdout. Valid arguments are:
#
# :filter
# Provide a bpf filter to captured packets.
# :save
# Save the capture in @array
# :verbose
# TODO: Not implemented yet; do more than just peek() at the packets.
# :quiet
# TODO: Not implemented yet; do less than peek() at the packets.
def show_live(args={})
filter = args[:filter]
save = args[:save]
verbose = args[:verbose] || args[:v] || false
quiet = args[:quiet] || args[:q] || false # Setting q and v doesn't make a lot of sense but hey.
# Ensure the capture's started.
if @stream.class == Array
capture
end
@stream.setfilter(filter) if filter
while true
@stream.each do |pkt|
puts Packet.parse(pkt).peek
@array << pkt if args[:save]
end
end
end
end
end

View File

@ -1,59 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# The Config class holds various bits of useful default information
# for packet creation. If initialized without arguments, @iface will be
# set to ENV['IFACE'] or Pcap.lookupdev (or lo), and the @pcapfile will
# be set to "/tmp/out.pcap" # (yes, it's Linux-biased, sorry, fixing
# this is a TODO.)
#
# Any number of instance variables can be passed in to the intialize function (as a
# hash), though only the expected network-related variables will be readable and
# writeable directly.
#
# == Examples
#
# PacketFu::Config.new(:ip_saddr => "1.2.3.4").ip_saddr #=> "1.2.3.4"
# PacketFu::Config.new(:foo=>"bar").foo #=> NomethodError: undefined method `foo'...
#
# The config() function, however, does provide access to custom variables:
#
# PacketFu::Config.new(:foo=>"bar").config[:foo] #=> "bar"
# obj = PacketFu::Config.new(:foo=>"bar")
# obj.config(:baz => "bat")
# obj.config #=> {:iface=>"eth0", :baz=>"bat", :pcapfile=>"/tmp/out.pcap", :foo=>"bar"}
class Config
attr_accessor :eth_saddr, # The discovered eth_saddr
:eth_daddr, # The discovered eth_daddr (ie, the gateway)
:eth_src, # The discovered eth_src in binary form.
:eth_dst, # The discovered eth_dst (gateway) in binary form.
:ip_saddr, # The discovered ip_saddr
:ip_src, # The discovered ip_src in binary form.
:iface, # The declared interface.
:pcapfile # A declared default file to write to.
def initialize(args={})
if Process.euid.zero?
@iface = args[:iface] || ENV['IFACE'] || Pcap.lookupdev || "lo"
end
@pcapfile = "/tmp/out.pcap"
args.each_pair { |k,v| self.instance_variable_set(("@#{k}"),v) }
end
# Returns all instance variables as a hash (including custom variables set at initialization).
def config(arg=nil)
if arg
arg.each_pair {|k,v| self.instance_variable_set(("@" + k.to_s).intern, v)}
else
config_hash = {}
self.instance_variables.each do |v|
key = v.to_s.gsub(/^@/,"").to_sym
config_hash[key] = self.instance_variable_get(v)
end
config_hash
end
end
end
end

View File

@ -1,66 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# The Inject class handles injecting arrays of binary data on the wire.
#
# To inject single packets, use PacketFu::Packet.to_w() instead.
class Inject
attr_accessor :array, :stream, :show_live # Leave these public and open.
attr_reader :iface, :snaplen, :promisc, :timeout # Cant change after the init.
def initialize(args={})
@array = [] # Where the packet array goes.
@stream = [] # Where the stream goes.
@iface = args[:iface] || ENV['IFACE'] || Pcap.lookupdev || "lo"
@snaplen = args[:snaplen] || 0xffff
@promisc = args[:promisc] || false # Sensible for some Intel wifi cards
@timeout = args[:timeout] || 1
@show_live = nil
end
# Takes an array, and injects them onto an interface. Note that
# complete packets (Ethernet headers on down) are expected.
#
# === Parameters
#
# :array || arr
# An array of binary data (usually packet.to_s style).
# :int || sleep
# Number of seconds to sleep between injections (in float format)
# :show_live || :live
# If true, puts data about what was injected to stdout.
#
# === Example
#
# inj = PacketFu::Inject.new
# inj.array_to_wire(:array => [pkt1, pkt2, pkt3], :sleep => 0.1)
#
def array_to_wire(args={})
pkt_array = args[:array] || args[:arr] || @array
interval = args[:int] || args[:sleep]
show_live = args[:show_live] || args[:live] || @show_live
@stream = Pcap.open_live(@iface,@snaplen,@promisc,@timeout)
pkt_count = 0
pkt_array.each do |pkt|
@stream.inject(pkt)
sleep interval if interval
pkt_count +=1
puts "Sent Packet \##{pkt_count} (#{pkt.size})" if show_live
end
# Return # of packets sent, array size, and array total size
[pkt_count, pkt_array.size, pkt_array.join.size]
end
# Equivalent to array_to_wire
def a2w(args={})
array_to_wire(args)
end
# Equivalent to array_to_wire
def inject(args={})
array_to_wire(args)
end
end
end

View File

@ -1,534 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# Packet is the parent class of EthPacket, IPPacket, UDPPacket, TCPPacket, and all
# other packets. It acts as both a singleton class, so things like
# Packet.parse can happen, and as an abstract class to provide
# subclasses some structure.
class Packet
attr_reader :flavor # Packet Headers are responsible for their own specific flavor methods.
attr_accessor :headers # All packets have a header collection, useful for determining protocol trees.
attr_accessor :iface # Default inferface to send packets to
attr_accessor :inspect_style # Default is :dissect, can also be :hex or :default
# Register subclasses in PacketFu.packet_class to do all kinds of neat things
# that obviates those long if/else trees for parsing. It's pretty sweet.
def self.inherited(subclass)
PacketFu.add_packet_class(subclass)
end
# Force strings into binary.
def self.force_binary(str)
str.force_encoding "binary" if str.respond_to? :force_encoding
end
# Parse() creates the correct packet type based on the data, and returns the apporpiate
# Packet subclass object.
#
# There is an assumption here that all incoming packets are either EthPacket
# or InvalidPacket types. This will be addressed pretty soon.
#
# If application-layer parsing is /not/ desired, that should be indicated explicitly
# with an argument of :parse_app => false. Otherwise, app-layer parsing will happen.
#
# It is no longer neccisary to manually add packet types here.
def self.parse(packet=nil,args={})
parse_app = true if(args[:parse_app].nil? or args[:parse_app])
force_binary(packet)
if parse_app
classes = PacketFu.packet_classes.select {|pclass| pclass.can_parse? packet}
else
classes = PacketFu.packet_classes.select {|pclass| pclass.can_parse? packet}.reject {|pclass| pclass.layer_symbol == :application}
end
p = classes.sort {|x,y| x.layer <=> y.layer}.last.new
parsed_packet = p.read(packet,args)
end
def handle_is_identity(ptype)
idx = PacketFu.packet_prefixes.index(ptype.to_s.downcase)
if idx
self.kind_of? PacketFu.packet_classes[idx]
else
raise NoMethodError, "Undefined method `is_#{ptype}?' for #{self.class}."
end
end
# Get the binary string of the entire packet.
def to_s
@headers[0].to_s
end
# In the event of no proper decoding, at least send it to the inner-most header.
def write(io)
@headers[0].write(io)
end
# Get the outermost payload (body) of the packet; this is why all packet headers
# should have a body type.
def payload
@headers.last.body
end
# Set the outermost payload (body) of the packet.
def payload=(args)
@headers.last.body=(args)
end
# Converts a packet to libpcap format. Bit of a hack?
def to_pcap(args={})
p = PcapPacket.new(:endian => args[:endian],
:timestamp => Timestamp.new.to_s,
:incl_len => self.to_s.size,
:orig_len => self.to_s.size,
:data => self)
end
# Put the entire packet into a libpcap file. XXX: this is a
# hack for now just to confirm that packets are getting created
# correctly. Now with append! XXX: Document this!
def to_f(filename=nil,mode='w')
filename ||= 'out.pcap'
mode = mode.to_s[0,1] + "b"
raise ArgumentError, "Unknown mode: #{mode.to_s}" unless mode =~ /^[wa]/
if(mode == 'w' || !(File.exists?(filename)))
data = [PcapHeader.new, self.to_pcap].map {|x| x.to_s}.join
else
data = self.to_pcap
end
File.open(filename, mode) {|f| f.write data}
return [filename, 1, data.size]
end
# Put the entire packet on the wire by creating a temporary PacketFu::Inject object.
# TODO: Do something with auto-checksumming?
def to_w(iface=nil)
iface = (iface || self.iface || PacketFu::Config.new.config[:iface]).to_s
inj = PacketFu::Inject.new(:iface => iface)
inj.array = [@headers[0].to_s]
inj.inject
end
# Recalculates all the calcuated fields for all headers in the packet.
# This is important since read() wipes out all the calculated fields
# such as length and checksum and what all.
def recalc(arg=:all)
case arg
when :ip
ip_recalc(:all)
when :icmp
icmp_recalc(:all)
when :udp
udp_recalc(:all)
when :tcp
tcp_recalc(:all)
when :all
ip_recalc(:all) if @ip_header
icmp_recalc(:all) if @icmp_header
udp_recalc(:all) if @udp_header
tcp_recalc(:all) if @tcp_header
else
raise ArgumentError, "Recalculating `#{arg}' unsupported. Try :all"
end
@headers[0]
end
# Read() takes (and trusts) the io input and shoves it all into a well-formed Packet.
# Note that read is a destructive process, so any existing data will be lost.
#
# A note on the :strip => true argument: If :strip is set, defined lengths of data will
# be believed, and any trailers (such as frame check sequences) will be chopped off. This
# helps to ensure well-formed packets, at the cost of losing perhaps important FCS data.
#
# If :strip is false, header lengths are /not/ believed, and all data will be piped in.
# When capturing from the wire, this is usually fine, but recalculating the length before
# saving or re-transmitting will absolutely change the data payload; FCS data will become
# part of the TCP data as far as tcp_len is concerned. Some effort has been made to preserve
# the "real" payload for the purposes of checksums, but currently, it's impossible to seperate
# new payload data from old trailers, so things like pkt.payload += "some data" will not work
# correctly.
#
# So, to summarize; if you intend to alter the data, use :strip. If you don't, don't. Also,
# this is a horrid hack. Stripping is useful (and fun!), but the default behavior really
# should be to create payloads correctly, and /not/ treat extra FCS data as a payload.
#
# Finally, packet subclasses should take two arguments: the string that is the data
# to be transmuted into a packet, as well as args. This superclass method is merely
# concerned with handling args common to many packet formats (namely, fixing packets
# on the fly)
def read(args={})
if args[:fix] || args[:recalc]
ip_recalc(:ip_sum) if self.is_ip?
recalc(:tcp) if self.is_tcp?
recalc(:udp) if self.is_udp?
end
end
# Packets are bundles of lots of objects, so copying them
# is a little complicated -- a dup of a packet is actually
# full of pass-by-reference stuff in the @headers, so
# if you change one, you're changing all this copies, too.
#
# Normally, this doesn't seem to be a big deal, and it's
# a pretty decent performance tradeoff. But, if you're going
# to be creating a template packet to base a bunch of slightly
# different ones off of (like a fuzzer might), you'll want
# to use clone()
def clone
Packet.parse(self.to_s)
end
# If two packets are represented as the same binary string, and
# they're both actually PacketFu packets of the same sort, they're equal.
#
# The intuitive result is that a packet of a higher layer (like DNSPacket)
# can be equal to a packet of a lower level (like UDPPacket) as long as
# the bytes are equal (this can come up if a transport-layer packet has
# a hand-crafted payload that is identical to what would have been created
# by using an application layer packet)
def ==(other)
return false unless other.kind_of? self.class
return false unless other.respond_to? :to_s
self.to_s == other.to_s
end
# Peek provides summary data on packet contents.
#
# Each packet type should provide a peek_format.
def peek(args={})
idx = @headers.reverse.map {|h| h.respond_to? peek_format}.index(true)
if idx
@headers.reverse[idx].peek_format
else
peek_format
end
end
# The peek_format is used to display a single line
# of packet data useful for eyeballing. It should not exceed
# 80 characters. The Packet superclass defines an example
# peek_format, but it should hardly ever be triggered, since
# peek traverses the @header list in reverse to find a suitable
# format.
#
# === Format
#
# * A one or two character protocol initial. It should be unique
# * The packet size
# * Useful data in a human-usable form.
#
# Ideally, related peek_formats will all line up with each other
# when printed to the screen.
#
# === Example
#
# tcp_packet.peek
# #=> "T 1054 10.10.10.105:55000 -> 192.168.145.105:80 [......] S:adc7155b|I:8dd0"
# tcp_packet.peek.size
# #=> 79
#
def peek_format
peek_data = ["? "]
peek_data << "%-5d" % self.to_s.size
peek_data << "%68s" % self.to_s[0,34].unpack("H*")[0]
peek_data.join
end
# Defines the layer this packet type lives at, based on the number of headers it
# requires. Note that this has little to do with the OSI model, since TCP/IP
# doesn't really have Session and Presentation layers.
#
# Ethernet and the like are layer 1, IP, IPv6, and ARP are layer 2,
# TCP, UDP, and other transport protocols are layer 3, and application
# protocols are at layer 4 or higher. InvalidPackets have an arbitrary
# layer 0 to distinguish them.
#
# Because these don't change much, it's cheaper just to case through them,
# and only resort to counting headers if we don't have a match -- this
# makes adding protocols somewhat easier, but of course you can just
# override this method over there, too. This is merely optimized
# for the most likely protocols you see on the Internet.
def self.layer
case self.name # Lol ran into case's fancy treatment of classes
when /InvalidPacket$/; 0
when /EthPacket$/; 1
when /IPPacket$/, /ARPPacket$/, /IPv6Packet$/; 2
when /TCPPacket$/, /UDPPacket$/, /ICMPPacket$/; 3
when /HSRPPacket$/; 4
else; self.new.headers.size
end
end
def layer
self.class.layer
end
def self.layer_symbol
case self.layer
when 0; :invalid
when 1; :link
when 2; :internet
when 3; :transport
else; :application
end
end
def layer_symbol
self.class.layer_symbol
end
# Packet subclasses must override this, since the Packet superclass
# can't actually parse anything.
def self.can_parse?(str)
false
end
# Hexify provides a neatly-formatted dump of binary data, familar to hex readers.
def hexify(str)
str.force_encoding("ASCII-8BIT") if str.respond_to? :force_encoding
hexascii_lines = str.to_s.unpack("H*")[0].scan(/.{1,32}/)
regex = Regexp.new('[\x00-\x1f\x7f-\xff]', nil, 'n')
chars = str.to_s.gsub(regex,'.')
chars_lines = chars.scan(/.{1,16}/)
ret = []
hexascii_lines.size.times {|i| ret << "%-48s %s" % [hexascii_lines[i].gsub(/(.{2})/,"\\1 "),chars_lines[i]]}
ret.join("\n")
end
# If @inspect_style is :default (or :ugly), the inspect output is the usual
# inspect.
#
# If @inspect_style is :hex (or :pretty), the inspect output is
# a much more compact hexdump-style, with a shortened set of packet header
# names at the top.
#
# If @inspect_style is :dissect (or :verbose), the inspect output is the
# longer, but more readable, dissection of the packet. This is the default.
#
# TODO: Have an option for colors. Everyone loves colorized irb output.
def inspect_hex(arg=0)
case arg
when :layers
ret = []
@headers.size.times do |i|
ret << hexify(@headers[i])
end
ret
when (0..9)
if @headers[arg]
hexify(@headers[arg])
else
nil
end
when :all
inspect_hex(0)
end
end
def dissection_table
table = []
@headers.each_with_index do |header,table_idx|
proto = header.class.name.sub(/^.*::/,"")
table << [proto,[]]
header.class.members.each do |elem|
elem_sym = elem.to_sym # to_sym needed for 1.8
next if elem_sym == :body
elem_type_value = []
elem_type_value[0] = elem
readable_element = "#{elem}_readable"
if header.respond_to? readable_element
elem_type_value[1] = header.send(readable_element)
else
elem_type_value[1] = header.send(elem)
end
elem_type_value[2] = header[elem.to_sym].class.name
table[table_idx][1] << elem_type_value
end
end
table
if @headers.last.members.map {|x| x.to_sym }.include? :body
body_part = [:body, self.payload, @headers.last.body.class.name]
end
table << body_part
end
# Renders the dissection_table suitable for screen printing. Can take
# one or two arguments. If just the one, only that layer will be displayed
# take either a range or a number -- if a range, only protos within
# that range will be rendered. If an integer, only that proto
# will be rendered.
def dissect
dtable = self.dissection_table
hex_body = nil
if dtable.last.kind_of?(Array) and dtable.last.first == :body
body = dtable.pop
hex_body = hexify(body[1])
end
elem_widths = [0,0,0]
dtable.each do |proto_table|
proto_table[1].each do |elems|
elems.each_with_index do |e,i|
width = e.size
elem_widths[i] = width if width > elem_widths[i]
end
end
end
total_width = elem_widths.inject(0) {|sum,x| sum+x}
table = ""
dtable.each do |proto|
table << "--"
table << proto[0]
if total_width > proto[0].size
table << ("-" * (total_width - proto[0].size + 2))
else
table << ("-" * (total_width + 2))
end
table << "\n"
proto[1].each do |elems|
table << " "
elems_table = []
(0..2).each do |i|
elems_table << ("%-#{elem_widths[i]}s" % elems[i])
end
table << elems_table.join("\s")
table << "\n"
end
end
if hex_body && !hex_body.empty?
table << "-" * 66
table << "\n"
table << "00-01-02-03-04-05-06-07-08-09-0a-0b-0c-0d-0e-0f---0123456789abcdef\n"
table << "-" * 66
table << "\n"
table << hex_body
end
table
end
alias :orig_kind_of? :kind_of?
def kind_of?(klass)
return true if orig_kind_of? klass
packet_types = proto.map {|p| PacketFu.const_get("#{p}Packet")}
match = false
packet_types.each do |p|
if p.ancestors.include? klass
match = true
break
end
end
return match
end
# For packets, inspect is overloaded as inspect_hex(0).
# Not sure if this is a great idea yet, but it sure makes
# the irb output more sane.
#
# If you hate this, you can run PacketFu.toggle_inspect to return
# to the typical (and often unreadable) Object#inspect format.
def inspect
case @inspect_style
when :dissect
self.dissect
when :hex
self.proto.join("|") + "\n" + self.inspect_hex
else
super
end
end
# Returns the size of the packet (as a binary string)
def size
self.to_s.size
end
# Returns an array of protocols contained in this packet. For example:
#
# t = PacketFu::TCPPacket.new
# => 00 1a c5 00 00 00 00 1a c5 00 00 00 08 00 45 00 ..............E.
# 00 28 3c ab 00 00 ff 06 7f 25 00 00 00 00 00 00 .(<......%......
# 00 00 93 5e 00 00 ad 4f e4 a4 00 00 00 00 50 00 ...^...O......P.
# 40 00 4a 92 00 00 @.J...
# t.proto
# => ["Eth", "IP", "TCP"]
#
def proto
type_array = []
self.headers.each {|header| type_array << header.class.to_s.split('::').last.gsub(/Header$/,'')}
type_array
end
alias_method :protocol, :proto
alias_method :length, :size
# the Packet class should not be instantiated directly, since it's an
# abstract class that real packet types inherit from. Sadly, this
# makes the Packet class more difficult to test directly.
def initialize(args={})
if self.class.name =~ /(::|^)PacketFu::Packet$/
raise NoMethodError, "method `new' called for abstract class #{self.class.name}"
end
@inspect_style = args[:inspect_style] || PacketFu.inspect_style || :dissect
if args[:config]
args[:config].each_pair do |k,v|
case k
when :eth_daddr; @eth_header.eth_daddr=v if @eth_header
when :eth_saddr; @eth_header.eth_saddr=v if @eth_header
when :ip_saddr; @ip_header.ip_saddr=v if @ip_header
when :iface; @iface = v
end
end
end
end
# Delegate to PacketFu's inspect_style, since the
# class variable name is the same. Yay for namespace
# pollution!
def inspect_style=()
PacketFu.inspect_style(arg)
end
#method_missing() delegates protocol-specific field actions to the apporpraite
#class variable (which contains the associated packet type)
#This register-of-protocols style switch will work for the
#forseeable future (there aren't /that/ many packet types), and it's a handy
#way to know at a glance what packet types are supported.
def method_missing(sym, *args, &block)
case sym.to_s
when /^is_([a-zA-Z0-9]+)\?/
ptype = $1
if PacketFu.packet_prefixes.index(ptype)
self.send(:handle_is_identity, $1)
else
super
end
when /^([a-zA-Z0-9]+)_.+/
ptype = $1
if PacketFu.packet_prefixes.index(ptype)
self.instance_variable_get("@#{ptype}_header").send(sym,*args, &block)
else
super
end
else
super
end
end
def respond_to?(sym, include_private = false)
if sym.to_s =~ /^(invalid|eth|arp|ip|icmp|udp|hsrp|tcp|ipv6)_/
self.instance_variable_get("@#{$1}_header").respond_to? sym
elsif sym.to_s =~ /^is_([a-zA-Z0-9]+)\?/
if PacketFu.packet_prefixes.index($1)
true
else
super
end
else
super
end
end
end # class Packet
end
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,611 +0,0 @@
#!/usr/bin/env ruby
# -*- coding: binary -*-
module StructFu
# Set the endianness for the various Int classes. Takes either :little or :big.
def set_endianness(e=nil)
unless [:little, :big].include? e
raise ArgumentError, "Unknown endianness for #{self.class}"
end
@int32 = e == :little ? Int32le : Int32be
@int16 = e == :little ? Int16le : Int16be
return e
end
# Instead of returning the "size" of the object, which is usually the
# number of elements of the Struct, returns the size of the object after
# a to_s. Essentially, a short version of self.to_size.size
def sz
self.to_s.size
end
end
module PacketFu
# PcapHeader represents the header portion of a libpcap file (the packets
# themselves are in the PcapPackets array). See
# http://wiki.wireshark.org/Development/LibpcapFileFormat for details.
#
# Depending on the endianness (set with :endian), elements are either
# :little endian or :big endian.
#
# ==== PcapHeader Definition
#
# Symbol :endian Default: :little
# Int32 :magic Default: 0xa1b2c3d4 # :big is 0xd4c3b2a1
# Int16 :ver_major Default: 2
# Int16 :ver_minor Default: 4
# Int32 :thiszone
# Int32 :sigfigs
# Int32 :snaplen Default: 0xffff
# Int32 :network Default: 1
class PcapHeader < Struct.new(:endian, :magic, :ver_major, :ver_minor,
:thiszone, :sigfigs, :snaplen, :network)
include StructFu
MAGIC_INT32 = 0xa1b2c3d4
MAGIC_LITTLE = [MAGIC_INT32].pack("V")
MAGIC_BIG = [MAGIC_INT32].pack("N")
def initialize(args={})
set_endianness(args[:endian] ||= :little)
init_fields(args)
super(args[:endian], args[:magic], args[:ver_major],
args[:ver_minor], args[:thiszone], args[:sigfigs],
args[:snaplen], args[:network])
end
# Called by initialize to set the initial fields.
def init_fields(args={})
args[:magic] = @int32.new(args[:magic] || PcapHeader::MAGIC_INT32)
args[:ver_major] = @int16.new(args[:ver_major] || 2)
args[:ver_minor] ||= @int16.new(args[:ver_minor] || 4)
args[:thiszone] ||= @int32.new(args[:thiszone])
args[:sigfigs] ||= @int32.new(args[:sigfigs])
args[:snaplen] ||= @int32.new(args[:snaplen] || 0xffff)
args[:network] ||= @int32.new(args[:network] || 1)
return args
end
# Returns the object in string form.
def to_s
self.to_a[1,7].map {|x| x.to_s}.join
end
# Reads a string to populate the object.
# TODO: Need to test this by getting a hold of a big endian pcap file.
# Conversion from big to little shouldn't be that big of a deal.
def read(str)
force_binary(str)
return self if str.nil?
str.force_encoding("binary") if str.respond_to? :force_encoding
if str[0,4] == self[:magic].to_s
self[:magic].read str[0,4]
self[:ver_major].read str[4,2]
self[:ver_minor].read str[6,2]
self[:thiszone].read str[8,4]
self[:sigfigs].read str[12,4]
self[:snaplen].read str[16,4]
self[:network].read str[20,4]
else
raise "Incorrect magic for libpcap"
end
self
end
end
# The Timestamp class defines how Timestamps appear in libpcap files.
#
# ==== Header Definition
#
# Symbol :endian Default: :little
# Int32 :sec
# Int32 :usec
class Timestamp < Struct.new(:endian, :sec, :usec)
include StructFu
def initialize(args={})
set_endianness(args[:endian] ||= :little)
init_fields(args)
super(args[:endian], args[:sec], args[:usec])
end
# Called by initialize to set the initial fields.
def init_fields(args={})
args[:sec] = @int32.new(args[:sec])
args[:usec] = @int32.new(args[:usec])
return args
end
# Returns the object in string form.
def to_s
self.to_a[1,2].map {|x| x.to_s}.join
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:sec].read str[0,4]
self[:usec].read str[4,4]
self
end
end
# PcapPacket defines how individual packets are stored in a libpcap-formatted
# file.
#
# ==== Header Definition
#
# Timestamp :timestamp
# Int32 :incl_len
# Int32 :orig_len
# String :data
class PcapPacket < Struct.new(:endian, :timestamp, :incl_len,
:orig_len, :data)
include StructFu
def initialize(args={})
set_endianness(args[:endian] ||= :little)
init_fields(args)
super(args[:endian], args[:timestamp], args[:incl_len],
args[:orig_len], args[:data])
end
# Called by initialize to set the initial fields.
def init_fields(args={})
args[:timestamp] = Timestamp.new(:endian => args[:endian]).read(args[:timestamp])
args[:incl_len] = args[:incl_len].nil? ? @int32.new(args[:data].to_s.size) : @int32.new(args[:incl_len])
args[:orig_len] = @int32.new(args[:orig_len])
args[:data] = StructFu::String.new.read(args[:data])
end
# Returns the object in string form.
def to_s
self.to_a[1,4].map {|x| x.to_s}.join
end
# Reads a string to populate the object.
def read(str)
return unless str
force_binary(str)
self[:timestamp].read str[0,8]
self[:incl_len].read str[8,4]
self[:orig_len].read str[12,4]
self[:data].read str[16,self[:incl_len].to_i]
self
end
end
# PcapPackets is a collection of PcapPacket objects.
class PcapPackets < Array
include StructFu
attr_accessor :endian # probably ought to be read-only but who am i.
def initialize(args={})
@endian = args[:endian] || :little
end
def force_binary(str)
str.force_encoding "binary" if str.respond_to? :force_encoding
end
# Reads a string to populate the object. Note, this read takes in the
# whole pcap file, since we need to see the magic to know what
# endianness we're dealing with.
def read(str)
force_binary(str)
return self if str.nil?
if str[0,4] == PcapHeader::MAGIC_BIG
@endian = :big
elsif str[0,4] == PcapHeader::MAGIC_LITTLE
@endian = :little
else
raise ArgumentError, "Unknown file format for #{self.class}"
end
body = str[24,str.size]
while body.size > 16 # TODO: catch exceptions on malformed packets at end
p = PcapPacket.new(:endian => @endian)
p.read(body)
self<<p
body = body[p.sz,body.size]
end
self
end
def to_s
self.join
end
end
# PcapFile is a complete libpcap file struct, made up of two elements, a
# PcapHeader and PcapPackets.
#
# See http://wiki.wireshark.org/Development/LibpcapFileFormat
#
# PcapFile also can behave as a singleton class, which is usually the better
# way to handle pcap files of really any size, since it doesn't require
# storing packets before handing them off to a given block. This is really
# the way to go.
class PcapFile < Struct.new(:endian, :head, :body)
include StructFu
class << self
# Takes a given file and returns an array of the packet bytes. Here
# for backwards compatibilty.
def file_to_array(fname)
PcapFile.new.file_to_array(:f => fname)
end
# Takes a given file name, and reads out the packets. If given a block,
# it will yield back a PcapPacket object per packet found.
def read(fname,&block)
file_header = PcapHeader.new
pcap_packets = PcapPackets.new
unless File.readable? fname
raise ArgumentError, "Cannot read file `#{fname}'"
end
begin
file_handle = File.open(fname, "rb")
file_header.read file_handle.read(24)
packet_count = 0
pcap_packet = PcapPacket.new(:endian => file_header.endian)
while pcap_packet.read file_handle.read(16) do
len = pcap_packet.incl_len
pcap_packet.data = StructFu::String.new.read(file_handle.read(len.to_i))
packet_count += 1
if pcap_packet.data.size < len.to_i
warn "Packet ##{packet_count} is corrupted: expected #{len.to_i}, got #{pcap_packet.data.size}. Exiting."
break
end
if block
yield pcap_packet
else
pcap_packets << pcap_packet.clone
end
end
ensure
file_handle.close
end
block ? packet_count : pcap_packets
end
# Takes a filename, and an optional block. If a block is given,
# yield back the raw packet data from the given file. Otherwise,
# return an array of parsed packets.
def read_packet_bytes(fname,&block)
count = 0
packets = [] unless block
read(fname) do |packet|
if block
count += 1
yield packet.data.to_s
else
packets << packet.data.to_s
end
end
block ? count : packets
end
alias :file_to_array :read_packet_bytes
# Takes a filename, and an optional block. If a block is given,
# yield back parsed packets from the given file. Otherwise, return
# an array of parsed packets.
#
# This is a brazillian times faster than the old methods of extracting
# packets from files.
def read_packets(fname,&block)
count = 0
packets = [] unless block
read_packet_bytes(fname) do |packet|
if block
count += 1
yield Packet.parse(packet)
else
packets << Packet.parse(packet)
end
end
block ? count : packets
end
end
def initialize(args={})
init_fields(args)
@filename = args.delete :filename
super(args[:endian], args[:head], args[:body])
end
# Called by initialize to set the initial fields.
def init_fields(args={})
args[:head] = PcapHeader.new(:endian => args[:endian]).read(args[:head])
args[:body] = PcapPackets.new(:endian => args[:endian]).read(args[:body])
return args
end
# Returns the object in string form.
def to_s
self[:head].to_s + self[:body].map {|p| p.to_s}.join
end
# Clears the contents of the PcapFile.
def clear
self[:body].clear
end
# Reads a string to populate the object. Note that this appends new packets to
# any existing packets in the PcapFile.
def read(str)
force_binary(str)
self[:head].read str[0,24]
self[:body].read str
self
end
# Clears the contents of the PcapFile prior to reading in a new string.
def read!(str)
clear
force_binary(str)
self.read str
end
# A shorthand method for opening a file and reading in the packets. Note
# that readfile clears any existing packets, since that seems to be the
# typical use.
def readfile(file)
fdata = File.open(file, "rb") {|f| f.read}
self.read! fdata
end
# Calls the class method with this object's @filename
def read_packet_bytes(fname=@filename,&block)
raise ArgumentError, "Need a file" unless fname
return self.class.read_packet_bytes(fname, &block)
end
# Calls the class method with this object's @filename
def read_packets(fname=@filename,&block)
raise ArgumentError, "Need a file" unless fname
return self.class.read_packets(fname, &block)
end
# file_to_array() translates a libpcap file into an array of packets.
# Note that this strips out pcap timestamps -- if you'd like to retain
# timestamps and other libpcap file information, you will want to
# use read() instead.
def file_to_array(args={})
filename = args[:filename] || args[:file] || args[:f]
if filename
self.read! File.open(filename, "rb") {|f| f.read}
end
if args[:keep_timestamps] || args[:keep_ts] || args[:ts]
self[:body].map {|x| {x.timestamp.to_s => x.data.to_s} }
else
self[:body].map {|x| x.data.to_s}
end
end
alias_method :f2a, :file_to_array
# Takes an array of packets (as generated by file_to_array), and writes them
# to a file. Valid arguments are:
#
# :filename
# :array # Can either be an array of packet data, or a hash-value pair of timestamp => data.
# :timestamp # Sets an initial timestamp
# :ts_inc # Sets the increment between timestamps. Defaults to 1 second.
# :append # If true, then the packets are appended to the end of a file.
def array_to_file(args={})
if args.kind_of? Hash
filename = args[:filename] || args[:file] || args[:f]
arr = args[:array] || args[:arr] || args[:a]
ts = args[:timestamp] || args[:ts] || Time.now.to_i
ts_inc = args[:timestamp_increment] || args[:ts_inc] || 1
append = !!args[:append]
elsif args.kind_of? Array
arr = args
filename = append = nil
else
raise ArgumentError, "Unknown argument. Need either a Hash or Array."
end
unless arr.kind_of? Array
raise ArgumentError, "Need an array to read packets from"
end
arr.each_with_index do |p,i|
if p.kind_of? Hash # Binary timestamps are included
this_ts = p.keys.first
this_incl_len = p.values.first.size
this_orig_len = this_incl_len
this_data = p.values.first
else # it's an array
this_ts = Timestamp.new(:endian => self[:endian], :sec => ts + (ts_inc * i)).to_s
this_incl_len = p.to_s.size
this_orig_len = this_incl_len
this_data = p.to_s
end
this_pkt = PcapPacket.new({:endian => self[:endian],
:timestamp => this_ts,
:incl_len => this_incl_len,
:orig_len => this_orig_len,
:data => this_data }
)
self[:body] << this_pkt
end
if filename
self.to_f(:filename => filename, :append => append)
else
self
end
end
alias_method :a2f, :array_to_file
# Just like array_to_file, but clears any existing packets from the array first.
def array_to_file!(arr)
clear
array_to_file(arr)
end
alias_method :a2f!, :array_to_file!
# Writes the PcapFile to a file. Takes the following arguments:
#
# :filename # The file to write to.
# :append # If set to true, the packets are appended to the file, rather than overwriting.
def to_file(args={})
filename = args[:filename] || args[:file] || args[:f]
unless (!filename.nil? || filename.kind_of?(String))
raise ArgumentError, "Need a :filename for #{self.class}"
end
append = args[:append]
if append
if File.exists? filename
File.open(filename,'ab') {|file| file.write(self.body.to_s)}
else
File.open(filename,'wb') {|file| file.write(self.to_s)}
end
else
File.open(filename,'wb') {|file| file.write(self.to_s)}
end
[filename, self.body.sz, self.body.size]
end
alias_method :to_f, :to_file
# Shorthand method for writing to a file. Can take either :file => 'name.pcap' or
# simply 'name.pcap'
def write(filename='out.pcap')
if filename.kind_of?(Hash)
f = filename[:filename] || filename[:file] || filename[:f] || 'out.pcap'
else
f = filename.to_s
end
self.to_file(:filename => f.to_s, :append => false)
end
# Shorthand method for appending to a file. Can take either :file => 'name.pcap' or
# simply 'name.pcap'
def append(filename='out.pcap')
if filename.kind_of?(Hash)
f = filename[:filename] || filename[:file] || filename[:f] || 'out.pcap'
else
f = filename.to_s
end
self.to_file(:filename => f, :append => true)
end
end
end
module PacketFu
# Read is largely deprecated. It was current in PacketFu 0.2.0, but isn't all that useful
# in 0.3.0 and beyond. Expect it to go away completely by version 1.0. So, the main use
# of this class is to learn how to do exactly the same things using the PcapFile object.
class Read
class << self
# Reads the magic string of a pcap file, and determines
# if it's :little or :big endian.
def get_byte_order(pcap_file)
byte_order = ((pcap_file[0,4] == PcapHeader::MAGIC_LITTLE) ? :little : :big)
return byte_order
end
# set_byte_order is pretty much totally deprecated.
def set_byte_order(byte_order)
PacketFu.instance_variable_set(:@byte_order,byte_order)
return true
end
# A wrapper for PcapFile#file_to_array, but only returns the array. Actually
# using the PcapFile object is going to be more useful.
def file_to_array(args={})
filename = args[:filename] || args[:file] || args[:out]
raise ArgumentError, "Need a :filename in string form to read from." if (filename.nil? || filename.class != String)
PcapFile.new.file_to_array(args)
end
alias_method :f2a, :file_to_array
end
end
end
module PacketFu
# Write is largely deprecated. It was current in PacketFu 0.2.0, but isn't all that useful
# in 0.3.0 and beyond. Expect it to go away completely by version 1.0, as working with
# PacketFu::PcapFile directly is generally going to be more rewarding.
class Write
class << self
# format_packets: Pretty much totally deprecated.
def format_packets(args={})
arr = args[:arr] || args[:array] || []
ts = args[:ts] || args[:timestamp] || Time.now.to_i
ts_inc = args[:ts_inc] || args[:timestamp_increment]
pkts = PcapFile.new.array_to_file(:endian => PacketFu.instance_variable_get(:@byte_order),
:arr => arr,
:ts => ts,
:ts_inc => ts_inc)
pkts.body
end
# array_to_file is a largely deprecated function for writing arrays of pcaps to a file.
# Use PcapFile#array_to_file instead.
def array_to_file(args={})
filename = args[:filename] || args[:file] || args[:out] || :nowrite
arr = args[:arr] || args[:array] || []
ts = args[:ts] || args[:timestamp] || args[:time_stamp] || Time.now.to_f
ts_inc = args[:ts_inc] || args[:timestamp_increment] || args[:time_stamp_increment]
byte_order = args[:byte_order] || args[:byteorder] || args[:endian] || args[:endianness] || :little
append = args[:append]
Read.set_byte_order(byte_order) if [:big, :little].include? byte_order
pf = PcapFile.new
pf.array_to_file(:endian => PacketFu.instance_variable_get(:@byte_order),
:arr => arr,
:ts => ts,
:ts_inc => ts_inc)
if filename && filename != :nowrite
if append
pf.append(filename)
else
pf.write(filename)
end
return [filename,pf.to_s.size,arr.size,ts,ts_inc]
else
return [nil,pf.to_s.size,arr.size,ts,ts_inc]
end
end
alias_method :a2f, :array_to_file
# Shorthand method for appending to a file. Also shouldn't use.
def append(args={})
array_to_file(args.merge(:append => true))
end
end
end
end
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,269 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# ARPHeader is a complete ARP struct, used in ARPPacket.
#
# ARP is used to discover the machine address of nearby devices.
#
# See http://www.networksorcery.com/enp/protocol/arp.htm for details.
#
# ==== Header Definition
#
# Int16 :arp_hw Default: 1 # Ethernet
# Int16 :arp_proto, Default: 0x8000 # IP
# Int8 :arp_hw_len, Default: 6
# Int8 :arp_proto_len, Default: 4
# Int16 :arp_opcode, Default: 1 # 1: Request, 2: Reply, 3: Request-Reverse, 4: Reply-Reverse
# EthMac :arp_src_mac # From eth.rb
# Octets :arp_src_ip # From ip.rb
# EthMac :arp_dst_mac # From eth.rb
# Octets :arp_dst_ip # From ip.rb
# String :body
class ARPHeader < Struct.new(:arp_hw, :arp_proto, :arp_hw_len,
:arp_proto_len, :arp_opcode,
:arp_src_mac, :arp_src_ip,
:arp_dst_mac, :arp_dst_ip,
:body)
include StructFu
def initialize(args={})
src_mac = args[:arp_src_mac] || (args[:config][:eth_src] if args[:config])
src_ip_bin = args[:arp_src_ip] || (args[:config][:ip_src_bin] if args[:config])
super(
Int16.new(args[:arp_hw] || 1),
Int16.new(args[:arp_proto] ||0x0800),
Int8.new(args[:arp_hw_len] || 6),
Int8.new(args[:arp_proto_len] || 4),
Int16.new(args[:arp_opcode] || 1),
EthMac.new.read(src_mac),
Octets.new.read(src_ip_bin),
EthMac.new.read(args[:arp_dst_mac]),
Octets.new.read(args[:arp_dst_ip]),
StructFu::String.new.read(args[:body])
)
end
# Returns the object in string form.
def to_s
self.to_a.map {|x| x.to_s}.join
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:arp_hw].read(str[0,2])
self[:arp_proto].read(str[2,2])
self[:arp_hw_len].read(str[4,1])
self[:arp_proto_len].read(str[5,1])
self[:arp_opcode].read(str[6,2])
self[:arp_src_mac].read(str[8,6])
self[:arp_src_ip].read(str[14,4])
self[:arp_dst_mac].read(str[18,6])
self[:arp_dst_ip].read(str[24,4])
self[:body].read(str[28,str.size])
self
end
# Setter for the ARP hardware type.
def arp_hw=(i); typecast i; end
# Getter for the ARP hardware type.
def arp_hw; self[:arp_hw].to_i; end
# Setter for the ARP protocol.
def arp_proto=(i); typecast i; end
# Getter for the ARP protocol.
def arp_proto; self[:arp_proto].to_i; end
# Setter for the ARP hardware type length.
def arp_hw_len=(i); typecast i; end
# Getter for the ARP hardware type length.
def arp_hw_len; self[:arp_hw_len].to_i; end
# Setter for the ARP protocol length.
def arp_proto_len=(i); typecast i; end
# Getter for the ARP protocol length.
def arp_proto_len; self[:arp_proto_len].to_i; end
# Setter for the ARP opcode.
def arp_opcode=(i); typecast i; end
# Getter for the ARP opcode.
def arp_opcode; self[:arp_opcode].to_i; end
# Setter for the ARP source MAC address.
def arp_src_mac=(i); typecast i; end
# Getter for the ARP source MAC address.
def arp_src_mac; self[:arp_src_mac].to_s; end
# Getter for the ARP source IP address.
def arp_src_ip=(i); typecast i; end
# Setter for the ARP source IP address.
def arp_src_ip; self[:arp_src_ip].to_s; end
# Setter for the ARP destination MAC address.
def arp_dst_mac=(i); typecast i; end
# Setter for the ARP destination MAC address.
def arp_dst_mac; self[:arp_dst_mac].to_s; end
# Setter for the ARP destination IP address.
def arp_dst_ip=(i); typecast i; end
# Getter for the ARP destination IP address.
def arp_dst_ip; self[:arp_dst_ip].to_s; end
# Set the source MAC address in a more readable way.
def arp_saddr_mac=(mac)
mac = EthHeader.mac2str(mac)
self[:arp_src_mac].read(mac)
self.arp_src_mac
end
# Get a more readable source MAC address.
def arp_saddr_mac
EthHeader.str2mac(self[:arp_src_mac].to_s)
end
# Set the destination MAC address in a more readable way.
def arp_daddr_mac=(mac)
mac = EthHeader.mac2str(mac)
self[:arp_dst_mac].read(mac)
self.arp_dst_mac
end
# Get a more readable source MAC address.
def arp_daddr_mac
EthHeader.str2mac(self[:arp_dst_mac].to_s)
end
# Set a more readable source IP address.
def arp_saddr_ip=(addr)
self[:arp_src_ip].read_quad(addr)
end
# Get a more readable source IP address.
def arp_saddr_ip
self[:arp_src_ip].to_x
end
# Set a more readable destination IP address.
def arp_daddr_ip=(addr)
self[:arp_dst_ip].read_quad(addr)
end
# Get a more readable destination IP address.
def arp_daddr_ip
self[:arp_dst_ip].to_x
end
# Readability aliases
alias :arp_src_mac_readable :arp_saddr_mac
alias :arp_dst_mac_readable :arp_daddr_mac
alias :arp_src_ip_readable :arp_saddr_ip
alias :arp_dst_ip_readable :arp_daddr_ip
def arp_proto_readable
"0x%04x" % arp_proto
end
end # class ARPHeader
# ARPPacket is used to construct ARP packets. They contain an EthHeader and an ARPHeader.
# == Example
#
# require 'packetfu'
# arp_pkt = PacketFu::ARPPacket.new(:flavor => "Windows")
# arp_pkt.arp_saddr_mac="00:1c:23:44:55:66" # Your hardware address
# arp_pkt.arp_saddr_ip="10.10.10.17" # Your IP address
# arp_pkt.arp_daddr_ip="10.10.10.1" # Target IP address
# arp_pkt.arp_opcode=1 # Request
#
# arp_pkt.to_w('eth0') # Inject on the wire. (requires root)
# arp_pkt.to_f('/tmp/arp.pcap') # Write to a file.
#
# == Parameters
#
# :flavor
# Sets the "flavor" of the ARP packet. Choices are currently:
# :windows, :linux, :hp_deskjet
# :eth
# A pre-generated EthHeader object. If not specified, a new one will be created.
# :arp
# A pre-generated ARPHeader object. If not specificed, a new one will be created.
# :config
# A hash of return address details, often the output of Utils.whoami?
class ARPPacket < Packet
attr_accessor :eth_header, :arp_header
def self.can_parse?(str)
return false unless EthPacket.can_parse? str
return false unless str.size >= 28
return false unless str[12,2] == "\x08\x06"
true
end
def read(str=nil,args={})
raise "Cannot parse `#{str}'" unless self.class.can_parse?(str)
@eth_header.read(str)
@arp_header.read(str[14,str.size])
@eth_header.body = @arp_header
super(args)
self
end
def initialize(args={})
@eth_header = EthHeader.new(args).read(args[:eth])
@arp_header = ARPHeader.new(args).read(args[:arp])
@eth_header.eth_proto = "\x08\x06"
@eth_header.body=@arp_header
# Please send more flavors to todb+packetfu@planb-security.net.
# Most of these initial fingerprints come from one (1) sample.
case (args[:flavor].nil?) ? :nil : args[:flavor].to_s.downcase.intern
when :windows; @arp_header.body = "\x00" * 64 # 64 bytes of padding
when :linux; @arp_header.body = "\x00" * 4 + # 32 bytes of padding
"\x00\x07\x5c\x14" + "\x00" * 4 +
"\x00\x0f\x83\x34" + "\x00\x0f\x83\x74" +
"\x01\x11\x83\x78" + "\x00\x00\x00\x0c" +
"\x00\x00\x00\x00"
when :hp_deskjet; # Pads up to 60 bytes.
@arp_header.body = "\xe0\x90\x0d\x6c" +
"\xff\xff\xee\xee" + "\x00" * 4 +
"\xe0\x8f\xfa\x18\x00\x20"
else; @arp_header.body = "\x00" * 18 # Pads up to 60 bytes.
end
@headers = [@eth_header, @arp_header]
super
end
# Generates summary data for ARP packets.
def peek_format
peek_data = ["A "]
peek_data << "%-5d" % self.to_s.size
peek_data << arp_saddr_mac
peek_data << "(#{arp_saddr_ip})"
peek_data << "->"
peek_data << case arp_daddr_mac
when "00:00:00:00:00:00"; "Bcast00"
when "ff:ff:ff:ff:ff:ff"; "BcastFF"
else; arp_daddr_mac
end
peek_data << "(#{arp_daddr_ip})"
peek_data << ":"
peek_data << case arp_opcode
when 1; "Requ"
when 2; "Repl"
when 3; "RReq"
when 4; "RRpl"
when 5; "IReq"
when 6; "IRpl"
else; "0x%02x" % arp_opcode
end
peek_data.join
end
# While there are lengths in ARPPackets, there's not
# much to do with them.
def recalc(args={})
@headers[0].inspect
end
end
end
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,297 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# EthOui is the Organizationally Unique Identifier portion of a MAC address, used in EthHeader.
#
# See the OUI list at http://standards.ieee.org/regauth/oui/oui.txt
#
# ==== Header Definition
#
# Fixnum :b0
# Fixnum :b1
# Fixnum :b2
# Fixnum :b3
# Fixnum :b4
# Fixnum :b5
# Fixnum :local
# Fixnum :multicast
# Int16 :oui, Default: 0x1ac5 :)
class EthOui < Struct.new(:b5, :b4, :b3, :b2, :b1, :b0, :local, :multicast, :oui)
# EthOui is unusual in that the bit values do not enjoy StructFu typing.
def initialize(args={})
args[:local] ||= 0
args[:oui] ||= 0x1ac # :)
args.each_pair {|k,v| args[k] = 0 unless v}
super(args[:b5], args[:b4], args[:b3], args[:b2],
args[:b1], args[:b0], args[:local], args[:multicast],
args[:oui])
end
# Returns the object in string form.
def to_s
byte = 0
byte += 0b10000000 if b5.to_i == 1
byte += 0b01000000 if b4.to_i == 1
byte += 0b00100000 if b3.to_i == 1
byte += 0b00010000 if b2.to_i == 1
byte += 0b00001000 if b1.to_i == 1
byte += 0b00000100 if b0.to_i == 1
byte += 0b00000010 if local.to_i == 1
byte += 0b00000001 if multicast.to_i == 1
[byte,oui].pack("Cn")
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
if 1.respond_to? :ord
byte = str[0].ord
else
byte = str[0]
end
self[:b5] = byte & 0b10000000 == 0b10000000 ? 1 : 0
self[:b4] = byte & 0b01000000 == 0b01000000 ? 1 : 0
self[:b3] = byte & 0b00100000 == 0b00100000 ? 1 : 0
self[:b2] = byte & 0b00010000 == 0b00010000 ? 1 : 0
self[:b1] = byte & 0b00001000 == 0b00001000 ? 1 : 0
self[:b0] = byte & 0b00000100 == 0b00000100 ? 1 : 0
self[:local] = byte & 0b00000010 == 0b00000010 ? 1 : 0
self[:multicast] = byte & 0b00000001 == 0b00000001 ? 1 : 0
self[:oui] = str[1,2].unpack("n").first
self
end
end
# EthNic is the Network Interface Controler portion of a MAC address, used in EthHeader.
#
# ==== Header Definition
#
# Fixnum :n1
# Fixnum :n2
# Fixnum :n3
#
class EthNic < Struct.new(:n0, :n1, :n2)
# EthNic does not enjoy StructFu typing.
def initialize(args={})
args.each_pair {|k,v| args[k] = 0 unless v}
super(args[:n0], args[:n1], args[:n2])
end
# Returns the object in string form.
def to_s
[n0,n1,n2].map {|x| x.to_i}.pack("C3")
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:n0], self[:n1], self[:n2] = str[0,3].unpack("C3")
self
end
end
# EthMac is the combination of an EthOui and EthNic, used in EthHeader.
#
# ==== Header Definition
#
# EthOui :oui # See EthOui
# EthNic :nic # See EthNic
class EthMac < Struct.new(:oui, :nic)
def initialize(args={})
super(
EthOui.new.read(args[:oui]),
EthNic.new.read(args[:nic]))
end
# Returns the object in string form.
def to_s
"#{self[:oui]}#{self[:nic]}"
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self.oui.read str[0,3]
self.nic.read str[3,3]
self
end
end
# EthHeader is a complete Ethernet struct, used in EthPacket.
# It's the base header for all other protocols, such as IPHeader,
# TCPHeader, etc.
#
# For more on the construction on MAC addresses, see
# http://en.wikipedia.org/wiki/MAC_address
#
# TODO: Need to come up with a good way of dealing with vlan
# tagging. Having a usually empty struct member seems weird,
# but there may not be another way to do it if I want to preserve
# the Eth-ness of vlan-tagged 802.1Q packets. Also, may as well
# deal with 0x88a8 as well (http://en.wikipedia.org/wiki/802.1ad)
#
# ==== Header Definition
#
# EthMac :eth_dst # See EthMac
# EthMac :eth_src # See EthMac
# Int16 :eth_proto, Default: 0x8000 # IP 0x0800, Arp 0x0806
# String :body
class EthHeader < Struct.new(:eth_dst, :eth_src, :eth_proto, :body)
include StructFu
def initialize(args={})
super(
EthMac.new.read(args[:eth_dst]),
EthMac.new.read(args[:eth_src]),
Int16.new(args[:eth_proto] || 0x0800),
StructFu::String.new.read(args[:body])
)
end
# Setter for the Ethernet destination address.
def eth_dst=(i); typecast(i); end
# Getter for the Ethernet destination address.
def eth_dst; self[:eth_dst].to_s; end
# Setter for the Ethernet source address.
def eth_src=(i); typecast(i); end
# Getter for the Ethernet source address.
def eth_src; self[:eth_src].to_s; end
# Setter for the Ethernet protocol number.
def eth_proto=(i); typecast(i); end
# Getter for the Ethernet protocol number.
def eth_proto; self[:eth_proto].to_i; end
# Returns the object in string form.
def to_s
self.to_a.map {|x| x.to_s}.join
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:eth_dst].read str[0,6]
self[:eth_src].read str[6,6]
self[:eth_proto].read str[12,2]
self[:body].read str[14,str.size]
self
end
# Converts a readable MAC (11:22:33:44:55:66) to a binary string.
# Readable MAC's may be split on colons, dots, spaces, or underscores.
#
# irb> PacketFu::EthHeader.mac2str("11:22:33:44:55:66")
#
# #=> "\021\"3DUf"
def self.mac2str(mac)
if mac.split(/[:\x2d\x2e\x5f]+/).size == 6
ret = mac.split(/[:\x2d\x2e\x20\x5f]+/).collect {|x| x.to_i(16)}.pack("C6")
else
raise ArgumentError, "Unkown format for mac address."
end
return ret
end
# Converts a binary string to a readable MAC (11:22:33:44:55:66).
#
# irb> PacketFu::EthHeader.str2mac("\x11\x22\x33\x44\x55\x66")
#
# #=> "11:22:33:44:55:66"
def self.str2mac(mac='')
if mac.to_s.size == 6 && mac.kind_of?(::String)
ret = mac.unpack("C6").map {|x| sprintf("%02x",x)}.join(":")
end
end
# Sets the source MAC address in a more readable way.
def eth_saddr=(mac)
mac = EthHeader.mac2str(mac)
self[:eth_src].read mac
self[:eth_src]
end
# Gets the source MAC address in a more readable way.
def eth_saddr
EthHeader.str2mac(self[:eth_src].to_s)
end
# Set the destination MAC address in a more readable way.
def eth_daddr=(mac)
mac = EthHeader.mac2str(mac)
self[:eth_dst].read mac
self[:eth_dst]
end
# Gets the destination MAC address in a more readable way.
def eth_daddr
EthHeader.str2mac(self[:eth_dst].to_s)
end
# Readability aliases
alias :eth_dst_readable :eth_daddr
alias :eth_src_readable :eth_saddr
def eth_proto_readable
"0x%04x" % eth_proto
end
end
# EthPacket is used to construct Ethernet packets. They contain an
# Ethernet header, and that's about it.
#
# == Example
#
# require 'packetfu'
# eth_pkt = PacketFu::EthPacket.new
# eth_pkt.eth_saddr="00:1c:23:44:55:66"
# eth_pkt.eth_daddr="00:1c:24:aa:bb:cc"
#
# eth_pkt.to_w('eth0') # Inject on the wire. (require root)
#
class EthPacket < Packet
attr_accessor :eth_header
def self.can_parse?(str)
# XXX Temporary fix. Need to extend the EthHeader class to handle more.
valid_eth_types = [0x0800, 0x0806, 0x86dd]
return false unless str.size >= 14
type = str[12,2].unpack("n").first rescue nil
return false unless valid_eth_types.include? type
true
end
def read(str=nil,args={})
raise "Cannot parse `#{str}'" unless self.class.can_parse?(str)
@eth_header.read(str)
super(args)
return self
end
# Does nothing, really, since there's no length or
# checksum to calculate for a straight Ethernet packet.
def recalc(args={})
@headers[0].inspect
end
def initialize(args={})
@eth_header = EthHeader.new(args).read(args[:eth])
@headers = [@eth_header]
super
end
end
end
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,207 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# HSRPHeader is a complete HSRP struct, used in HSRPPacket. HSRP is typically used for
# fault-tolerant default gateway in IP routing environment.
#
# For more on HSRP packets, see http://www.networksorcery.com/enp/protocol/hsrp.htm
#
# Submitted by fropert@packetfault.org. Thanks, Francois!
#
# ==== Header Definition
#
# Int8 :hsrp_version Default: 0 # Version
# Int8 :hsrp_opcode # Opcode
# Int8 :hsrp_state # State
# Int8 :hsrp_hellotime Default: 3 # Hello Time
# Int8 :hsrp_holdtime Default: 10 # Hold Time
# Int8 :hsrp_priority # Priority
# Int8 :hsrp_group # Group
# Int8 :hsrp_reserved Default: 0 # Reserved
# String :hsrp_password # Authentication Data
# Octets :hsrp_vip # Virtual IP Address
# String :body
class HSRPHeader < Struct.new(:hsrp_version, :hsrp_opcode, :hsrp_state,
:hsrp_hellotime, :hsrp_holdtime,
:hsrp_priority, :hsrp_group,
:hsrp_reserved, :hsrp_password,
:hsrp_vip, :body)
include StructFu
def initialize(args={})
super(
Int8.new(args[:hsrp_version] || 0),
Int8.new(args[:hsrp_opcode]),
Int8.new(args[:hsrp_state]),
Int8.new(args[:hsrp_hellotime] || 3),
Int8.new(args[:hsrp_holdtime] || 10),
Int8.new(args[:hsrp_priority]),
Int8.new(args[:hsrp_group]),
Int8.new(args[:hsrp_reserved] || 0),
StructFu::String.new.read(args[:hsrp_password] || "cisco\x00\x00\x00"),
Octets.new.read(args[:hsrp_vip] || ("\x00" * 4)),
StructFu::String.new.read(args[:body])
)
end
# Returns the object in string form.
def to_s
self.to_a.map {|x| x.to_s}.join
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:hsrp_version].read(str[0,1])
self[:hsrp_opcode].read(str[1,1])
self[:hsrp_state].read(str[2,1])
self[:hsrp_hellotime].read(str[3,1])
self[:hsrp_holdtime].read(str[4,1])
self[:hsrp_priority].read(str[5,1])
self[:hsrp_group].read(str[6,1])
self[:hsrp_reserved].read(str[7,1])
self[:hsrp_password].read(str[8,8])
self[:hsrp_vip].read(str[16,4])
self[:body].read(str[20,str.size]) if str.size > 20
self
end
# Setter for the type.
def hsrp_version=(i); typecast i; end
# Getter for the type.
def hsrp_version; self[:hsrp_version].to_i; end
# Setter for the type.
def hsrp_opcode=(i); typecast i; end
# Getter for the type.
def hsrp_opcode; self[:hsrp_opcode].to_i; end
# Setter for the type.
def hsrp_state=(i); typecast i; end
# Getter for the type.
def hsrp_state; self[:hsrp_state].to_i; end
# Setter for the type.
def hsrp_hellotime=(i); typecast i; end
# Getter for the type.
def hsrp_hellotime; self[:hsrp_hellotime].to_i; end
# Setter for the type.
def hsrp_holdtime=(i); typecast i; end
# Getter for the type.
def hsrp_holdtime; self[:hsrp_holdtime].to_i; end
# Setter for the type.
def hsrp_priority=(i); typecast i; end
# Getter for the type.
def hsrp_priority; self[:hsrp_priority].to_i; end
# Setter for the type.
def hsrp_group=(i); typecast i; end
# Getter for the type.
def hsrp_group; self[:hsrp_group].to_i; end
# Setter for the type.
def hsrp_reserved=(i); typecast i; end
# Getter for the type.
def hsrp_reserved; self[:hsrp_reserved].to_i; end
def hsrp_addr=(addr)
self[:hsrp_vip].read_quad(addr)
end
# Returns a more readable IP source address.
def hsrp_addr
self[:hsrp_vip].to_x
end
# Readability aliases
alias :hsrp_vip_readable :hsrp_addr
def hsrp_password_readable
hsrp_password.to_s.inspect
end
end
# HSRPPacket is used to construct HSRP Packets. They contain an EthHeader, an IPHeader, and a UDPHeader.
#
# == Example
#
# hsrp_pkt.new
# hsrp_pkt.hsrp_opcode = 0
# hsrp_pkt.hsrp_state = 16
# hsrp_pkt.hsrp_priority = 254
# hsrp_pkt.hsrp_group = 1
# hsrp_pkt.hsrp_vip = 10.100.100.254
# hsrp_pkt.recalc
# hsrp_pkt.to_f('/tmp/hsrp.pcap')
#
# == Parameters
#
# :eth
# A pre-generated EthHeader object.
# :ip
# A pre-generated IPHeader object.
# :udp
# A pre-generated UDPHeader object.
# :flavor
# TODO: HSRP packets don't tend have any flavor.
# :config
# A hash of return address details, often the output of Utils.whoami?
class HSRPPacket < Packet
attr_accessor :eth_header, :ip_header, :udp_header, :hsrp_header
def self.can_parse?(str)
return false unless str.size >= 54
return false unless EthPacket.can_parse? str
return false unless IPPacket.can_parse? str
return false unless UDPPacket.can_parse? str
temp_packet = UDPPacket.new
temp_packet.read(str)
if temp_packet.ip_ttl == 1 and [temp_packet.udp_sport,temp_packet.udp_dport] == [1985,1985]
return true
else
return false
end
end
def read(str=nil, args={})
raise "Cannot parse `#{str}'" unless self.class.can_parse?(str)
@eth_header.read(str)
@ip_header.read(str[14,str.size])
@eth_header.body = @ip_header
@udp_header.read(str[14+(@ip_header.ip_hlen),str.size])
@ip_header.body = @udp_header
@hsrp_header.read(str[14+(@ip_header.ip_hlen)+8,str.size])
@udp_header.body = @hsrp_header
super(args)
self
end
def initialize(args={})
@eth_header = EthHeader.new(args).read(args[:eth])
@ip_header = IPHeader.new(args).read(args[:ip])
@ip_header.ip_proto = 0x11
@udp_header = UDPHeader.new(args).read(args[:udp])
@hsrp_header = HSRPHeader.new(args).read(args[:hsrp])
@udp_header.body = @hsrp_header
@ip_header.body = @udp_header
@eth_header.body = @ip_header
@headers = [@eth_header, @ip_header, @udp_header, @hsrp_header]
super
end
# Peek provides summary data on packet contents.
def peek_format
peek_data = ["UH "]
peek_data << "%-5d" % self.to_s.size
peek_data << "%-16s" % self.hsrp_addr
peek_data << "%-4d" % self.hsrp_group
peek_data << "%-35s" % self.hsrp_password_readable
peek_data << "%-15s" % self.ip_saddr
peek_data.join
end
end
end
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,180 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# ICMPHeader is a complete ICMP struct, used in ICMPPacket. ICMP is
# typically used for network administration and connectivity testing.
#
# For more on ICMP packets, see
# http://www.networksorcery.com/enp/protocol/icmp.htm
#
# ==== Header Definition
#
# Int8 :icmp_type # Type
# Int8 :icmp_code # Code
# Int16 :icmp_sum Default: calculated # Checksum
# String :body
class ICMPHeader < Struct.new(:icmp_type, :icmp_code, :icmp_sum, :body)
include StructFu
def initialize(args={})
super(
Int8.new(args[:icmp_type]),
Int8.new(args[:icmp_code]),
Int16.new(args[:icmp_sum] || icmp_calc_sum),
StructFu::String.new.read(args[:body])
)
end
# Returns the object in string form.
def to_s
self.to_a.map {|x| x.to_s}.join
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:icmp_type].read(str[0,1])
self[:icmp_code].read(str[1,1])
self[:icmp_sum].read(str[2,2])
self[:body].read(str[4,str.size])
self
end
# Setter for the type.
def icmp_type=(i); typecast i; end
# Getter for the type.
def icmp_type; self[:icmp_type].to_i; end
# Setter for the code.
def icmp_code=(i); typecast i; end
# Getter for the code.
def icmp_code; self[:icmp_code].to_i; end
# Setter for the checksum. Note, this is calculated automatically with
# icmp_calc_sum.
def icmp_sum=(i); typecast i; end
# Getter for the checksum.
def icmp_sum; self[:icmp_sum].to_i; end
# Calculates and sets the checksum for the object.
def icmp_calc_sum
checksum = (icmp_type.to_i << 8) + icmp_code.to_i
chk_body = (body.to_s.size % 2 == 0 ? body.to_s : body.to_s + "\x00")
if 1.respond_to? :ord
chk_body.scan(/../).map { |x| (x[0].ord << 8) + x[1].ord }.each { |y| checksum += y }
else
chk_body.scan(/../).map { |x| (x[0] << 8) + x[1] }.each { |y| checksum += y }
end
checksum = checksum % 0xffff
checksum = 0xffff - checksum
checksum == 0 ? 0xffff : checksum
end
# Recalculates the calculatable fields for ICMP.
def icmp_recalc(arg=:all)
# How silly is this, you can't intern a symbol in ruby 1.8.7pl72?
# I'm this close to monkey patching Symbol so you can force it...
arg = arg.intern if arg.respond_to? :intern
case arg
when :icmp_sum
self.icmp_sum=icmp_calc_sum
when :all
self.icmp_sum=icmp_calc_sum
else
raise ArgumentError, "No such field `#{arg}'"
end
end
# Readability aliases
def icmp_sum_readable
"0x%04x" % icmp_sum
end
end
# ICMPPacket is used to construct ICMP Packets. They contain an EthHeader, an IPHeader, and a ICMPHeader.
#
# == Example
#
# icmp_pkt.new
# icmp_pkt.icmp_type = 8
# icmp_pkt.icmp_code = 0
# icmp_pkt.payload = "ABC, easy as 123. As simple as do-re-mi. ABC, 123, baby, you and me!"
#
# icmp_pkt.ip_saddr="1.2.3.4"
# icmp_pkt.ip_daddr="5.6.7.8"
#
# icmp_pkt.recalc
# icmp_pkt.to_f('/tmp/icmp.pcap')
#
# == Parameters
#
# :eth
# A pre-generated EthHeader object.
# :ip
# A pre-generated IPHeader object.
# :flavor
# TODO: Sets the "flavor" of the ICMP packet. Pings, in particular, often betray their true
# OS.
# :config
# A hash of return address details, often the output of Utils.whoami?
class ICMPPacket < Packet
attr_accessor :eth_header, :ip_header, :icmp_header
def self.can_parse?(str)
return false unless str.size >= 38
return false unless EthPacket.can_parse? str
return false unless IPPacket.can_parse? str
return false unless str[23,1] == "\x01"
return true
end
def read(str=nil, args={})
raise "Cannot parse `#{str}'" unless self.class.can_parse?(str)
@eth_header.read(str)
@ip_header.read(str[14,str.size])
@eth_header.body = @ip_header
@icmp_header.read(str[14+(@ip_header.ip_hlen),str.size])
@ip_header.body = @icmp_header
super(args)
self
end
def initialize(args={})
@eth_header = EthHeader.new(args).read(args[:eth])
@ip_header = IPHeader.new(args).read(args[:ip])
@ip_header.ip_proto = 1
@icmp_header = ICMPHeader.new(args).read(args[:icmp])
@ip_header.body = @icmp_header
@eth_header.body = @ip_header
@headers = [@eth_header, @ip_header, @icmp_header]
super
end
# Peek provides summary data on packet contents.
def peek_format
peek_data = ["IC "] # I is taken by IP
peek_data << "%-5d" % self.to_s.size
type = case self.icmp_type.to_i
when 8
"ping"
when 0
"pong"
else
"%02x-%02x" % [self.icmp_type, self.icmp_code]
end
peek_data << "%-21s" % "#{self.ip_saddr}:#{type}"
peek_data << "->"
peek_data << "%21s" % "#{self.ip_daddr}"
peek_data << "%23s" % "I:"
peek_data << "%04x" % self.ip_id
peek_data.join
end
end
end

View File

@ -1,56 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# InvalidHeader catches all packets that we don't already have a Struct for,
# or for whatever reason, violates some basic packet rules for other packet
# types.
class InvalidHeader < Struct.new(:body)
include StructFu
def initialize(args={})
args[:body] ||= StructFu::String.new
super(args[:body])
end
# Returns the object in string form.
def to_s
self.to_a.map {|x| x.to_s}.join
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:body].read str
self
end
end
# You probably don't want to write invalid packets on purpose.
class InvalidPacket < Packet
attr_accessor :invalid_header
# Any packet is potentially an invalid packet
def self.can_parse?(str)
true
end
def self.layer
0
end
def read(str=nil,args={})
@invalid_header.read(str)
self
end
def initialize(args={})
@invalid_header = (args[:invalid] || InvalidHeader.new)
@headers = [@invalid_header]
end
end
end # module PacketFu
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,379 +0,0 @@
# -*- coding: binary -*-
require 'ipaddr'
module PacketFu
# Octets implements the addressing scheme for IP.
#
# ==== Header Definition
#
# Int8 :o1
# Int8 :o2
# Int8 :o3
# Int8 :o4
class Octets < Struct.new(:o1, :o2, :o3, :o4)
include StructFu
def initialize(args={})
super(
Int8.new(args[:o1]),
Int8.new(args[:o2]),
Int8.new(args[:o3]),
Int8.new(args[:o4]))
end
# Returns the object in string form.
def to_s
self.to_a.map {|x| x.to_s}.join
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:o1].read str[0,1]
self[:o2].read str[1,1]
self[:o3].read str[2,1]
self[:o4].read str[3,1]
self
end
# Returns an address in dotted-quad format.
def to_x
ip_str = [o1, o2, o3, o4].map {|x| x.to_i.to_s}.join('.')
IPAddr.new(ip_str).to_s
end
# Returns an address in numerical format.
def to_i
ip_str = [o1, o2, o3, o4].map {|x| x.to_i.to_s}.join('.')
IPAddr.new(ip_str).to_i
end
# Set the IP Address by reading a dotted-quad address.
def read_quad(str)
read([IPAddr.new(str).to_i].pack("N"))
end
end
# IPHeader is a complete IP struct, used in IPPacket. Most traffic on most networks today is IP-based.
#
# For more on IP packets, see http://www.networksorcery.com/enp/protocol/ip.htm
#
# ==== Header Definition
#
# Fixnum (4 bits) :ip_v, Default: 4
# Fixnum (4 bits) :ip_hl, Default: 5
# Int8 :ip_tos, Default: 0 # TODO: Break out the bits
# Int16 :ip_len, Default: calculated
# Int16 :ip_id, Default: calculated # IRL, hardly random.
# Int16 :ip_frag, Default: 0 # TODO: Break out the bits
# Int8 :ip_ttl, Default: 0xff # Changes per flavor
# Int8 :ip_proto, Default: 0x01 # TCP: 0x06, UDP 0x11, ICMP 0x01
# Int16 :ip_sum, Default: calculated
# Octets :ip_src
# Octets :ip_dst
# String :body
#
# Note that IPPackets will always be somewhat incorrect upon initalization,
# and want an IPHeader#recalc() to become correct before a
# Packet#to_f or Packet#to_w.
class IPHeader < Struct.new(:ip_v, :ip_hl, :ip_tos, :ip_len,
:ip_id, :ip_frag, :ip_ttl, :ip_proto,
:ip_sum, :ip_src, :ip_dst, :body)
include StructFu
def initialize(args={})
@random_id = rand(0xffff)
super(
(args[:ip_v] || 4),
(args[:ip_hl] || 5),
Int8.new(args[:ip_tos]),
Int16.new(args[:ip_len] || 20),
Int16.new(args[:ip_id] || ip_calc_id),
Int16.new(args[:ip_frag]),
Int8.new(args[:ip_ttl] || 32),
Int8.new(args[:ip_proto]),
Int16.new(args[:ip_sum] || ip_calc_sum),
Octets.new.read(args[:ip_src] || "\x00\x00\x00\x00"),
Octets.new.read(args[:ip_dst] || "\x00\x00\x00\x00"),
StructFu::String.new.read(args[:body])
)
end
# Returns the object in string form.
def to_s
byte_v_hl = [(self.ip_v << 4) + self.ip_hl].pack("C")
byte_v_hl + (self.to_a[2,10].map {|x| x.to_s}.join)
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:ip_v] = str[0,1].unpack("C").first >> 4
self[:ip_hl] = str[0,1].unpack("C").first.to_i & 0x0f
self[:ip_tos].read(str[1,1])
self[:ip_len].read(str[2,2])
self[:ip_id].read(str[4,2])
self[:ip_frag].read(str[6,2])
self[:ip_ttl].read(str[8,1])
self[:ip_proto].read(str[9,1])
self[:ip_sum].read(str[10,2])
self[:ip_src].read(str[12,4])
self[:ip_dst].read(str[16,4])
self[:body].read(str[20,str.size]) if str.size > 20
self
end
# Setter for the version.
def ip_v=(i); self[:ip_v] = i.to_i; end
# Getter for the version.
def ip_v; self[:ip_v].to_i; end
# Setter for the header length (divide by 4)
def ip_hl=(i); self[:ip_hl] = i.to_i; end
# Getter for the header length (multiply by 4)
def ip_hl; self[:ip_hl].to_i; end
# Setter for the differentiated services
def ip_tos=(i); typecast i; end
# Getter for the differentiated services
def ip_tos; self[:ip_tos].to_i; end
# Setter for total length.
def ip_len=(i); typecast i; end
# Getter for total length.
def ip_len; self[:ip_len].to_i; end
# Setter for the identication number.
def ip_id=(i); typecast i; end
# Getter for the identication number.
def ip_id; self[:ip_id].to_i; end
# Setter for the fragmentation ID.
def ip_frag=(i); typecast i; end
# Getter for the fragmentation ID.
def ip_frag; self[:ip_frag].to_i; end
# Setter for the time to live.
def ip_ttl=(i); typecast i; end
# Getter for the time to live.
def ip_ttl; self[:ip_ttl].to_i; end
# Setter for the protocol number.
def ip_proto=(i); typecast i; end
# Getter for the protocol number.
def ip_proto; self[:ip_proto].to_i; end
# Setter for the checksum.
def ip_sum=(i); typecast i; end
# Getter for the checksum.
def ip_sum; self[:ip_sum].to_i; end
# Setter for the source IP address.
def ip_src=(i)
case i
when Numeric
self[:ip_src] = Octets.new.read([i].pack("N"))
when Octets
self[:ip_src] = i
else
typecast i
end
end
# Getter for the source IP address.
def ip_src; self[:ip_src].to_i; end
# Setter for the destination IP address.
def ip_dst=(i)
case i
when Numeric
self[:ip_dst] = Octets.new.read([i].pack("N"))
when Octets
self[:ip_dst] = i
else
typecast i
end
end
# Getter for the destination IP address.
def ip_dst; self[:ip_dst].to_i; end
# Calulcate the true length of the packet.
def ip_calc_len
(ip_hl * 4) + body.to_s.length
end
# Return the claimed header length
def ip_hlen
(ip_hl * 4)
end
# Calculate the true checksum of the packet.
# (Yes, this is the long way to do it, but it's e-z-2-read for mathtards like me.)
def ip_calc_sum
checksum = (((self.ip_v << 4) + self.ip_hl) << 8) + self.ip_tos
checksum += self.ip_len
checksum += self.ip_id
checksum += self.ip_frag
checksum += (self.ip_ttl << 8) + self.ip_proto
checksum += (self.ip_src >> 16)
checksum += (self.ip_src & 0xffff)
checksum += (self.ip_dst >> 16)
checksum += (self.ip_dst & 0xffff)
checksum = checksum % 0xffff
checksum = 0xffff - checksum
checksum == 0 ? 0xffff : checksum
end
# Retrieve the IP ID
def ip_calc_id
@random_id
end
# Sets a more readable IP address. If you wants to manipulate individual octets,
# (eg, for host scanning in one network), it would be better use ip_src.o1 through
# ip_src.o4 instead.
def ip_saddr=(addr)
self[:ip_src].read_quad(addr)
end
# Returns a more readable IP source address.
def ip_saddr
self[:ip_src].to_x
end
# Sets a more readable IP address.
def ip_daddr=(addr)
self[:ip_dst].read_quad(addr)
end
# Returns a more readable IP destination address.
def ip_daddr
self[:ip_dst].to_x
end
# Translate various formats of IPv4 Addresses to an array of digits.
def self.octet_array(addr)
if addr.class == String
oa = addr.split('.').collect {|x| x.to_i}
elsif addr.class == Fixnum
oa = IPAddr.new(addr, Socket::AF_INET).to_s.split('.')
elsif addr.class == Bignum
oa = IPAddr.new(addr, Socket::AF_INET).to_s.split('.')
elsif addr.class == Array
oa = addr
else
raise ArgumentError, "IP Address should be a dotted quad string, an array of ints, or a bignum"
end
end
# Recalculate the calculated IP fields. Valid arguments are:
# :all
# :ip_len
# :ip_sum
# :ip_id
def ip_recalc(arg=:all)
case arg
when :ip_len
self.ip_len=ip_calc_len
when :ip_sum
self.ip_sum=ip_calc_sum
when :ip_id
@random_id = rand(0xffff)
when :all
self.ip_id= ip_calc_id
self.ip_len= ip_calc_len
self.ip_sum= ip_calc_sum
else
raise ArgumentError, "No such field `#{arg}'"
end
end
# Readability aliases
alias :ip_src_readable :ip_saddr
alias :ip_dst_readable :ip_daddr
def ip_id_readable
"0x%04x" % ip_id
end
def ip_sum_readable
"0x%04x" % ip_sum
end
end
# IPPacket is used to construct IP packets. They contain an EthHeader, an IPHeader, and usually
# a transport-layer protocol such as UDPHeader, TCPHeader, or ICMPHeader.
#
# == Example
#
# require 'packetfu'
# ip_pkt = PacketFu::IPPacket.new
# ip_pkt.ip_saddr="10.20.30.40"
# ip_pkt.ip_daddr="192.168.1.1"
# ip_pkt.ip_proto=1
# ip_pkt.ip_ttl=64
# ip_pkt.ip_payload="\x00\x00\x12\x34\x00\x01\x00\x01"+
# "Lovingly hand-crafted echo responses delivered directly to your door."
# ip_pkt.recalc
# ip_pkt.to_f('/tmp/ip.pcap')
#
# == Parameters
#
# :eth
# A pre-generated EthHeader object.
# :ip
# A pre-generated IPHeader object.
# :flavor
# TODO: Sets the "flavor" of the IP packet. This might include known sets of IP options, and
# certainly known starting TTLs.
# :config
# A hash of return address details, often the output of Utils.whoami?
class IPPacket < Packet
attr_accessor :eth_header, :ip_header
def self.can_parse?(str)
return false unless str.size >= 34
return false unless EthPacket.can_parse? str
if str[12,2] == "\x08\x00"
if 1.respond_to? :ord
ipv = str[14,1][0].ord >> 4
else
ipv = str[14,1][0] >> 4
end
return true if ipv == 4
else
return false
end
end
def read(str=nil, args={})
raise "Cannot parse `#{str}'" unless self.class.can_parse?(str)
@eth_header.read(str)
@ip_header.read(str[14,str.size])
@eth_header.body = @ip_header
super(args)
self
end
# Creates a new IPPacket object.
def initialize(args={})
@eth_header = EthHeader.new(args).read(args[:eth])
@ip_header = IPHeader.new(args).read(args[:ip])
@eth_header.body=@ip_header
@headers = [@eth_header, @ip_header]
super
end
# Peek provides summary data on packet contents.
def peek_format
peek_data = ["I "]
peek_data << "%-5d" % to_s.size
peek_data << "%-21s" % "#{ip_saddr}"
peek_data << "->"
peek_data << "%21s" % "#{ip_daddr}"
peek_data << "%23s" % "I:"
peek_data << "%04x" % ip_id.to_i
peek_data.join
end
end
end
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,251 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# AddrIpv6 handles addressing for IPv6Header
#
# ==== Header Definition
#
# Int32 :a1
# Int32 :a2
# Int32 :a3
# Int32 :a4
class AddrIpv6 < Struct.new(:a1, :a2, :a3, :a4)
include StructFu
def initialize(args={})
super(
Int32.new(args[:a1]),
Int32.new(args[:a2]),
Int32.new(args[:a3]),
Int32.new(args[:a4]))
end
# Returns the address in string format.
def to_s
self.to_a.map {|x| x.to_s}.join
end
# Returns the address as a fairly ginormous integer.
def to_i
(a1.to_i << 96) + (a2.to_i << 64) + (a3.to_i << 32) + a4.to_i
end
# Returns the address as a colon-delimited hex string.
def to_x
IPAddr.new(self.to_i, Socket::AF_INET6).to_s
end
# Reads in a string and casts it as an IPv6 address
def read(str)
force_binary(str)
return self if str.nil?
self[:a1].read str[0,4]
self[:a2].read str[4,4]
self[:a3].read str[8,4]
self[:a4].read str[12,4]
self
end
# Reads in a colon-delimited hex string and casts it as an IPv6 address.
def read_x(str)
addr = IPAddr.new(str).to_i
self[:a1]=Int32.new(addr >> 96)
self[:a2]=Int32.new((addr & 0x00000000ffffffff0000000000000000) >> 64)
self[:a3]=Int32.new((addr & 0x0000000000000000ffffffff00000000) >> 32)
self[:a4]=Int32.new(addr & 0x000000000000000000000000ffffffff)
self
end
end
# IPv6Header is complete IPv6 struct, used in IPv6Packet.
#
# ==== Header Definition
#
# Fixnum (4 bits) :ipv6_v Default: 6 # Versiom
# Fixnum (8 bits) :ipv6_class Defualt: 0 # Class
# Fixnum (20 bits) :ipv6_label Defualt: 0 # Label
# Int16 :ipv6_len Default: calc # Payload length
# Int8 :ipv6_next # Next Header
# Int8 :ipv6_hop Default: 0xff # Hop limit
# AddrIpv6 :ipv6_src
# AddrIpv6 :ipv6_dst
# String :body
class IPv6Header < Struct.new(:ipv6_v, :ipv6_class, :ipv6_label,
:ipv6_len, :ipv6_next, :ipv6_hop,
:ipv6_src, :ipv6_dst, :body)
include StructFu
def initialize(args={})
super(
(args[:ipv6_v] || 6),
(args[:ipv6_class] || 0),
(args[:ipv6_label] || 0),
Int16.new(args[:ipv6_len]),
Int8.new(args[:ipv6_next]),
Int8.new(args[:ipv6_hop] || 0xff),
AddrIpv6.new.read(args[:ipv6_src] || ("\x00" * 16)),
AddrIpv6.new.read(args[:ipv6_dst] || ("\x00" * 16)),
StructFu::String.new.read(args[:body])
)
end
# Returns the object in string form.
def to_s
bytes_v_class_label = [(self.ipv6_v << 28) +
(self.ipv6_class << 20) +
self.ipv6_label].pack("N")
bytes_v_class_label + (self.to_a[3,6].map {|x| x.to_s}.join)
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:ipv6_v] = str[0,1].unpack("C").first >> 4
self[:ipv6_class] = (str[0,2].unpack("n").first & 0x0ff0) >> 4
self[:ipv6_label] = str[0,4].unpack("N").first & 0x000fffff
self[:ipv6_len].read(str[4,2])
self[:ipv6_next].read(str[6,1])
self[:ipv6_hop].read(str[7,1])
self[:ipv6_src].read(str[8,16])
self[:ipv6_dst].read(str[24,16])
self[:body].read(str[40,str.size]) if str.size > 40
self
end
# Setter for the version (usually, 6).
def ipv6_v=(i); self[:ip_v] = i.to_i; end
# Getter for the version (usually, 6).
def ipv6_v; self[:ipv6_v].to_i; end
# Setter for the traffic class.
def ipv6_class=(i); self[:ip_class] = i.to_i; end
# Getter for the traffic class.
def ipv6_class; self[:ipv6_class].to_i; end
# Setter for the flow label.
def ipv6_label=(i); self[:ip_label] = i.to_i; end
# Getter for the flow label.
def ipv6_label; self[:ipv6_label].to_i; end
# Setter for the payload length.
def ipv6_len=(i); typecast i; end
# Getter for the payload length.
def ipv6_len; self[:ipv6_len].to_i; end
# Setter for the next protocol header.
def ipv6_next=(i); typecast i; end
# Getter for the next protocol header.
def ipv6_next; self[:ipv6_next].to_i; end
# Setter for the hop limit.
def ipv6_hop=(i); typecast i; end
# Getter for the hop limit.
def ipv6_hop; self[:ipv6_hop].to_i; end
# Setter for the source address.
def ipv6_src=(i); typecast i; end
# Getter for the source address.
def ipv6_src; self[:ipv6_src].to_i; end
# Setter for the destination address.
def ipv6_dst=(i); typecast i; end
# Getter for the destination address.
def ipv6_dst; self[:ipv6_dst].to_i; end
# Calculates the payload length.
def ipv6_calc_len
self[:ipv6_len] = body.to_s.length
end
# Recalculates the calculatable fields for this object.
def ipv6_recalc(arg=:all)
case arg
when :ipv6_len
ipv6_calc_len
when :all
ipv6_recalc(:len)
end
end
# Get the source address in a more readable form.
def ipv6_saddr
self[:ipv6_src].to_x
end
# Set the source address in a more readable form.
def ipv6_saddr=(str)
self[:ipv6_src].read_x(str)
end
# Get the destination address in a more readable form.
def ipv6_daddr
self[:ipv6_dst].to_x
end
# Set the destination address in a more readable form.
def ipv6_daddr=(str)
self[:ipv6_dst].read_x(str)
end
# Readability aliases
alias :ipv6_src_readable :ipv6_saddr
alias :ipv6_dst_readable :ipv6_daddr
end # class IPv6Header
# IPv6Packet is used to construct IPv6 Packets. They contain an EthHeader and an IPv6Header, and in
# the distant, unknowable future, will take interesting IPv6ish payloads.
#
# This mostly complete, but not very useful. It's intended primarily as an example protocol.
#
# == Parameters
#
# :eth
# A pre-generated EthHeader object.
# :ip
# A pre-generated IPHeader object.
# :flavor
# TODO: Sets the "flavor" of the IPv6 packet. No idea what this will look like, haven't done much IPv6 fingerprinting.
# :config
# A hash of return address details, often the output of Utils.whoami?
class IPv6Packet < Packet
attr_accessor :eth_header, :ipv6_header
def self.can_parse?(str)
return false unless EthPacket.can_parse? str
return false unless str.size >= 54
return false unless str[12,2] == "\x86\xdd"
true
end
def read(str=nil,args={})
raise "Cannot parse `#{str}'" unless self.class.can_parse?(str)
@eth_header.read(str)
@ipv6_header.read(str[14,str.size])
@eth_header.body = @ipv6_header
super(args)
self
end
def initialize(args={})
@eth_header = (args[:eth] || EthHeader.new)
@ipv6_header = (args[:ipv6] || IPv6Header.new)
@eth_header.eth_proto = 0x86dd
@eth_header.body=@ipv6_header
@headers = [@eth_header, @ipv6_header]
super
end
# Peek provides summary data on packet contents.
def peek(args={})
peek_data = ["6 "]
peek_data << "%-5d" % self.to_s.size
peek_data << "%-31s" % self.ipv6_saddr
peek_data << "-> "
peek_data << "%-31s" % self.ipv6_daddr
peek_data << " N:"
peek_data << self.ipv6_next.to_s(16)
peek_data.join
end
end
end

File diff suppressed because it is too large Load Diff

View File

@ -1,241 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# UDPHeader is a complete UDP struct, used in UDPPacket. Many Internet-critical protocols
# rely on UDP, such as DNS and World of Warcraft.
#
# For more on UDP packets, see http://www.networksorcery.com/enp/protocol/udp.htm
#
# ==== Header Definition
# Int16 :udp_src
# Int16 :udp_dst
# Int16 :udp_len Default: calculated
# Int16 :udp_sum Default: 0. Often calculated.
# String :body
class UDPHeader < Struct.new(:udp_src, :udp_dst, :udp_len, :udp_sum, :body)
include StructFu
def initialize(args={})
super(
Int16.new(args[:udp_src]),
Int16.new(args[:udp_dst]),
Int16.new(args[:udp_len] || udp_calc_len),
Int16.new(args[:udp_sum]),
StructFu::String.new.read(args[:body])
)
end
# Returns the object in string form.
def to_s
self.to_a.map {|x| x.to_s}.join
end
# Reads a string to populate the object.
def read(str)
force_binary(str)
return self if str.nil?
self[:udp_src].read(str[0,2])
self[:udp_dst].read(str[2,2])
self[:udp_len].read(str[4,2])
self[:udp_sum].read(str[6,2])
self[:body].read(str[8,str.size])
self
end
# Setter for the UDP source port.
def udp_src=(i); typecast i; end
# Getter for the UDP source port.
def udp_src; self[:udp_src].to_i; end
# Setter for the UDP destination port.
def udp_dst=(i); typecast i; end
# Getter for the UDP destination port.
def udp_dst; self[:udp_dst].to_i; end
# Setter for the length field. Usually should be recalc()'ed instead.
def udp_len=(i); typecast i; end
# Getter for the length field.
def udp_len; self[:udp_len].to_i; end
# Setter for the checksum. Usually should be recalc()'ed instad.
def udp_sum=(i); typecast i; end
# Getter for the checksum.
def udp_sum; self[:udp_sum].to_i; end
# Returns the true length of the UDP packet.
def udp_calc_len
body.to_s.size + 8
end
# Recalculates calculated fields for UDP.
def udp_recalc(args=:all)
arg = arg.intern if arg.respond_to? :intern
case args
when :udp_len
self.udp_len = udp_calc_len
when :all
self.udp_recalc(:udp_len)
else
raise ArgumentError, "No such field `#{arg}'"
end
end
# Equivalent to udp_src.to_i
def udp_sport
self.udp_src
end
# Equivalent to udp_src=
def udp_sport=(arg)
self.udp_src=(arg)
end
# Equivalent to udp_dst
def udp_dport
self.udp_dst
end
# Equivalent to udp_dst=
def udp_dport=(arg)
self.udp_dst=(arg)
end
# Readability aliases
def udp_sum_readable
"0x%04x" % udp_sum
end
end
# UDPPacket is used to construct UDP Packets. They contain an EthHeader, an IPHeader, and a UDPHeader.
#
# == Example
#
# udp_pkt = PacketFu::UDPPacket.new
# udp_pkt.udp_src=rand(0xffff-1024) + 1024
# udp_pkt.udp_dst=53
#
# udp_pkt.ip_saddr="1.2.3.4"
# udp_pkt.ip_daddr="10.20.30.40"
#
# udp_pkt.recalc
# udp_pkt.to_f('/tmp/udp.pcap')
#
# == Parameters
#
# :eth
# A pre-generated EthHeader object.
# :ip
# A pre-generated IPHeader object.
# :flavor
# TODO: Sets the "flavor" of the UDP packet. UDP packets don't tend have a lot of
# flavor, but their underlying ip headers do.
# :config
# A hash of return address details, often the output of Utils.whoami?
class UDPPacket < Packet
attr_accessor :eth_header, :ip_header, :udp_header
def self.can_parse?(str)
return false unless str.size >= 28
return false unless EthPacket.can_parse? str
return false unless IPPacket.can_parse? str
return false unless str[23,1] == "\x11"
return true
end
def read(str=nil, args={})
raise "Cannot parse `#{str}'" unless self.class.can_parse?(str)
@eth_header.read(str)
@ip_header.read(str[14,str.size])
@eth_header.body = @ip_header
if args[:strip]
udp_len = str[16,2].unpack("n")[0] - 20
@udp_header.read(str[14+(@ip_header.ip_hlen),udp_len])
else
@udp_header.read(str[14+(@ip_header.ip_hlen),str.size])
end
@ip_header.body = @udp_header
super(args)
self
end
def initialize(args={})
@eth_header = EthHeader.new(args).read(args[:eth])
@ip_header = IPHeader.new(args).read(args[:ip])
@ip_header.ip_proto=0x11
@udp_header = UDPHeader.new(args).read(args[:icmp])
@ip_header.body = @udp_header
@eth_header.body = @ip_header
@headers = [@eth_header, @ip_header, @udp_header]
super
udp_calc_sum
end
# udp_calc_sum() computes the UDP checksum, and is called upon intialization.
# It usually should be called just prior to dropping packets to a file or on the wire.
def udp_calc_sum
# This is /not/ delegated down to @udp_header since we need info
# from the IP header, too.
checksum = (ip_src.to_i >> 16)
checksum += (ip_src.to_i & 0xffff)
checksum += (ip_dst.to_i >> 16)
checksum += (ip_dst.to_i & 0xffff)
checksum += 0x11
checksum += udp_len.to_i
checksum += udp_src.to_i
checksum += udp_dst.to_i
checksum += udp_len.to_i
if udp_len.to_i >= 8
# For IP trailers. This isn't very reliable. :/
real_udp_payload = payload.to_s[0,(udp_len.to_i-8)]
else
# I'm not going to mess with this right now.
real_udp_payload = payload
end
chk_payload = (real_udp_payload.size % 2 == 0 ? real_udp_payload : real_udp_payload + "\x00")
chk_payload.unpack("n*").each {|x| checksum = checksum+x}
checksum = checksum % 0xffff
checksum = 0xffff - checksum
checksum == 0 ? 0xffff : checksum
@udp_header.udp_sum = checksum
end
# udp_recalc() recalculates various fields of the UDP packet. Valid arguments are:
#
# :all
# Recomputes all calculated fields.
# :udp_sum
# Recomputes the UDP checksum.
# :udp_len
# Recomputes the UDP length.
def udp_recalc(args=:all)
case args
when :udp_len
@udp_header.udp_recalc
when :udp_sum
udp_calc_sum
when :all
@udp_header.udp_recalc
udp_calc_sum
else
raise ArgumentError, "No such field `#{arg}'"
end
end
# Peek provides summary data on packet contents.
def peek_format
peek_data = ["U "]
peek_data << "%-5d" % self.to_s.size
peek_data << "%-21s" % "#{self.ip_saddr}:#{self.udp_sport}"
peek_data << "->"
peek_data << "%21s" % "#{self.ip_daddr}:#{self.udp_dport}"
peek_data << "%23s" % "I:"
peek_data << "%04x" % self.ip_id
peek_data.join
end
end
end
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,295 +0,0 @@
# -*- coding: binary -*-
# StructFu, a nifty way to leverage Ruby's built in Struct class
# to create meaningful binary data.
module StructFu
# Normally, self.size and self.length will refer to the Struct
# size as an array. It's a hassle to redefine, so this introduces some
# shorthand to get at the size of the resultant string.
def sz
self.to_s.size
end
alias len sz
# Typecast is used mostly by packet header classes, such as IPHeader,
# TCPHeader, and the like. It takes an argument, and casts it to the
# expected type for that element.
def typecast(i)
c = caller[0].match(/.*`([^']+)='/)[1]
self[c.intern].read i
end
# Used like typecast(), but specifically for casting Strings to StructFu::Strings.
def body=(i)
if i.kind_of? ::String
typecast(i)
elsif i.kind_of? StructFu
self[:body] = i
elsif i.nil?
self[:body] = StructFu::String.new.read("")
else
raise ArgumentError, "Can't cram a #{i.class} into a StructFu :body"
end
end
# Handle deep copies correctly. Marshal in 1.9, re-read myself on 1.8
def clone
begin
Marshal.load(Marshal.dump(self))
rescue
self.class.new.read(self.to_s)
end
end
# Ints all have a value, an endianness, and a default value.
# Note that the signedness of Int values are implicit as
# far as the subclasses are concerned; to_i and to_f will
# return Integer/Float versions of the input value, instead
# of attempting to unpack the pack value. (This can be a useful
# hint to other functions).
#
# ==== Header Definition
#
# Fixnum :value
# Symbol :endian
# Fixnum :width
# Fixnum :default
class Int < Struct.new(:value, :endian, :width, :default)
alias :v= :value=
alias :v :value
alias :e= :endian=
alias :e :endian
alias :w= :width=
alias :w :width
alias :d= :default=
alias :d :default
# This is a parent class definition and should not be used directly.
def to_s
raise StandardError, "StructFu::Int#to_s accessed, must be redefined."
end
# Returns the Int as an Integer.
def to_i
(self.v || self.d).to_i
end
# Returns the Int as a Float.
def to_f
(self.v || self.d).to_f
end
def initialize(value=nil, endian=nil, width=nil, default=nil)
super(value,endian,width,default=0)
end
# Reads either an Integer or a packed string, and populates the value accordingly.
def read(i)
self.v = i.kind_of?(Integer) ? i.to_i : i.to_s.unpack(@packstr).first
self
end
end
# Int8 is a one byte value.
class Int8 < Int
def initialize(v=nil)
super(v,nil,w=1)
@packstr = "C"
end
# Returns a one byte value as a packed string.
def to_s
[(self.v || self.d)].pack("C")
end
end
# Int16 is a two byte value.
class Int16 < Int
def initialize(v=nil, e=:big)
super(v,e,w=2)
@packstr = (self.e == :big) ? "n" : "v"
end
# Returns a two byte value as a packed string.
def to_s
@packstr = (self.e == :big) ? "n" : "v"
[(self.v || self.d)].pack(@packstr)
end
end
# Int16be is a two byte value in big-endian format. The endianness cannot be altered.
class Int16be < Int16
undef :endian=
end
# Int16le is a two byte value in little-endian format. The endianness cannot be altered.
class Int16le < Int16
undef :endian=
def initialize(v=nil, e=:little)
super(v,e)
@packstr = (self.e == :big) ? "n" : "v"
end
end
# Int32 is a four byte value.
class Int32 < Int
def initialize(v=nil, e=:big)
super(v,e,w=4)
@packstr = (self.e == :big) ? "N" : "V"
end
# Returns a four byte value as a packed string.
def to_s
@packstr = (self.e == :big) ? "N" : "V"
[(self.v || self.d)].pack(@packstr)
end
end
# Int32be is a four byte value in big-endian format. The endianness cannot be altered.
class Int32be < Int32
undef :endian=
end
# Int32le is a four byte value in little-endian format. The endianness cannot be altered.
class Int32le < Int32
undef :endian=
def initialize(v=nil, e=:little)
super(v,e)
end
end
# Strings are just like regular strings, except it comes with a read() function
# so that it behaves like other StructFu elements.
class String < ::String
def read(str)
str = str.to_s
self.replace str
self
end
end
# Provides a primitive for creating strings, preceeded by
# an Int type of length. By default, a string of length zero with
# a one-byte length is presumed.
#
# Note that IntStrings aren't used for much, but it seemed like a good idea at the time.
class IntString < Struct.new(:int, :string, :mode)
def initialize(string='',int=Int8,mode=nil)
if int < Int
super(int.new,string,mode)
calc
else
raise "IntStrings need a StructFu::Int for a length."
end
end
# Calculates the size of a string, and sets it as the value.
def calc
int.v = string.to_s.size
self.to_s
end
# Returns the object as a string, depending on the mode set upon object creation.
def to_s
if mode == :parse
"#{int}" + [string].pack("a#{len}")
elsif mode == :fix
self.int.v = string.size
"#{int}#{string}"
else
"#{int}#{string}"
end
end
# By redefining #string=, we can ensure the correct value
# is calculated upon assignment. If you'd prefer to have
# an incorrect value, use the syntax, obj[:string]="value"
# instead. Note, by using the alternate form, you must
# #calc before you can trust the int's value. Think of the =
# assignment as "set to equal," while the []= assignment
# as "boxing in" the value. Maybe.
def string=(s)
self[:string] = s
calc
end
# Shorthand for querying a length. Note that the usual "length"
# and "size" refer to the number of elements of this struct.
def len
self[:int].value
end
# Override the size, if you must.
def len=(i)
self[:int].value=i
end
# Read takes a string, assumes an int width as previously
# defined upon initialization, but makes no guarantees
# the int value isn't lying. You're on your own to test
# for that (or use parse() with a :mode set).
def read(s)
unless s[0,int.width].size == int.width
raise StandardError, "String is too short for type #{int.class}"
else
int.read(s[0,int.width])
self[:string] = s[int.width,s.size]
end
self.to_s
end
# parse() is like read(), except that it interprets the string, either
# based on the declared length, or the actual length. Which strategy
# is used is dependant on which :mode is set (with self.mode).
#
# :parse : Read the length, and then read in that many bytes of the string.
# The string may be truncated or padded out with nulls, as dictated by the value.
#
# :fix : Skip the length, read the rest of the string, then set the length
# to what it ought to be.
#
# else : If neither of these modes are set, just perfom a normal read().
# This is the default.
def parse(s)
unless s[0,int.width].size == int.width
raise StandardError, "String is too short for type #{int.class}"
else
case mode
when :parse
int.read(s[0,int.width])
self[:string] = s[int.width,int.value]
if string.size < int.value
self[:string] += ("\x00" * (int.value - self[:string].size))
end
when :fix
self.string = s[int.width,s.size]
else
return read(s)
end
end
self.to_s
end
end
end
class Struct
# Monkeypatch for Struct to include some string safety -- anything that uses
# Struct is going to presume binary strings anyway.
def force_binary(str)
PacketFu.force_binary(str)
end
end
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,219 +0,0 @@
# -*- coding: binary -*-
require 'singleton'
module PacketFu
# Utils is a collection of various and sundry network utilities that are useful for packet
# manipulation.
class Utils
# Returns the MAC address of an IP address, or nil if it's not responsive to arp. Takes
# a dotted-octect notation of the target IP address, as well as a number of parameters:
#
# === Parameters
# :eth_saddr
# Source MAC address. Defaults to "00:00:00:00:00:00".
# :ip_saddr
# Source IP address. Defaults to "0.0.0.0"
# :flavor
# The flavor of the ARP request. Defaults to :none.
# :timeout
# Timeout in seconds. Defaults to 3.
#
# === Example
# PacketFu::Utils::arp("192.168.1.1") #=> "00:18:39:01:33:70"
# PacketFu::Utils::arp("192.168.1.1", :timeout => 5, :flavor => :hp_deskjet)
#
# === Warning
#
# It goes without saying, spewing forged ARP packets on your network is a great way to really
# irritate your co-workers.
def self.arp(target_ip,args={})
iface = args[:iface] || :eth0
args[:config] ||= whoami?(:iface => iface)
arp_pkt = PacketFu::ARPPacket.new(:flavor => (args[:flavor] || :none), :config => args[:config])
arp_pkt.eth_daddr = "ff:ff:ff:ff:ff:ff"
arp_pkt.arp_daddr_mac = "00:00:00:00:00:00"
arp_pkt.arp_daddr_ip = target_ip
# Stick the Capture object in its own thread.
cap_thread = Thread.new do
target_mac = nil
cap = PacketFu::Capture.new(:iface => iface, :start => true,
:filter => "arp src #{target_ip} and ether dst #{arp_pkt.eth_saddr}")
arp_pkt.to_w(iface) # Shorthand for sending single packets to the default interface.
timeout = 0
while target_mac.nil? && timeout <= (args[:timeout] || 3)
if cap.save > 0
arp_response = PacketFu::Packet.parse(cap.array[0])
target_mac = arp_response.arp_saddr_mac if arp_response.arp_saddr_ip = target_ip
end
timeout += 0.1
sleep 0.1 # Check for a response ten times per second.
end
target_mac
end # cap_thread
cap_thread.value
end
# Discovers the local IP and Ethernet address, which is useful for writing
# packets you expect to get a response to. Note, this is a noisy
# operation; a UDP packet is generated and dropped on to the default (or named)
# interface, and then captured (which means you need to be root to do this).
#
# whoami? returns a hash of :eth_saddr, :eth_src, :ip_saddr, :ip_src,
# :ip_src_bin, :eth_dst, and :eth_daddr (the last two are usually suitable
# for a gateway mac address). It's most useful as an argument to
# PacketFu::Config.new, or as an argument to the many Packet constructors.
#
# Note that if you have multiple interfaces with the same route (such as when
# wlan0 and eth0 are associated to the same network), the "first" one
# according to Pcap.lookupdev will be used, regardless of which :iface you
# pick.
#
# === Parameters
# :iface => "eth0"
# An interface to listen for packets on. Note that since we rely on the OS to send the probe packet,
# you will need to specify a target which will use this interface.
# :target => "1.2.3.4"
# A target IP address. By default, a packet will be sent to a random address in the 177/8 network.
# Since this network is IANA reserved (for now), this network should be handled by your default gateway
# and default interface.
def self.whoami?(args={})
unless args.kind_of? Hash
raise ArgumentError, "Argument to `whoami?' must be a Hash"
end
if args[:iface].to_s =~ /^lo/ # Linux loopback more or less. Need a switch for windows loopback, too.
dst_host = "127.0.0.1"
else
dst_host = (args[:target] || IPAddr.new((rand(16777216) + 2969567232), Socket::AF_INET).to_s)
end
dst_port = rand(0xffff-1024)+1024
msg = "PacketFu whoami? packet #{(Time.now.to_i + rand(0xffffff)+1)}"
iface = (args[:iface] || ENV['IFACE'] || Pcap.lookupdev || :lo ).to_s
cap = PacketFu::Capture.new(:iface => iface, :promisc => false, :start => true, :filter => "udp and dst host #{dst_host} and dst port #{dst_port}")
udp_sock = UDPSocket.new
udp_sock.send(msg,0,dst_host,dst_port)
udp_sock = nil
cap.save
pkt = Packet.parse(cap.array[0]) unless cap.save.zero?
timeout = 0
while timeout < 1 # Sometimes packet generation can be a little pokey.
if pkt
timeout = 1.1 # Cancel the timeout
if pkt.payload == msg
my_data = {
:iface => (args[:iface] || ENV['IFACE'] || Pcap.lookupdev || "lo").to_s,
:pcapfile => args[:pcapfile] || "/tmp/out.pcap",
:eth_saddr => pkt.eth_saddr,
:eth_src => pkt.eth_src.to_s,
:ip_saddr => pkt.ip_saddr,
:ip_src => pkt.ip_src,
:ip_src_bin => [pkt.ip_src].pack("N"),
:eth_dst => pkt.eth_dst.to_s,
:eth_daddr => pkt.eth_daddr
}
else raise SecurityError,
"whoami() packet doesn't match sent data. Something fishy's going on."
end
else
sleep 0.1; timeout += 0.1
cap.save
pkt = Packet.parse(cap.array[0]) unless cap.save.zero?
end
raise SocketError, "Didn't receive the whomi() packet, can't automatically configure." if !pkt
cap = nil
end
my_data
end
# This is a brute-force approach at trying to find a suitable interface with an IP address.
def self.lookupdev
# XXX cycle through eth0-9 and wlan0-9, and if a cap start throws a RuntimeErorr (and we're
# root), it's not a good interface. Boy, really ought to fix lookupdev directly with another
# method that returns an array rather than just the first candidate.
end
# Handles ifconfig for various (okay, two) platforms.
# Will have Windows done shortly.
#
# Takes an argument (either string or symbol) of the interface to look up, and
# returns a hash which contains at least the :iface element, and if configured,
# these additional elements:
#
# :eth_saddr # A human readable MAC address
# :eth_src # A packed MAC address
# :ip_saddr # A dotted-quad string IPv4 address
# :ip_src # A packed IPv4 address
# :ip4_obj # An IPAddr object with bitmask
# :ip6_saddr # A colon-delimited hex IPv6 address, with bitmask
# :ip6_obj # An IPAddr object with bitmask
#
# === Example
# PacketFu::Utils.ifconfig :wlan0 # Not associated yet
# #=> {:eth_saddr=>"00:1d:e0:73:9d:ff", :eth_src=>"\000\035\340s\235\377", :iface=>"wlan0"}
# PacketFu::Utils.ifconfig("eth0") # Takes 'eth0' as default
# #=> {:eth_saddr=>"00:1c:23:35:70:3b", :eth_src=>"\000\034#5p;", :ip_saddr=>"10.10.10.9", :ip4_obj=>#<IPAddr: IPv4:10.10.10.0/255.255.254.0>, :ip_src=>"\n\n\n\t", :iface=>"eth0", :ip6_saddr=>"fe80::21c:23ff:fe35:703b/64", :ip6_obj=>#<IPAddr: IPv6:fe80:0000:0000:0000:0000:0000:0000:0000/ffff:ffff:ffff:ffff:0000:0000:0000:0000>}
# PacketFu::Utils.ifconfig :lo
# #=> {:ip_saddr=>"127.0.0.1", :ip4_obj=>#<IPAddr: IPv4:127.0.0.0/255.0.0.0>, :ip_src=>"\177\000\000\001", :iface=>"lo", :ip6_saddr=>"::1/128", :ip6_obj=>#<IPAddr: IPv6:0000:0000:0000:0000:0000:0000:0000:0001/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>}
def self.ifconfig(iface='eth0')
ret = {}
iface = iface.to_s.scan(/[0-9A-Za-z]/).join # Sanitizing input, no spaces, semicolons, etc.
case RUBY_PLATFORM
when /linux/i
ifconfig_data = %x[ifconfig #{iface}]
if ifconfig_data =~ /#{iface}/i
ifconfig_data = ifconfig_data.split(/[\s]*\n[\s]*/)
else
raise ArgumentError, "Cannot ifconfig #{iface}"
end
real_iface = ifconfig_data.first
ret[:iface] = real_iface.split.first.downcase
if real_iface =~ /[\s]HWaddr[\s]+([0-9a-fA-F:]{17})/i
ret[:eth_saddr] = $1.downcase
ret[:eth_src] = EthHeader.mac2str(ret[:eth_saddr])
end
ifconfig_data.each do |s|
case s
when /inet addr:[\s]*([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)(.*Mask:([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+))?/i
ret[:ip_saddr] = $1
ret[:ip_src] = [IPAddr.new($1).to_i].pack("N")
ret[:ip4_obj] = IPAddr.new($1)
ret[:ip4_obj] = ret[:ip4_obj].mask($3) if $3
when /inet6 addr:[\s]*([0-9a-fA-F:\x2f]+)/
ret[:ip6_saddr] = $1
ret[:ip6_obj] = IPAddr.new($1)
end
end # linux
when /darwin/i
ifconfig_data = %x[ifconfig #{iface}]
if ifconfig_data =~ /#{iface}/i
ifconfig_data = ifconfig_data.split(/[\s]*\n[\s]*/)
else
raise ArgumentError, "Cannot ifconfig #{iface}"
end
real_iface = ifconfig_data.first
ret[:iface] = real_iface.split(':')[0]
ifconfig_data.each do |s|
case s
when /ether[\s]([0-9a-fA-F:]{17})/i
ret[:eth_saddr] = $1
ret[:eth_src] = EthHeader.mac2str(ret[:eth_saddr])
when /inet[\s]*([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)(.*Mask:([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+))?/i
ret[:ip_saddr] = $1
ret[:ip_src] = [IPAddr.new($1).to_i].pack("N")
ret[:ip4_obj] = IPAddr.new($1)
ret[:ip4_obj] = ret[:ip4_obj].mask($3) if $3
when /inet6[\s]*([0-9a-fA-F:\x2f]+)/
ret[:ip6_saddr] = $1
ret[:ip6_obj] = IPAddr.new($1)
end
end # darwin
end # RUBY_PLATFORM
ret
end
end
end
# vim: nowrap sw=2 sts=0 ts=2 ff=unix ft=ruby

View File

@ -1,51 +0,0 @@
# -*- coding: binary -*-
module PacketFu
# Check the repo's for version release histories
VERSION = "1.1.5" # Unscrewing the 1.1.4 gem
# Returns PacketFu::VERSION
def self.version
VERSION
end
# Returns a version string in a binary format for easy comparisons.
def self.binarize_version(str)
if(str.respond_to?(:split) && str =~ /^[0-9]+(\.([0-9]+)(\.[0-9]+)?)?\..+$/)
bin_major,bin_minor,bin_teeny = str.split(/\x2e/).map {|x| x.to_i}
bin_version = (bin_major.to_i << 16) + (bin_minor.to_i << 8) + bin_teeny.to_i
else
raise ArgumentError, "Compare version malformed. Should be \x22x.y.z\x22"
end
end
# Returns true if the version is equal to or greater than the compare version.
# If the current version of PacketFu is "0.3.1" for example:
#
# PacketFu.at_least? "0" # => true
# PacketFu.at_least? "0.2.9" # => true
# PacketFu.at_least? "0.3" # => true
# PacketFu.at_least? "1" # => true after 1.0's release
# PacketFu.at_least? "1.12" # => false
# PacketFu.at_least? "2" # => false
def self.at_least?(str)
this_version = binarize_version(self.version)
ask_version = binarize_version(str)
this_version >= ask_version
end
# Returns true if the current version is older than the compare version.
def self.older_than?(str)
return false if str == self.version
this_version = binarize_version(self.version)
ask_version = binarize_version(str)
this_version < ask_version
end
# Returns true if the current version is newer than the compare version.
def self.newer_than?(str)
return false if str == self.version
!self.older_than?(str)
end
end