metasploit-framework/lib/rex/exploitation/obfuscatejs.rb

337 lines
8.3 KiB
Ruby
Raw Normal View History

# -*- coding: binary -*-
require 'rex/text'
module Rex
module Exploitation
#
# Obfuscates javascript in various ways
#
class ObfuscateJS
attr_reader :opts
#
# Obfuscates a javascript string.
#
# Options are 'Symbols', described below, and 'Strings', a boolean
# which specifies whether strings within the javascript should be
# mucked with (defaults to false).
#
# The 'Symbols' argument should have the following format:
#
# {
# 'Variables' => [ 'var1', ... ],
# 'Methods' => [ 'method1', ... ],
# 'Namespaces' => [ 'n', ... ],
# 'Classes' => [ { 'Namespace' => 'n', 'Class' => 'y'}, ... ]
# }
#
# Make sure you order your methods, classes, and namespaces by most
# specific to least specific to prevent partial substitution. For
# instance, if you have two methods (joe and joeBob), you should place
# joeBob before joe because it is more specific and will be globally
# replaced before joe is replaced.
#
# A simple example follows:
#
# <code>
# js = ObfuscateJS.new <<ENDJS
# function say_hi() {
# var foo = "Hello, world";
# document.writeln(foo);
# }
# ENDJS
# js.obfuscate(
# 'Symbols' => {
# 'Variables' => [ 'foo' ],
# 'Methods' => [ 'say_hi' ]
# }
# 'Strings' => true
# )
# </code>
#
# which should generate something like the following:
#
# <code>
# function oJaDYRzFOyJVQCOHk() { var cLprVG = "\x48\x65\x6c\x6c\x6f\x2c\x20\x77\x6f\x72\x6c\x64"; document.writeln(cLprVG); }
# </code>
#
# String obfuscation tries to deal with escaped quotes within strings but
# won't catch things like
# "\\"
# so be careful.
#
def self.obfuscate(js, opts = {})
ObfuscateJS.new(js).obfuscate(opts)
end
#
# Initialize an instance of the obfuscator
#
def initialize(js = "", opts = {})
@js = js
@dynsym = {}
@opts = {
'Symbols' => {
'Variables'=>[],
'Methods'=>[],
'Namespaces'=>[],
'Classes'=>[]
},
'Strings'=>false
}
@done = false
update_opts(opts) if (opts.length > 0)
end
def update_opts(opts)
if (opts.nil? or opts.length < 1)
return
end
if (@opts['Symbols'] && opts['Symbols'])
['Variables', 'Methods', 'Namespaces', 'Classes'].each { |k|
if (@opts['Symbols'][k] && opts['Symbols'][k])
opts['Symbols'][k].each { |s|
if (not @opts['Symbols'][k].include? s)
@opts['Symbols'][k].push(s)
end
}
elsif (opts['Symbols'][k])
@opts['Symbols'][k] = opts['Symbols'][k]
end
}
elsif opts['Symbols']
@opts['Symbols'] = opts['Symbols']
end
@opts['Strings'] ||= opts['Strings']
end
#
# Returns the dynamic symbol associated with the supplied symbol name
#
# If obfuscation has not yet been performed (i.e. obfuscate() has not been
# called), then this method simply returns its argument
#
def sym(name)
@dynsym[name] || name
end
#
# Obfuscates the javascript string passed to the constructor
#
def obfuscate(opts = {})
#return @js if (@done)
@done = true
update_opts(opts)
if (@opts['Strings'])
obfuscate_strings()
# Full space randomization does not work for javascript -- despite
# claims that space is irrelavent, newlines break things. Instead,
# use only space (0x20) and tab (0x09).
#@js.gsub!(/[\x09\x20]+/) { |s|
# len = rand(50)+2
# set = "\x09\x20"
# buf = ''
# while (buf.length < len)
# buf << set[rand(set.length)].chr
# end
#
# buf
#}
end
# Remove our comments
remove_comments
# Globally replace symbols
replace_symbols(@opts['Symbols']) if @opts['Symbols']
return @js
end
#
# Returns the replaced javascript string
#
def to_s
@js
end
alias :to_str :to_s
def <<(str)
@js << str
end
def +(str)
@js + str
end
protected
attr_accessor :done
#
# Get rid of both single-line C++ style comments and multiline C style comments.
#
# Note: embedded comments (e.g.: "/*/**/*/") will break this,
# but they also break real javascript engines so I don't care.
#
def remove_comments
@js.gsub!(%r{\s+//.*$}, '')
@js.gsub!(%r{/\*.*?\*/}m, '')
end
# Replace method, class, and namespace symbols found in the javascript
# string
def replace_symbols(symbols)
taken = { }
# Generate random symbol names
[ 'Variables', 'Methods', 'Classes', 'Namespaces' ].each { |symtype|
next if symbols[symtype].nil?
symbols[symtype].each { |sym|
dyn = Rex::Text.rand_text_alpha(rand(32)+1) until dyn and not taken.key?(dyn)
taken[dyn] = true
if symtype == 'Classes'
full_sym = sym['Namespace'] + "." + sym['Class']
@dynsym[full_sym] = dyn
@js.gsub!(/#{full_sym}/) { |m|
sym['Namespace'] + "." + dyn
}
else
@dynsym[sym] = dyn
@js.gsub!(/#{sym}/, dyn)
end
}
}
end
#
# Change each string into some javascript that will generate that string
#
# There are a couple of caveats to using string obfuscation:
# * it tries to deal with escaped quotes within strings but won't catch
# things like: "\\"
# * depending on the random choices, this can easily balloon a short
# string up to hundreds of kilobytes if called multiple times.
# so be careful.
#
def obfuscate_strings()
@js.gsub!(/".*?[^\\]"|'.*?[^\\]'/) { |str|
buf = ''
quote = str[0,1]
# Pull the quotes off either end
str = str[1, str.length-2]
case (rand(2))
# Disable hex encoding for now. It's just too big a hassle.
#when 0
# # This is where we can run into trouble with generating
# # incorrect code. If we hex encode a string twice, the second
# # encoding will generate the first instead of the original
# # string.
# if str =~ /\\x/
# # Always have to remove spaces from strings so the space
# # randomization doesn't mess with them.
# buf = quote + str.gsub(/ /, '\x20') + quote
# else
# buf = '"' + Rex::Text.to_hex(str) + '"'
# end
when 0
#
# Escape sequences when naively encoded for unescape become a
# literal backslash instead of the intended meaning. To avoid
# that problem, we scan the string for escapes and leave them
# unmolested.
#
buf << 'unescape("'
bytes = str.unpack("C*")
c = 0
while bytes[c]
if bytes[c].chr == "\\"
# XXX This is pretty slow.
esc_len = parse_escape(bytes, c)
buf << bytes[c, esc_len].map{|a| a.chr}.join
c += esc_len
next
end
buf << "%%%0.2x"%(bytes[c])
# Break the string into smaller strings
if bytes[c+1] and rand(10) == 0
buf << '" + "'
end
c += 1
end
buf << '")'
when 1
buf = "String.fromCharCode( "
bytes = str.unpack("C*")
c = 0
while bytes[c]
if bytes[c].chr == "\\"
case bytes[c+1].chr
# For chars that contain their non-escaped selves, step
# past the backslash and let the rand() below decide
# how to represent the character.
when '"'; c += 1
when "'"; c += 1
when "\\"; c += 1
# For others, just take the hex representation out of
# laziness.
when "n"; buf << "0x0a"; c += 2; next
when "t"; buf << "0x09"; c += 2; next
# Lastly, if it's a hex, unicode, or octal escape,
# leave it, and anything after it, alone. At some
# point we may want to parse up to the end of the
# escapes and encode subsequent non-escape characters.
# Since this is the lazy way to do it, spaces after an
# escape sequence will get away unmodified. To prevent
# the space randomizer from hosing the string, convert
# spaces specifically.
else
buf = buf[0,buf.length-1] + " )"
buf << ' + ("' + bytes[c, bytes.length].map{|a| a==0x20 ? '\x20' : a.chr}.join + '" '
break
end
end
case (rand(3))
when 0
buf << " %i,"%(bytes[c])
when 1
buf << " 0%o,"%(bytes[c])
when 2
buf << " 0x%0.2x,"%(bytes[c])
end
c += 1
end
# Strip off the last comma
buf = buf[0,buf.length-1] + " )"
end
buf
}
@js
end
def parse_escape(bytes, offset)
esc_len = 0
if bytes[offset].chr == "\\"
case bytes[offset+1].chr
when "u"; esc_len = 6 # unicode \u1234
when "x"; esc_len = 4 # hex, \x41
when /[0-9]/ # octal, \123, \0
oct = bytes[offset+1, 4].map{|a|a.chr}.join
oct =~ /([0-9]+)/
esc_len = 1 + $1.length
else; esc_len = 2 # \" \n, etc.
end
end
esc_len
end
end
end
end