HELK/docker/helk-jupyter/notebooks/sigma/win_susp_ntlm_auth.ipynb

129 lines
2.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NTLM Logon\n",
"Detects logons using NTLM, which could be caused by a legacy source or attackers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rule Content\n",
"```\n",
"- title: NTLM Logon\n",
" id: 98c3bcf1-56f2-49dc-9d8d-c66cf190238b\n",
" status: experimental\n",
" description: Detects logons using NTLM, which could be caused by a legacy source\n",
" or attackers\n",
" references:\n",
" - https://twitter.com/JohnLaTwC/status/1004895028995477505\n",
" - https://goo.gl/PsqrhT\n",
" author: Florian Roth\n",
" date: 2018/06/08\n",
" tags:\n",
" - attack.lateral_movement\n",
" - attack.t1075\n",
" logsource:\n",
" product: windows\n",
" service: ntlm\n",
" definition: Reqiures events from Microsoft-Windows-NTLM/Operational\n",
" category: null\n",
" detection:\n",
" selection:\n",
" EventID: 8002\n",
" CallingProcessName: '*'\n",
" condition: selection\n",
" falsepositives:\n",
" - Legacy hosts\n",
" level: low\n",
"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Querying Elasticsearch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import Libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from elasticsearch import Elasticsearch\n",
"from elasticsearch_dsl import Search\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialize Elasticsearch client"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"es = Elasticsearch(['http://helk-elasticsearch:9200'])\n",
"searchContext = Search(using=es, index='logs-*', doc_type='doc')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run Elasticsearch Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"s = searchContext.query('query_string', query='(event_id:\"8002\" AND process_path.keyword:*)')\n",
"response = s.execute()\n",
"if response.success():\n",
" df = pd.DataFrame((d.to_dict() for d in s.scan()))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Show Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}