HELK/docker/helk-jupyter/notebooks/sigma/sysmon_ads_executable.ipynb

133 lines
3.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Executable in ADS\n",
"Detects the creation of an ADS data stream that contains an executable (non-empty imphash)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rule Content\n",
"```\n",
"- title: Executable in ADS\n",
" id: b69888d4-380c-45ce-9cf9-d9ce46e67821\n",
" status: experimental\n",
" description: Detects the creation of an ADS data stream that contains an executable\n",
" (non-empty imphash)\n",
" references:\n",
" - https://twitter.com/0xrawsec/status/1002478725605273600?s=21\n",
" tags:\n",
" - attack.defense_evasion\n",
" - attack.t1027\n",
" - attack.s0139\n",
" author: Florian Roth, @0xrawsec\n",
" date: 2018/06/03\n",
" logsource:\n",
" product: windows\n",
" service: sysmon\n",
" definition: 'Requirements: Sysmon config with Imphash logging activated'\n",
" category: null\n",
" detection:\n",
" selection:\n",
" EventID: 15\n",
" filter:\n",
" Imphash: '00000000000000000000000000000000'\n",
" condition: selection and not filter\n",
" fields:\n",
" - TargetFilename\n",
" - Image\n",
" falsepositives:\n",
" - unknown\n",
" level: critical\n",
"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Querying Elasticsearch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import Libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from elasticsearch import Elasticsearch\n",
"from elasticsearch_dsl import Search\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialize Elasticsearch client"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"es = Elasticsearch(['http://helk-elasticsearch:9200'])\n",
"searchContext = Search(using=es, index='logs-endpoint-winevent-sysmon-*', doc_type='doc')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run Elasticsearch Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"s = searchContext.query('query_string', query='(event_id:\"15\" AND (NOT (hash_imphash:\"00000000000000000000000000000000\")))')\n",
"response = s.execute()\n",
"if response.success():\n",
" df = pd.DataFrame((d.to_dict() for d in s.scan()))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Show Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}