mirror of https://github.com/infosecn1nja/HELK.git
133 lines
3.2 KiB
Plaintext
133 lines
3.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Data Compressed - Powershell\n",
|
|
"An adversary may compress data (e.g., sensitive documents) that is collected prior to exfiltration in order to make it portable and minimize the amount of data sent over the network"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Rule Content\n",
|
|
"```\n",
|
|
"- title: Data Compressed - Powershell\n",
|
|
" id: 6dc5d284-69ea-42cf-9311-fb1c3932a69a\n",
|
|
" status: experimental\n",
|
|
" description: An adversary may compress data (e.g., sensitive documents) that is\n",
|
|
" collected prior to exfiltration in order to make it portable and minimize the\n",
|
|
" amount of data sent over the network\n",
|
|
" author: Timur Zinniatullin, oscd.community\n",
|
|
" date: 2019/10/21\n",
|
|
" modified: 2019/11/04\n",
|
|
" references:\n",
|
|
" - https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1002/T1002.yaml\n",
|
|
" logsource:\n",
|
|
" product: windows\n",
|
|
" service: powershell\n",
|
|
" description: Script block logging must be enabled\n",
|
|
" category: null\n",
|
|
" detection:\n",
|
|
" selection:\n",
|
|
" EventID: 4104\n",
|
|
" keywords|contains|all:\n",
|
|
" - -Recurse\n",
|
|
" - '|'\n",
|
|
" - Compress-Archive\n",
|
|
" condition: selection\n",
|
|
" falsepositives:\n",
|
|
" - highly likely if archive ops are done via PS\n",
|
|
" level: low\n",
|
|
" tags:\n",
|
|
" - attack.exfiltration\n",
|
|
" - attack.t1002\n",
|
|
"\n",
|
|
"```"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Querying Elasticsearch"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Import Libraries"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from elasticsearch import Elasticsearch\n",
|
|
"from elasticsearch_dsl import Search\n",
|
|
"import pandas as pd"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Initialize Elasticsearch client"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"es = Elasticsearch(['http://helk-elasticsearch:9200'])\n",
|
|
"searchContext = Search(using=es, index='logs-endpoint-winevent-powershell-*', doc_type='doc')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Run Elasticsearch Query"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"s = searchContext.query('query_string', query='(event_id:\"4104\" AND keywords.keyword:*\\-Recurse* AND keywords.keyword:*|* AND keywords.keyword:*Compress\\-Archive*)')\n",
|
|
"response = s.execute()\n",
|
|
"if response.success():\n",
|
|
" df = pd.DataFrame((d.to_dict() for d in s.scan()))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Show Results"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df.head()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|