HELK/docker/helk-jupyter/notebooks/sigma/lnx_shell_susp_log_entries....

121 lines
2.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Suspicious Log Entries\n",
"Detects suspicious log entries in Linux log files"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rule Content\n",
"```\n",
"- title: Suspicious Log Entries\n",
" id: f64b6e9a-5d9d-48a5-8289-e1dd2b3876e1\n",
" description: Detects suspicious log entries in Linux log files\n",
" author: Florian Roth\n",
" logsource:\n",
" product: linux\n",
" service: null\n",
" category: null\n",
" detection:\n",
" keywords:\n",
" - entered promiscuous mode\n",
" - Deactivating service\n",
" - Oversized packet received from\n",
" - imuxsock begins to drop messages\n",
" condition: keywords\n",
" falsepositives:\n",
" - Unknown\n",
" level: medium\n",
"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Querying Elasticsearch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import Libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from elasticsearch import Elasticsearch\n",
"from elasticsearch_dsl import Search\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialize Elasticsearch client"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"es = Elasticsearch(['http://helk-elasticsearch:9200'])\n",
"searchContext = Search(using=es, index='logs-*', doc_type='doc')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run Elasticsearch Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"s = searchContext.query('query_string', query='\\*.keyword:(*entered\\ promiscuous\\ mode* OR *Deactivating\\ service* OR *Oversized\\ packet\\ received\\ from* OR *imuxsock\\ begins\\ to\\ drop\\ messages*)')\n",
"response = s.execute()\n",
"if response.success():\n",
" df = pd.DataFrame((d.to_dict() for d in s.scan()))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Show Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}