HELK/docker/helk-jupyter/notebooks/sigma/lnx_auditd_susp_cmds.ipynb

136 lines
3.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Detects Suspicious Commands on Linux systems\n",
"Detects relevant commands often related to malware or hacking activity"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rule Content\n",
"```\n",
"- title: Detects Suspicious Commands on Linux systems\n",
" id: 1543ae20-cbdf-4ec1-8d12-7664d667a825\n",
" status: experimental\n",
" description: Detects relevant commands often related to malware or hacking activity\n",
" references:\n",
" - Internal Research - mostly derived from exploit code including code in MSF\n",
" date: 2017/12/12\n",
" author: Florian Roth\n",
" logsource:\n",
" product: linux\n",
" service: auditd\n",
" category: null\n",
" detection:\n",
" cmd1:\n",
" type: EXECVE\n",
" a0: chmod\n",
" a1: '777'\n",
" cmd2:\n",
" type: EXECVE\n",
" a0: chmod\n",
" a1: u+s\n",
" cmd3:\n",
" type: EXECVE\n",
" a0: cp\n",
" a1: /bin/ksh\n",
" cmd4:\n",
" type: EXECVE\n",
" a0: cp\n",
" a1: /bin/sh\n",
" condition: 1 of them\n",
" falsepositives:\n",
" - Admin activity\n",
" level: medium\n",
"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Querying Elasticsearch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import Libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from elasticsearch import Elasticsearch\n",
"from elasticsearch_dsl import Search\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialize Elasticsearch client"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"es = Elasticsearch(['http://helk-elasticsearch:9200'])\n",
"searchContext = Search(using=es, index='logs-*', doc_type='doc')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run Elasticsearch Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"s = searchContext.query('query_string', query='(type:\"EXECVE\" AND ((a0:\"chmod\" AND a1:\"777\") OR (a0:\"chmod\" AND a1:\"u\\+s\") OR (a0:\"cp\" AND a1:\"\\/bin\\/ksh\") OR (a0:\"cp\" AND a1:\"\\/bin\\/sh\")))')\n",
"response = s.execute()\n",
"if response.success():\n",
" df = pd.DataFrame((d.to_dict() for d in s.scan()))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Show Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}