
 1

Building Streaming
Applications with
Apache Spark™

How to Use Structured Streaming to Build Complex Continuous Applications

Building Streaming Applications with Apache Spark™
How to Use Structured Streaming to Build Complex Continuous Applications

Special thanks to the contributions of Michael Armbrust, Bill Chambers, Tyson Condie,  
Jules Damji, Tathagata Das, Kunal Khamar, Reynold Xin, Burak Yavuz, and Matei Zaharia  
to this ebook.  

 

 
 

 2

About Databricks
Databricks’ mission is to accelerate innovation for its customers by unifying Data Science, Engineering and Business. Founded by the team who started the Apache Spark™ project, Databricks
provides a Unified Analytics Platform for data science teams to collaborate with data engineering and lines of business to build data products. Users achieve faster time-to-value with
Databricks by creating analytic workflows that go from ETL and interactive exploration to production. The company also makes it easier for its users to focus on their data by providing a fully
managed, scalable, and secure cloud infrastructure that reduces operational complexity and total cost of ownership. Databricks, venture-backed by Andreessen Horowitz and NEA, has a global
customer base that includes Salesforce, Viacom, Amgen, Shell and HP. For more information, visit www.databricks.com.

Databricks 
160 Spear Street, 13th Floor 
San Francisco, CA 94105 
Contact Us 
 
© Databricks 2018. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

http://www.databricks.com
http://www.databricks.com
http://databricks.com
http://go.databricks.com/contact-databricks
http://www.apache.org/
http://databricks.com
http://go.databricks.com/contact-databricks
http://www.apache.org/

Table of Contents 

Introduction 4

Part 1: An Introduction to Structured Streaming 5
Structured Streaming In Apache Spark 6

Part 2: Real-time ETL Pipelines 15
Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1 16

Part 3: Fixing Data Transformation Challenges 24
Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 25

Part 4: Processing Data in Apache Kafka 36
Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 37

Part 5: Event-time Aggregations and Watermarking 47
Event-time Aggregation and Watermarking in Apache Spark’s Structured Streaming 48

Part 6: Vital Steps to Ensure Production Readiness 53
Taking Apache Spark’s Structured Streaming to Production 54

Part 7: Better Cost Management through APIs 59
Running Streaming Jobs Once a Day For 10x Cost Savings 60

Part 8: Customized and Arbitrary Stateful Processing 64
Arbitrary Stateful Processing in Apache Spark’s Structured Streaming 65

Conclusion 72

 3

Introduction
 
Since its release, Apache Spark Streaming has become one of the most
widely used distributed streaming engines, thanks to its high-level API
and exactly-once semantics. Most streaming engines focus on
performing computations on a stream. Instead, stream processing
happens as part of a larger application, which we’ll call a continuous
application.

We define a continuous application as an end-to-end application that
reacts to data in real-time. Structured Streaming is a high-level API
originally contributed to Apache Spark 2.0 to support continuous
applications and was recently improved upon in the release of Apache
Spark 2.3. Structured Streaming incorporates the idea of continuous
applications to provide a number of features that no other streaming
engines offer strong guarantees about consistency with batch jobs,
transactional integration with storage systems, and tight integration
with the rest of Spark.

 
At Databricks, we’ve worked with thousands of users to understand
how to simplify real-time applications. This ebook provides an
overview of Structured Streaming and explores how we are using the
new features of Apache Spark 2.1 and 2.2 to overcome the primary
challenges of building continuous applications and building our own
production pipelines. Highlights include how to use Structured
Streaming to:

• Easily build an end-to-end streaming ETL pipeline;
• Solve complex data transformation challenges;
• Perform monitoring and alerting;
• Consume and transform complex data streams with Spark and

Kafka;
• Easily process streaming aggregations; and
• Better manage resources for incremental processing of data.

Introduction 4

Part 1: An
Introduction
to Structured
Streaming

 5

Part 1:  
An Introduction to
Structured Streaming

Structured Streaming In Apache
Spark
A new high-level API for streaming
July 28, 2016 | by Matei Zaharia, Tathagata Das, Michael Armbrust and
Reynold Xin

Try this notebook in Databricks: Scala Notebook, Python Notebook

Apache Spark 2.0 adds the first version of a new higher-level API,
Structured Streaming, for building continuous applications. The main
goal is to make it easier to build end-to-end streaming applications,
which integrate with storage, serving systems, and batch jobs in a
consistent and fault-tolerant way. In this post, we explain why this is
hard to do with current distributed streaming engines, and introduce
Structured Streaming.

Why Streaming is Difficult
At first glance, building a distributed streaming engine might seem as
simple as launching a set of servers and pushing data between them.
Unfortunately, distributed stream processing runs into multiple
complications that don’t affect simpler computations like batch jobs.

To start, consider a simple application: we receive (phone_id, time,
action) events from a mobile app, and want to count how many

actions of each type happened each hour, then store the result in
MySQL. If we were running this application as a batch job and had a
table with all the input events, we could express it as the following SQL
query:

In a distributed streaming engine, we might set up nodes to process
the data in a “map-reduce” pattern, as shown below. Each node in the
first layer reads a partition of the input data (say, the stream from one
set of phones), then hashes the events by (action, hour) to send them
to a reducer node, which tracks that group’s count and periodically
updates MySQL.

Structured Streaming In Apache Spark 6

SELECT action, WINDOW(time, "1 hour"), COUNT(*)
FROM events
GROUP BY action, WINDOW(time, "1 hour")

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Scala%20DataFrames%20API.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Python%20DataFrames%20API.html
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html

Unfortunately, this type of design can introduce quite a few challenges:

1. Consistency: This distributed design can cause records to be
processed in one part of the system before they’re processed in
another, leading to nonsensical results. For example, suppose our
app sends an “open” event when users open it, and a “close” event
when closed. If the reducer node responsible for “open” is slower
than the one for “close”, we might see a higher total count of

“closes” than “opens” in MySQL, which would not make sense. The
image above actually shows one such example.

2. Fault tolerance: What happens if one of the mappers or reducers
fails? A reducer should not count an action in MySQL twice, but
should somehow know how to request old data from the mappers
when it comes up. Streaming engines go through a great deal of
trouble to provide strong semantics here, at least within the
engine. In many engines, however, keeping the result consistent in
external storage is left to the user.

3. Out-of-order data: In the real world, data from different sources
can come out of order: for example, a phone might upload its data
hours late if it’s out of coverage. Just writing the reducer operators
to assume data arrives in order of time fields will not work—they
need to be prepared to receive out-of-order data, and to update
the results in MySQL accordingly.

In most current streaming systems, some or all of these concerns are
left to the user. This is unfortunate because these issues—how the
application interacts with the outside world—are some of the hardest
to reason about and get right. In particular, there is no easy way to get
semantics as simple as the SQL query above.

Structured Streaming Model
In Structured Streaming, we tackle the issue of semantics head-on by
making a strong guarantee about the system: at any time, the output of

the application is equivalent to executing a batch job on a prefix of the
data. For example, in our monitoring application, the result table in
MySQL will always be equivalent to taking a prefix of each phone’s
update stream (whatever data made it to the system so far) and
running the SQL query we showed above. There will never be “open”
events counted faster than “close” events, duplicate updates on
failure, etc. Structured Streaming automatically handles consistency
and reliability both within the engine and in interactions with external
systems (e.g. updating MySQL transactionally).

This prefix integrity guarantee makes it easy to reason about the three
challenges we identified. In particular:

1. Output tables are always consistent with all the records in a prefix
of the data. For example, as long as each phone uploads its data as
a sequential stream (e.g., to the same partition in Apache Kafka),
we will always process and count its events in order.

Structured Streaming In Apache Spark 7

2. Fault tolerance is handled holistically by Structured Streaming,
including in interactions with output sinks. This was a major goal
in supporting continuous applications.

3. The effect of out-of-order data is clear. We know that the job
outputs counts grouped by action and time for a prefix of the
stream. If we later receive more data, we might see a time field for
an hour in the past, and we will simply update its respective row in
MySQL. Structured Streaming also supports APIs for filtering out
overly old data if the user wants. But fundamentally, out-of-order
data is not a “special case”: the query says to group by time field,
and seeing an old time is no different than seeing a repeated
action.

The last benefit of Structured Streaming is that the API is very easy to
use: it is simply Spark’s DataFrame and Dataset API. Users just describe
the query they want to run, the input and output locations, and
optionally a few more details. The system then runs their query
incrementally, maintaining enough state to recover from failure, keep
the results consistent in external storage, etc. For example, here is how
to write our streaming monitoring application:

This code is nearly identical to the batch version below—only the
“read” and “write” changed:

The next sections explain the model in more detail, as well as the API.

Model Details
Conceptually, Structured Streaming treats all the data arriving as an
unbounded input table. Each new item in the stream is like a row
appended to the input table. We won’t actually retain all the input, but
our results will be equivalent to having all of it and running a batch job.

Structured Streaming In Apache Spark 8

// Read data continuously from an S3 location
val inputDF = spark.readStream.json("s3://logs")

// Do operations using the standard DataFrame API and write to
MySQL
inputDF.groupBy($"action", window($"time", "1 hour")).count()
 .writeStream.format("jdbc")
 .start("jdbc:mysql//…")

// Read data once from an S3 location
val inputDF = spark.read.json("s3://logs")

// Do operations using the standard DataFrame API and write to
MySQL
inputDF.groupBy($"action", window($"time", "1 hour")).count()
 .writeStream.format("jdbc")
 .save("jdbc:mysql//…")

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html

The developer then defines a query on this input table, as if it were a
static table, to compute a final result table that will be written to an
output sink. Spark automatically converts this batch-like query to a
streaming execution plan. This is called incrementalization: Spark
figures out what state needs to be maintained to update the result
each time a record arrives. Finally, developers specify triggers to
control when to update the results. Each time a trigger fires, Spark
checks for new data (new row in the input table), and incrementally
updates the result.

The last part of the model is output modes. Each time the result table
is updated, the developer wants to write the changes to an external
system, such as S3, HDFS, or a database. We usually want to write
output incrementally. For this purpose, Structured Streaming provides
three output modes:

• Append: Only the new rows appended to the result table since the
last trigger will be written to the external storage. This is applicable
only on queries where existing rows in the result table cannot
change (e.g. a map on an input stream).

• Complete: The entire updated result table will be written to
external storage.

• Update: Only the rows that were updated in the result table since
the last trigger will be changed in the external storage. This mode
works for output sinks that can be updated in place, such as a
MySQL table.

Let’s see how we can run our mobile monitoring application in this
model. Our batch query is to compute a count of actions grouped by
(action, hour). To run this query incrementally, Spark will maintain
some state with the counts for each pair so far, and update when new
records arrive. For each record changed, it will then output data
according to its output mode. The figure below shows this execution
using the Update output mode:

Structured Streaming In Apache Spark 9

 
At every trigger point, we take the previous grouped counts and
update them with new data that arrived since the last trigger to get a
new result table. We then emit only the changes required by our
output mode to the sink—here, we update the records for (action,
hour) pairs that changed during that trigger in MySQL (shown in red).

Note that the system also automatically handles late data. In the figure
above, the “open” event for phone3, which happened at 1:58 on the
phone, only gets to the system at 2:02. Nonetheless, even though it’s
past 2:00, we update the record for 1:00 in MySQL. However, the prefix
integrity guarantee in Structured Streaming ensures that we process

the records from each source in the order they arrive. For example,
because phone1’s “close” event arrives after its “open” event, we will
always update the “open” count before we update the “close” count.

Fault Recovery and Storage System
Requirements
Structured Streaming keeps its results valid even if machines fail. To
do this, it places two requirements on the input sources and output
sinks:

1. Input sources must be replayable, so that recent data can be re-
read if the job crashes. For example, message buses like Amazon
Kinesis and Apache Kafka are replayable, as is the file system input
source. Only a few minutes’ worth of data needs to be retained;
Structured Streaming will maintain its own internal state after
that.

2. Output sinks must support transactional updates, so that the
system can make a set of records appear atomically. The current
version of Structured Streaming implements this for file sinks, and
we also plan to add it for common databases and key-value stores.

3. We found that most Spark applications already use sinks and
sources with these properties, because users want their jobs to be
reliable.

Structured Streaming In Apache Spark 10

Apart from these requirements, Structured Streaming will manage its
internal state in a reliable storage system, such as S3 or HDFS, to store
data such as the running counts in our example. Given these
properties, Structured Streaming will enforce prefix integrity end-to-
end.

Structured Streaming API
Structured Streaming is integrated into Spark’s Dataset and DataFrame
APIs; in most cases, you only need to add a few method calls to run a
streaming computation. It also adds new operators for windowed
aggregation and for setting parameters of the execution model (e.g.
output modes). In Apache Spark 2.0, we’ve built an alpha version of
the system with the core APIs. More operators, such as sessionization,
will come in future releases.

API Basics
Streams in Structured Streaming are represented as DataFrames or
Datasets with the isStreaming property set to true. You can create
them using special read methods from various sources. For example,
suppose we wanted to read data in our monitoring application from
JSON files uploaded to Amazon S3. The code below shows how to do
this in Scala:

Our resulting DataFrame, inputDF, is our input table, which will be
continuously extended with new rows as new files are added to the
directory. The table has two columns—time and action. Now you can
use the usual DataFrame/Dataset operations to transform the data. In
our example, we want to count action types each hour. To do that we
have to group the data by action and 1 hours windows of time.

The new DataFrame countsDF is our result table, which has the
columns action, window, and count, and will be continuously updated
when the query is started. Note that this transformation would give
hourly counts even if inputDF was a static table. This allows developers
to test their business logic on static datasets and seamless apply them
on streaming data without changing the logic.

Finally, we tell the engine to write this table to a sink and start the
streaming computation.

The returned query is a StreamingQuery, a handle to the active

streaming execution and can be used to manage and monitor the
execution. You can run this complete example by importing the
following notebooks into Databricks Community edition: 
Scala Notebook, Python Notebook.

Structured Streaming In Apache Spark 11

val inputDF = spark.readStream.json("s3://logs")

val countsDF = inputDF.groupBy($"action", window($"time", "1 hour"))
 .count()

val query = countsDF.writeStream.format("jdbc").start("jdbc://...")

https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks.com/blog/2016/07/26/introducing-apache-spark-2-0.html
https://databricks.com/try-databricks
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Scala%20DataFrames%20API.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Python%20DataFrames%20API.html

Beyond these basics, there are many more operations that can be
done in Structured Streaming.

Mapping, Filtering and Running Aggregations
Structured Streaming programs can use DataFrame and Dataset’s
existing methods to transform data, including map, filter, select, and
others. In addition, running (or infinite) aggregations, such as a count

from the beginning of time, are available through the existing APIs.
This is what we used in our monitoring application above.

Windowed Aggregations on Event Time

Streaming applications often need to compute data on various types
of windows, including sliding windows, which overlap with each other
(e.g. a 1-hour window that advances every 5 minutes), and tumbling
windows, which do not (e.g. just every hour). In Structured Streaming,
windowing is simply represented as a group-by. Each input event can be
mapped to one or more windows, and simply results in updating one
or more result table rows.

Windows can be specified using the window function in DataFrames.
For example, we could change our monitoring job to count actions by
sliding windows as follows:

Whereas our previous application outputted results of the form (hour,
action, count), this new one will output results of the form (window,
action, count), such as (“1:10-2:10”, “open”, 17). If a late record arrives,
we will update all the corresponding windows in MySQL. And unlike in
many other systems, windowing is not just a special operator for
streaming computations; we can run the same code in a batch job to
group data in the same way.

Windowed aggregation is one area where we will continue to expand
Structured Streaming. In particular, in Spark 2.1, we plan to add
watermarks, a feature for dropping overly old data when sufficient
time has passed. Without this type of feature, the system might have to
track state for all old windows, which would not scale as the
application runs. In addition, we plan to add support for session-based
windows, i.e. grouping the events from one source into variable-length
sessions according to business logic.

Joining Streams with Static Data
Because Structured Streaming simply uses the DataFrame API, it is
straightforward to join a stream against a static DataFrame, such as an
Apache Hive table:

Structured Streaming In Apache Spark 12

inputDF.groupBy($"action", window($"time", "1 hour", "5
minutes"))
 .count()

// Bring in data about each customer from a static "customers"
table,
// then join it with a streaming DataFrame
val customersDF = spark.table("customers")
inputDF.join(customersDF, "customer_id")
 .groupBy($"customer_name", hour($"time"))
 .count()

Moreover, the static DataFrame could itself be computed using a Spark
query, allowing us to mix batch and streaming computations.

Interactive Queries
Structured Streaming can expose results directly to interactive queries
through Spark’s JDBC server. In Spark 2.0, there is a rudimentary
“memory” output sink for this purpose that is not designed for large
data volumes. However, in future releases, this will let you write query
results to an in-memory Spark SQL table, and run queries directly
against it.

Comparison With Other Engines
To show what’s unique about Structured Streaming, the next table
compares it with several other systems. As we discussed, Structured
Streaming’s strong guarantee of prefix integrity makes it equivalent to
batch jobs and easy to integrate into larger applications. Moreover,
building on Spark enables integration with batch and interactive
queries.

 
Conclusion
Structured Streaming promises to be a much simpler model for
building end-to-end real-time applications, built on the features that
work best in Spark Streaming. Although Structured Streaming is in
alpha for Apache Spark 2.0, we hope this post encourages you to try it
out.

Long-term, much like the DataFrame API, we expect Structured
Streaming to complement Spark Streaming by providing a more
restricted but higher-level interface. If you are running Spark
Streaming today, don’t worry—it will continue to be supported. But we
believe that Structured Streaming can open up real-time computation
to many more users.

Structured Streaming In Apache Spark 13

// Save our previous counts query to an in-memory table
countsDF.writeStream.format("memory")
 .queryName("counts")
 .outputMode("complete")
 .start()

// Then any thread can query the table using SQL
sql("select sum(count) from counts where action=’login’")

Structured Streaming is also fully supported on Databricks, including
in the free Databricks Community Edition. Try out any of our sample
notebooks to see it in action:

• Scala notebook for monitoring app
• Python notebook for monitoring app

Read More
In addition, the following resources cover Structured Streaming:

• Structuring Spark: DataFrames, Datasets and Streaming
• Structured Streaming Programming Guide
• Apache Spark 2.0 and Structured Streaming
• A Deep Dive Into Structured Streaming

Structured Streaming In Apache Spark 14

http://databricks.com/try
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Scala%20DataFrames%20API.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Python%20DataFrames%20API.html
https://spark-summit.org/2016/events/structuring-spark-dataframes-datasets-and-streaming/
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark-summit.org/east-2016/speakers/matei-zaharia/
https://spark-summit.org/2016/events/a-deep-dive-into-structured-streaming/

Part 2: Real-
time ETL
Pipelines

Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1 15

Part 2:  
Real-time ETL Pipelines

Real-time Streaming ETL with
Structured Streaming in Apache
Spark 2.1
Part 1 of Scalable Data @ Databricks
January 19, 2017 | by Tathagata Das, Michael Armbrust and Tyson
Condie

Try this notebook in Databricks: Scala Notebook, Python Notebook

We are well into the Big Data era, with organizations collecting massive
amounts of data on a continual basis. Yet, the value of this data deluge
hinges on the ability to extract actionable insights in a timely fashion.
Hence, there is an increasing need for continuous applications that can
derive real-time actionable insights from massive data ingestion
pipelines.

However, building production-grade continuous applications can be
challenging, as developers need to overcome many obstacles,
including:

• Providing end-to-end reliability and correctness guarantees –
Long running data processing systems must be resilient to failures
by ensuring that outputs are consistent with results processed in

batch. Additionally, unusual activities (e.g failures in upstream
components, traffic spikes, etc.) must be continuously monitored
and automatically mitigated to ensure highly available insights are
delivered in real-time.

• Performing complex transformations – Data arrives in a myriad
formats (CSV, JSON, Avro, etc.) that often must be restructured,
transformed and augmented before being consumed. Such
restructuring requires that all the traditional tools from batch
processing systems are available, but without the added latencies
that they typically entail.

• Handling late or out-of-order data – When dealing with the
physical world, data arriving late or out-of-order is a fact of life. As
a result, aggregations and other complex computations must be
continuously (and accurately) revised as new information arrives.

• Integrating with other systems – Information originates from a
variety of sources (Kafka, HDFS, S3, etc), which must be integrated
to see the complete picture.

Structured Streaming in Apache Spark builds upon the strong
foundation of Spark SQL, leveraging its powerful APIs to provide a
seamless query interface, while simultaneously optimizing its
execution engine to enable low-latency, continually updated
answers. This blog post kicks off a series in which we will explore how

Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1 16

https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/2070341989008532/3601578643761083/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/2070341989008551/3601578643761083/latest.html
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html

we are using the new features of Apache Spark 2.1 to overcome the
above challenges and build our own production pipelines.

In this first post, we will focus on an ETL pipeline that converts raw
AWS CloudTrail audit logs into a JIT data warehouse for faster ad-hoc
queries. We will show how easy it is to take an existing batch ETL job
and subsequently productize it as a real-time streaming pipeline
using Structured Streaming in Databricks. Using this pipeline, we
have converted 3.8 million JSON files containing 7.9 billion records
into a Parquet table, which allows us to do ad-hoc queries on updated-
to-the-minute Parquet table 10x faster than those on raw JSON files.

The Need for Streaming ETL
Extract, Transform, and Load (ETL) pipelines prepare raw, unstructured
data into a form that can be queried easily and efficiently. Specifically,
they need to be able to do the following:

• Filter, transform, and clean up data – Raw data is naturally
messy and needs to be cleaned up to fit into a well-defined
structured format. For example, parsing timestamp strings to date/
time types for faster comparisons, filtering corrupted data,
nesting/unnesting/flattening complex structures to better
organize important columns, etc.

• Convert to a more efficient storage format – Text, JSON and CSV
data are easy to generate and are human readable, but are very
expensive to query. Converting it to more efficient formats like

Parquet, Avro, or ORC can reduce file size and improve processing
speed.

• Partition data by important columns – By partitioning the data
based on the value of one or more columns, common queries can
be answered more efficiently by reading only the relevant fraction
of the total dataset.

Traditionally, ETL is performed as periodic batch jobs. For example,
dump the raw data in real time, and then convert it to structured form
every few hours to enable efficient queries. We had initially setup our
system this way, but this technique incurred a high latency; we had to
wait for few hours before getting any insights. For many use cases, this
delay is unacceptable. When something suspicious is happening in an
account, we need to be able to ask questions immediately. Waiting
minutes to hours could result in an unreasonable delay in responding
to an incident.

Fortunately, Structured Streaming makes it easy to convert these
periodic batch jobs to a real-time data pipeline. Streaming jobs are
expressed using the same APIs as batch data. Additionally, the engine
provides the same fault-tolerance and data consistency guarantees as
periodic batch jobs, while providing much lower end-to-end latency.

In the rest of post, we dive into the details of how we transform AWS
CloudTrail audit logs into an efficient, partitioned, parquet data
warehouse. AWS CloudTrail allows us to track all actions performed in

Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1 17

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://databricks.com/blog/2015/11/30/building-a-just-in-time-data-warehouse-platform-with-databricks.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

a variety of AWS accounts, by delivering gzipped JSON logs files to a S3
bucket. These files enable a variety of business and mission critical
intelligence, such as cost attribution and security monitoring.
However, in their original form, they are very costly to query, even with
the capabilities of Apache Spark. To enable rapid insight, we run a
Continuous Application that transforms the raw JSON logs files into an
optimized Parquet table. Let’s dive in and look at how to write this
pipeline. If you want to see the full code, here are the Scala and Python
notebooks. Import them into Databricks and run them yourselves.

Transforming Raw Logs with Structured
Streaming
We start by defining the schema of the JSON records based on
CloudTrail documentation.

See the attached notebook for the full schema. With this, we can
define a streaming DataFrame that represents the data stream from
CloudTrail files that are being written in a S3 bucket.

A good way to understand what this rawRecords DataFrame represents

is to first understand the Structured Streaming programming model.
The key idea is to treat any data stream as an unbounded table: new
records added to the stream are like rows being appended to the table.

This allows us to treat both batch and streaming data as tables. Since
tables and DataFrames/Datasets are semantically synonymous, the
same batch-like DataFrame/Dataset queries can be applied to both
batch and streaming data. In this case, we will transform the raw JSON
data such that it’s easier to query using Spark SQL’s built-in support for
manipulating complex nested schemas. Here is an abridged version of
the transformation.

Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1 18

val cloudTrailSchema = new StructType()
 .add("Records", ArrayType(new StructType()
 .add("additionalEventData", StringType)
 .add("apiVersion", StringType)
 .add("awsRegion", StringType)
 // ...

val rawRecords = spark.readStream
 .schema(cloudTrailSchema)
 .json("s3n://mybucket/AWSLogs/*/CloudTrail/*/2017/*/*")

http://Scala
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/2070341989008551/3601578643761083/latest.html
https://databricks.com/try
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

Here, we explode (split) the array of records loaded from each file into

separate records. We also parse the string event time string in each
record to Spark’s timestamp type, and flatten out the nested columns
for easier querying. Note that if cloudtrailEvents was a batch

DataFrame on a fixed set of files, then we would have written the same
query, and we would have written the results only once as
parsed.write.parquet("/cloudtrail"). Instead, we will start a

StreamingQuery that runs continuously to transform new data as it
arrives.

Here we are specifying the following configurations for the
StreamingQuery before starting it.

• Derive the date from the timestamp column

• Check for new files every 10 seconds (i.e., trigger interval)

• Write the transformed data from parsed DataFrame as a Parquet-
formatted table at the path /cloudtrail.

• Partition the Parquet table by date so that we can later efficiently
query time slices of the data; a key requirement in monitoring
applications.

• Save checkpoint information at the path checkpoints/cloudtrail
for fault-tolerance (explained later in the blog)

In terms of the Structured Streaming Model, this is how the execution
of this query is performed.

Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1 19

val cloudtrailEvents = rawRecords
 .select(explode($"records") as 'record)
 .select(
 unix_timestamp(
 $"record.eventTime",
 "yyyy-MM-dd'T'hh:mm:ss").cast("timestamp") as
'timestamp, $"record.*")

val streamingETLQuery = cloudtrailEvents
 .withColumn("date", $"timestamp".cast("date") // derive the
date
 .writeStream
 .trigger(ProcessingTime("10 seconds")) // check for files
every 10s
 .format("parquet") // write as Parquet partitioned by date
 .partitionBy("date")
 .option("path", "/cloudtrail")
 .option("checkpointLocation", "/cloudtrail.checkpoint/")
 .start()

Conceptually, the rawRecords DataFrame is an append-only Input

Table, and the cloudtrailEvents DataFrame is the transformed Result
Table. In other words, when new rows are appended to the input
(rawRecords), the result table (cloudtrailEvents) will have new
transformed rows. In this particular case, every 10 seconds, Spark SQL
engine triggers a check for new files. When it finds new data (i.e., new
rows in the Input Table), it transforms the data to generate new rows in
the Result Table, which then get written out as Parquet files.

Furthermore, while this streaming query is running, you can use Spark
SQL to simultaneously query the Parquet table. The streaming query
writes the Parquet data transactionally such that concurrent

interactive query processing will always see a consistent view of the
latest data. This strong guarantee is known as prefix-integrity and it
makes Structured Streaming pipelines integrate nicely with the larger
Continuous Application.

You can read more details about the Structured Streaming model, and
its advantages over other streaming engines in our previous blog.

Solving Production Challenges
Earlier, we highlighted a number of challenges that must be solved for
running a streaming ETL pipeline in production. Let’s see how
Structured Streaming running on the Databricks platform solves them.

Recovering from Failures to get Exactly-once Fault-
tolerance Guarantees
Long running pipelines must be able to tolerate machine failures. With
Structured Streaming, achieving fault-tolerance is as easy as specifying
a checkpoint location for the query. In the earlier code snippet, we did
so in the following line.

This checkpoint directory is per query, and while a query is active,
Spark continuously writes metadata of the processed data to the
checkpoint directory. Even if the entire cluster fails, the query can be
restarted on a new cluster, using the same checkpoint directory, and

Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1 20

.option("checkpointLocation", "/cloudtrail.checkpoint/")

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

consistently recover. More specifically, on the new cluster, Spark uses
the metadata to start the new query where the failed one left off, thus
ensuring end-to-end exactly-once guarantees and data consistency
(see Fault Recovery section of our previous blog).

Furthermore, this same mechanism allows you to upgrade your query
between restarts, as long as the input sources and output schema
remain the same. Since Spark 2.1, we encode the checkpoint data in
JSON for future-proof compatibility. So you can restart your query
even after updating your Spark version. In all cases, you will get the
same fault-tolerance and consistency guarantees.

Note that Databricks makes it very easy to set up automatic
recovery, as we will show in the next section.

Monitoring, Alerting and Upgrading
For a Continuous Application to run smoothly, it must be robust to
individual machine or even whole cluster failures. In Databricks, we
have developed tight integration with Structured Streaming that
allows us continuously monitor your StreamingQueries for failures
(and automatically restart them. All you have to do is create a new Job,
and configure the Job retry policy. You can also configure the job to
send emails to notify you of failures.

Application upgrades can be easily made by updating your code and/
or Spark version and then restarting the Job. See our guide on running
Structured Streaming in Production for more details.

Machine failures are not the only situations that we need to handle to
ensure robust processing. We will discuss how to monitor for traffic
spikes and upstream failures in more detail later in this series.

Combining Live Data with Historical/Batch Data
Many applications require historical/batch data to be combined with
live data. For example, besides the incoming audit logs, we may
already have a large backlog of logs waiting to be converted. Ideally,
we would like to achieve both, interactively query the latest data as
soon as possible, and also have access to historical data for future
analysis. It is often complex to set up such a pipeline using most
existing systems as you would have to set up multiples processes: a
batch job to convert the historical data, a streaming pipeline to
convert the live data, and maybe a another step to combine the
results.

Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1 21

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://docs.databricks.com/spark/latest/structured-streaming/production.html
https://docs.databricks.com/spark/latest/structured-streaming/production.html

Structured Streaming eliminates this challenge. You can configure the
above query to prioritize the processing new data files as they arrive,
while using the space cluster capacity to process the old files. First, we
set the option latestFirst for the file source to true, so that new files

are processed first. Then, we set the maxFilesPerTrigger to limit how
many files to process every time. This tunes the query to update the
downstream data warehouse more frequently, so that the latest data is
made available for querying as soon as possible. Together, we can
define the rawLogs DataFrame as follows:
In this way, we can write a single query that easily combines live data
with historical data, while ensuring low-latency, efficiency and data
consistency.

Conclusion
Structured Streaming in Apache Spark is the best framework for
writing your streaming ETL pipelines, and Databricks makes it easy to
run them in production at scale, as we demonstrated above. We
shared a high level overview of the steps—extracting, transforming,
loading and finally querying—to set up your streaming ETL production
pipeline. We also discussed and demonstrated how Structured

Streaming overcomes the challenges in solving and setting up high-
volume and low-latency streaming pipelines in production.

In the future blog posts in this series, we’ll cover how we address other
hurdles, including:

• Applying complex transformations to nested JSON data
• Processing Data in Apache Kafka with Structured Streaming in

Apache Spark 2.2
• Monitoring your streaming applications
• Integrating Structured Streaming with Apache Kafka
• Computing event time aggregations with Structured Streaming
• Running Streaming Jobs Once a Day For 10x Cost Savings

If you want to learn more about the Structured Streaming, here are a
few useful links.

• Previous blogs posts explaining the motivation and concepts of
Structured Streaming:
- Continuous Applications: Evolving Streaming in Apache Spark

2.0
- Structured Streaming In Apache Spark

• Structured Streaming Programming Guide for Apache Spark 2.1
• Spark Summit 2016 Talk – A Deep Dive Into Structured Streaming

Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1 22

val rawJson = spark.readStream
 .schema(cloudTrailSchema)
 .option("latestFirst", "true")
 .option("maxFilesPerTrigger", "20")
 .json("s3n://mybucket/AWSLogs/*/CloudTrail/*/2017/01/*")

https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html
https://databricks.com/blog/2017/05/18/taking-apache-sparks-structured-structured-streaming-to-production.html
https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://databricks.com/blog/2017/05/22/running-streaming-jobs-day-10x-cost-savings.html
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark-summit.org/2016/events/a-deep-dive-into-structured-streaming/

What’s Next
You can try two notebooks with your own AWS CloudTrail Logs. Import
the notebooks into Databricks.

• Try the Scala Notebook
• Try the Python Notebook

Real-time Streaming ETL with Structured Streaming in Apache Spark 2.1 23

https://databricks.com/try
https://databricks.com/try
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/2070341989008532/3601578643761083/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/2070341989008532/3601578643761083/latest.html

Part 3: Fixing
Data
Transformatio
n Challenges

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 24

Part 3:  
Fixing Data Transformation
Challenges

Working with Complex Data
Formats with Structured
Streaming in Apache Spark 2.1
Part 2 of Scalable Data @ Databricks
February 23, 2017 | by Burak Yavuz, Michael Armbrust, Tathagata Das
and Tyson Condie

Try this notebook in Databricks: Scala Notebook, Python Notebook, SQL
Notebook

In part 1 of this series on Structured Streaming blog posts, we
demonstrated how easy it is to write an end-to-end streaming ETL
pipeline using Structured Streaming that converts JSON CloudTrail
logs into a Parquet table. The blog highlighted that one of the major
challenges in building such pipelines is to read and transform data
from various sources and complex formats. In this blog post, we are
going to examine this problem in further detail, and show how Apache
Spark SQL’s built-in functions can be used to solve all your data
transformation challenges.

Specifically, we are going to discuss the following:

• What are the different data formats and their tradeoffs
• How to work with them easily using Spark SQL
• How to choose the right final format for your use case

Data sources and formats
Data is available in a myriad of different formats. Spreadsheets can be
expressed in XML, CSV, TSV; application metrics can be written out in
raw text or JSON. Every use case has a particular data format tailored
for it. In the world of Big Data, we commonly come across formats like
Parquet, ORC, Avro, JSON, CSV, SQL and NoSQL data sources, and
plain text files. We can broadly classify these data formats into three
categories: structured, semi-structured, and unstructured data. Let’s
try to understand the benefits and shortcomings of each category.

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 25

https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/3786892947974332/3601578643761083/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/3786892947974366/3601578643761083/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/3786892947974290/3601578643761083/latest.html
https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html

Structured data
Structured data sources define a schema on the data. With this extra
bit of information about the underlying data, structured data sources
provide efficient storage and performance. For example, columnar
formats such as Parquet and ORC make it much easier to extract values
from a subset of columns. Reading each record row by row first, then
extracting the values from the specific columns of interest can read
much more data than what is necessary when a query is only
interested in a small fraction of the columns. A row-based storage
format such as Avro efficiently serializes and stores data providing
storage benefits. However, these advantages often come at the cost of
flexibility. For example, because of rigidity in structure, evolving a
schema can be challenging.

Unstructured data
By contrast, unstructured data sources are generally free-form text or
binary objects that contain no markup, or metadata (e.g., commas in
CSV files), to define the organization of data. Newspaper articles,
medical records, image blobs, application logs are often treated as
unstructured data. These sorts of sources generally require context
around the data to be parseable. That is, you need to know that the file
is an image or is a newspaper article. Most sources of data are
unstructured. The cost of having unstructured formats is that it
becomes cumbersome to extract value out of these data sources as
many transformations and feature extraction techniques are required
to interpret these datasets.

Semi-structured data
Semi-structured data sources are structured per record but don’t
necessarily have a well-defined global schema spanning all records. As
a result, each data record is augmented with its schema information.
JSON and XML are popular examples. The benefits of semi-structured
data formats are that they provide the most flexibility in expressing
your data as each record is self-describing. These formats are very
common across many applications as many lightweight parsers exist
for dealing with these records, and they also have the benefit of being
human readable. However, the main drawback for these formats is
that they incur extra parsing overheads, and are not particularly built
for ad-hoc querying.

Interchanging data formats with Spark SQL
In our previous blog post, we discussed how transforming Cloudtrail
Logs from JSON into Parquet shortened the runtime of our ad-hoc
queries by 10x. Spark SQL allows users to ingest data from these
classes of data sources, both in batch and streaming queries. It
natively supports reading and writing data in Parquet, ORC, JSON, CSV,
and text format and a plethora of other connectors exist on Spark
Packages. You may also connect to SQL databases using the JDBC
DataSource.

Apache Spark can be used to interchange data formats as easily as:

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 26

https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://spark-packages.org/?q=tags%3A%22Data%20Sources%22
https://spark-packages.org/?q=tags%3A%22Data%20Sources%22

Whether batch or streaming data, we know how to read and write to
different data sources and formats, but different sources support
different kinds of schema and data types. Traditional databases only
support primitive data types, whereas formats like JSON allow users to
nest objects within columns, have an array of values or represent a set
of key-value pairs. Users will generally have to go in-between these
data types to efficiently store and represent their data. Fortunately,
Spark SQL makes it easy to handle both primitive and complex data
types. Let’s now dive into a quick overview of how we can go from
complex data types to primitive data types and vice-a-versa.  

Transforming complex data types

It is common to have complex data types such as structs, maps, and
arrays when working with semi-structured formats. For example, you
may be logging API requests to your web server. This API request will
contain HTTP Headers, which would be a string-string map. The
request payload may contain form-data in the form of JSON, which
may contain nested fields or arrays. Some sources or formats may or
may not support complex data types. Some formats may provide
performance benefits when storing the data in a specific data type. For
example, when using Parquet, all struct columns will receive the same
treatment as top-level columns. Therefore, if you have filters on a
nested field, you will get the same benefits as a top-level column.
However, maps are treated as two array columns, hence you wouldn’t
receive efficient filtering semantics.

Let’s look at some examples on how Spark SQL allows you to shape
your data ad libitum with some data transformation techniques.

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 27

events = spark.readStream \
 .format("json") \ # or parquet, kafka, orc...
 .option() \ # format specific options
 .schema(my_schema) \ # required
 .load("path/to/data")

output = … # perform your transformations

output.writeStream \ # write out your data
 .format("parquet") \
 .start("path/to/write")

Selecting from nested columns
Dots (.) can be used to access nested columns for structs and maps.

Flattening structs
A star (*) can be used to select all of the subfields in a struct.

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 28

// input
{
 "a": {
 "b": 1
 }
}

Python: events.select("a.b")
 Scala: events.select("a.b")
 SQL: select a.b from events

// output
{
 "b": 1
}

// input
{
 "a": {
 "b": 1,
 "c": 2
 }
}

Python: events.select("a.*")
 Scala: events.select("a.*")
 SQL: select a.* from events

// output
{
 "b": 1,
 "c": 2
}

Nesting columns
The struct function or just parentheses in SQL can be used to create a
new struct.

Nesting all columns
The star (*) can also be used to include all columns in a nested struct.

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 29

// input
{
 "a": 1,
 "b": 2,
 "c": 3
}

Python: events.select(struct(col("a").alias("y")).alias("x"))
 Scala: events.select(struct('a as 'y) as 'x)
 SQL: select named_struct("y", a) as x from events

// output
{
 "x": {
 "y": 1
 }
}

// input
{
 "a": 1,
 "b": 2
}

Python: events.select(struct("*").alias("x"))
 Scala: events.select(struct("*") as 'x)
 SQL: select struct(*) as x from events

// output
{
 "x": {
 "a": 1,
 "b": 2
 }
}

Selecting a single array or map element
getItem() or square brackets (i.e. []) can be used to select a single

element out of an array or a map. 

Creating a row for each array or map element
explode() can be used to create a new row for each element in an

array or each key-value pair. This is similar to LATERAL VIEW EXPLODE
in HiveQL.

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 30

// input
{
 "a": [1, 2]
}

Python: events.select(col("a").getItem(0).alias("x"))
 Scala: events.select('a.getItem(0) as 'x)
 SQL: select a[0] as x from events

// output
{ "x": 1 }

// input
{
 "a": {
 "b": 1
 }
}

Python: events.select(col("a").getItem("b").alias("x"))
 Scala: events.select('a.getItem("b") as 'x)
 SQL: select a['b'] as x from events

// output
{ "x": 1 }

// input
{
 "a": [1, 2]
}

Python: events.select(explode("a").alias("x"))
 Scala: events.select(explode('a) as 'x)
 SQL: select explode(a) as x from events

// output
[{ "x": 1 }, { "x": 2 }]

// input
{
 "a": {
 "b": 1,
 "c": 2
 }
}

Python: events.select(explode("a").alias("x", "y"))
 Scala: events.select(explode('a) as Seq("x", "y"))
 SQL: select explode(a) as (x, y) from events

// output
[{ “x”: "b", "y": 1 }, { "x": "c", "y": 2 }]

Collecting multiple rows into an array
collect_list() and collect_set() can be used to aggregate items

into an array.

Selecting one field from each item in an array
When you use dot notation on an array we return a new array where
that field has been selected from each array element.

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 31

// input
[{ "x": 1 }, { "x": 2 }]

Python: events.select(collect_list("x").alias("x"))
 Scala: events.select(collect_list('x) as 'x)
 SQL: select collect_list(x) as x from events

// output
{ "x": [1, 2] }

// input
[{ "x": 1, "y": "a" }, { "x": 2, "y": "b" }]

Python: events.groupBy("y").agg(collect_list("x").alias("x"))
 Scala: events.groupBy("y").agg(collect_list('x) as 'x)
 SQL: select y, collect_list(x) as x from events group by y

// output
[{ "y": "a", "x": [1]}, { "y": "b", "x": [2]}]

// input
{
 "a": [
 {"b": 1},
 {"b": 2}
]
}

Python: events.select("a.b")
 Scala: events.select("a.b")
 SQL: select a.b from events

// output
{
 "b": [1, 2]
}

Power of to_json() and from_json()
What if you really want to preserve your column’s complex structure
but you need it to be encoded as a string to store it? Are you doomed?
Of course not! Spark SQL provides functions like to_json() to encode
a struct as a string and from_json() to retrieve the struct as a complex

type. Using JSON strings as columns are useful when reading from or
writing to a streaming source like Kafka. Each Kafka key-value record
will be augmented with some metadata, such as the ingestion
timestamp into Kafka, the offset in Kafka, etc. If the “value” field that
contains your data is in JSON, you could use from_json() to extract
your data, enrich it, clean it, and then push it downstream to Kafka
again or write it out to a file.

Encode a struct as json  
to_json() can be used to turn structs into JSON strings. This method

is particularly useful when you would like to re-encode multiple
columns into a single one when writing data out to Kafka. This method
is not presently available in SQL.

Decode json column as a struct
from_json() can be used to turn a string column with JSON data into

a struct. Then you may flatten the struct as described above to have
individual columns. This method is not presently available in SQL.

Sometimes you may want to leave a part of the JSON string still as
JSON to avoid too much complexity in your schema.

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 32

// input
{
 "a": {
 "b": 1
 }
}

Python: events.select(to_json("a").alias("c"))
 Scala: events.select(to_json('a) as 'c)

// output
{
 "c": "{\"b\":1}"
}

// input
{
 "a": "{\"b\":1}"
}

Python:
 schema = StructType().add("b", IntegerType())
 events.select(from_json("a", schema).alias("c"))
Scala:
 val schema = new StructType().add("b", IntegerType)
 events.select(from_json('a, schema) as 'c)

// output
{
 "c": {
 "b": 1
 }
}

Parse a set of fields from a column containing JSON

json_tuple() can be used to extract fields available in a string column
with JSON data.

Sometimes a string column may not be self-describing as JSON, but
may still have a well-formed structure. For example, it could be a log
message generated using a specific Log4j format. Spark SQL can be
used to structure those strings for you with ease!

Parse a well-formed string column
regexp_extract() can be used to parse strings using regular

expressions.

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 33

// input
{
 "a": "{\"b\":{\"x\":1,\"y\":{\"z\":2}}}"
}

Python:
 schema = StructType().add("b", StructType().add("x",
IntegerType())
 .add("y", StringType()))
 events.select(from_json("a", schema).alias("c"))
Scala:
 val schema = new StructType().add("b", new
StructType().add("x", IntegerType)
 .add("y", StringType))
 events.select(from_json('a, schema) as 'c)

// output
{
 "c": {
 "b": {
 "x": 1,
 "y": "{\"z\":2}"
 }
 }
}

// input
{
 "a": "{\"b\":1}"
}

Python: events.select(json_tuple("a", "b").alias("c"))
Scala: events.select(json_tuple('a, "b") as 'c)
SQL: select json_tuple(a, "b") as c from events

// output
{ "c": 1 }

// input
[{ "a": "x: 1" }, { "a": "y: 2" }]

Python: events.select(regexp_extract("a", "([a-z]):",
1).alias("c"))
Scala: events.select(regexp_extract('a, "([a-z]):", 1) as 'c)
SQL: select regexp_extract(a, "([a-z]):", 1) as c from
events

// output
[{ "c": "x" }, { "c": "y" }]

That’s a lot of transformations! Let’s now look at some real life use
cases to put all of these data formats, and data manipulation
capabilities to good use.

Harnessing all of this power
At Databricks, we collect logs from our services and use them to
perform real-time monitoring to detect issues, before our customers
are affected. Log files are unstructured files, but they are parseable
because they have a well-defined Log4j format. We run a log collector
service that sends each log entry and additional metadata about the
entry (e.g. source) in JSON to Kinesis. These JSON records are then
batch-uploaded to S3 as files. Querying these JSON logs to answer any
question is tedious: these files contain duplicates, and for answering
any query, even if it involves a single column, the whole JSON record
may require deserialization.

To address this issue, we run a pipeline that reads these JSON records
and performs de-duplication on the metadata. Now we are left with
the original log record, which may be in JSON format or as
unstructured text. If we’re dealing with JSON, we use from_json() and
several of the transformations described above to format our data. If it
is text, we use methods such as regexp_extract() to parse our Log4j

format into a more structured form. Once we are done with all of our
transformations and restructuring, we save the records in Parquet
partitioned by date. This gives us 10-100x speed-up when answering
questions like ”how many ERROR messages did we see between

10:00-10:30 for this specific service”? The speed-ups can be attributed
to:

• We no longer pay the price of deserializing JSON records

• We don’t have to perform complex string comparisons on the
original log message

• We only have to extract two columns in our query: the time, and
the log level

Here are a few more common use cases that we have seen among our
customers:

“I would like to run a Machine Learning pipeline with my data. My

data is already pre-processed, and I will use all my features

throughout the pipeline.”

Avro is a good choice when you will access the whole row of data.

“I have an IoT use case where my sensors send me events. For each

event the metadata that matters is different.”

In cases where you would like flexibility in your schema, you may
consider using JSON to store your data.

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 34

“I would like to train a speech recognition algorithm on newspaper

articles or sentiment analysis on product comments.”

In cases where your data may not have a fixed schema, nor a fixed
pattern/structure, it may just be easier to store it as plain text files. You
may also have a pipeline that performs feature extraction on this
unstructured data and stores it as Avro in preparation for your Machine
Learning pipeline.

Conclusion
In this blog post, we discussed how Spark SQL allows you to consume
data from many sources and formats, and easily perform
transformations and interchange between these data formats. We
shared how we curate our data at Databricks, and considered other
production use cases where you may want to do things differently.

Spark SQL provides you with the necessary tools to access your data
wherever it may be, in whatever format it may be in and prepare it for
downstream applications either with low latency on streaming data or
high throughput on old historical data!

In the future blog posts in this series, we’ll cover more on:

• Monitoring your streaming applications
• Integrating Structured Streaming with Apache Kafka
• Computing event time aggregations with Structured Streaming

If you want to learn more about the Structured Streaming, here are a
few useful links.

• Previous blogs posts explaining the motivation and concepts of
Structured Streaming:
- Continuous Applications: Evolving Streaming in Apache Spark

2.0
- Structured Streaming In Apache Spark

• Processing Data in Apache Kafka with Structured Streaming in
Apache Spark 2.2
- Real-time Streaming ETL with Structured Streaming in Apache

Spark 2.1

• Structured Streaming Programming Guide

• Talk at Spark Summit 2017 East – Making Structured Streaming
Ready for Production and Future Directions

Finally, try our example notebooks that demonstrate transforming
complex data types in Python, Scala, or SQL in Databricks:

• Python Notebook
• Scala Notebook
• SQL Notebook

Working with Complex Data Formats with Structured Streaming in Apache Spark 2.1 35

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html
https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark-summit.org/east-2017/events/making-structured-streaming-ready-for-production-updates-and-future-directions/
https://databricks.com/try
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/3786892947974366/3601578643761083/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/3786892947974332/3601578643761083/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/3786892947974290/3601578643761083/latest.html

Part 4:
Processing
Data in
Apache Kafka

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 36

Part 4:  
Processing Data in  
Apache Kafka

Processing Data in Apache
Kafka with Structured
Streaming in Apache Spark 2.2
Part 3 of Scalable Data @ Databricks
April 26, 2017 | by Kunal Khamar, Tyson Condie and Michael Armbrust

In this blog, we will show how Spark SQL’s APIs can be leveraged to
consume and transform complex data streams from Apache Kafka.
Using these simple APIs, you can express complex transformations like
exactly-once event-time aggregation and output the results to a
variety of systems. Together, you can use Apache Spark and Apache
Kafka to:

• Transform and augment real-time data read from Apache Kafka
using the same APIs as working with batch data.

• Integrate data read from Kafka with information stored in other
systems including S3, HDFS, or MySQL.

• Automatically benefit from incremental execution provided by the
Catalyst optimizer and subsequent efficient code generation by
Tungsten.

We start with a review of Kafka terminology and then present
examples of Structured Streaming queries that read data from and
write data to Apache Kafka. And finally, we’ll explore an end-to-end
real-world use case.

Apache Kafka
Kafka is a distributed pub-sub messaging system that is popular for
ingesting real-time data streams and making them available to
downstream consumers in a parallel and fault-tolerant manner. This
renders Kafka suitable for building real-time streaming data pipelines
that reliably move data between heterogeneous processing systems.
Before we dive into the details of Structured Streaming’s Kafka
support, let’s recap some basic concepts and terms.

Data in Kafka is organized into topics that are split into partitions for
parallelism. Each partition is an ordered, immutable sequence of
records, and can be thought of as a structured commit log. Producers
append records to the tail of these logs and consumers read the logs at
their own pace. Multiple consumers can subscribe to a topic and
receive incoming records as they arrive. As new records arrive to a
partition in a Kafka topic, they are assigned a sequential id number
called the offset. A Kafka cluster retains all published records—whether
or not they have been consumed—for a configurable retention period,
after which they are marked for deletion.

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 37

https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html
https://kafka.apache.org/

Specifying What Data to Read from Kafka

A Kafka topic can be viewed as an infinite stream where data is
retained for a configurable amount of time. The infinite nature of this
stream means that when starting a new query, we have to first decide
what data to read and where in time we are going to begin. At a high
level, there are three choices:

• earliest — start reading at the beginning of the stream. This
excludes data that has already been deleted from Kafka because it
was older than the retention period (“aged out” data).

• latest — start now, processing only new data that arrives after the
query has started.

• per-partition assignment — specify the precise offset to start from
for every partition, allowing fine-grained control over exactly
where processing should start. For example, if we want to pick up
exactly where some other system or query left off, then this option
can be leveraged.

As you will see below, the startingOffsets option accepts one of the
three options above, and is only used when starting a query from a
fresh checkpoint. If you restart a query from an existing checkpoint,
then it will always resume exactly where it left off, except when the
data at that offset has been aged out. If any unprocessed data was
aged out, the query behavior will depend on what is set by the
failOnDataLoss option, which is described in the Kafka Integration
Guide.

Existing users of the KafkaConsumer will notice that Structured
Streaming provides a more granular version of the configuration
option, auto.offset.reset. Instead of one option, we split these

concerns into two different parameters, one that says what to do when
the stream is first starting (startingOffsets), and another that handles

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 38

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

what to do if the query is not able to pick up from where it left off,
because the desired data has already been aged out (failOnDataLoss).

Apache Kafka support in Structured
Streaming
Structured Streaming provides a unified batch and streaming API that
enables us to view data published to Kafka as a DataFrame. When
processing unbounded data in a streaming fashion, we use the same
API and get the same data consistency guarantees as in batch
processing. The system ensures end-to-end exactly-once fault-
tolerance guarantees, so that a user does not have to reason about
low-level aspects of streaming.

Let’s examine and explore examples of reading from and writing to
Kafka, followed by an end-to-end application.

Reading Records from Kafka topics
The first step is to specify the location of our Kafka cluster and which
topic we are interested in reading from. Spark allows you to read an
individual topic, a specific set of topics, a regex pattern of topics, or
even a specific set of partitions belonging to a set of topics. We will
only look at an example of reading from an individual topic, the other
possibilities are covered in the Kafka Integration Guide.

The DataFrame above is a streaming DataFrame subscribed to
“topic1”. The configuration is set by providing options to the
DataStreamReader, and the minimal required parameters are the
location of the kafka.bootstrap.servers (i.e. host:port) and the topic

that we want to subscribe to. Here, we have also specified
startingOffsets to be “earliest”, which will read all data available in the
topic at the start of the query. If the startingOffsets option is not
specified, the default value of “latest” is used and only data that
arrives after the query starts will be processed.

df.printSchema() reveals the schema of our DataFrame.

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 39

Construct a streaming DataFrame that reads from topic1
df = spark \
 .readStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers",
"host1:port1,host2:port2") \
 .option("subscribe", "topic1") \
 .option("startingOffsets", "earliest") \
 .load()

https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

The returned DataFrame contains all the familiar fields of a Kafka
record and its associated metadata. We can now use all of the familiar
DataFrame or Dataset operations to transform the result. Typically,
however, we’ll start by parsing the binary values present in the key and
value columns. How to interpret these blobs is application specific.
Fortunately, Spark SQL contains many built-in transformations for
common types of serialization as we’ll show below.

Data Stored as a UTF8 String
If the bytes of the Kafka records represent UTF8 strings, we can simply
use a cast to convert the binary data into the correct type.

Data Stored as JSON
JSON is another common format for data that is written to Kafka. In
this case, we can use the built-in from_json function along with the
expected schema to convert a binary value into a Spark SQL struct.

User Defined Serializers and Deserializers
In some cases, you may already have code that implements the Kafka
Deserializer interface. You can take advantage of this code by wrapping
it as a user defined function (UDF) using the Scala code shown below.

Note that the DataFrame code above is analogous to specifying
value.deserializer when using the standard Kafka consumer.

 
 
Using Spark as a Kafka Producer
Writing data from any Spark supported data source into Kafka is as
simple as calling writeStream on any DataFrame that contains a

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 40

root
 |-- key: binary (nullable = true)
 |-- value: binary (nullable = true)
 |-- topic: string (nullable = true)
 |-- partition: integer (nullable = true)
 |-- offset: long (nullable = true)
 |-- timestamp: timestamp (nullable = true)
 |-- timestampType: integer (nullable = true)

df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")

value schema: { "a": 1, "b": "string" }
schema = StructType().add("a", IntegerType()).add("b",
StringType())
df.select(\
 col("key").cast("string"),
 from_json(col("value").cast("string"), schema))

object MyDeserializerWrapper {
 val deser = new MyDeserializer
}
spark.udf.register("deserialize", (topic: String, bytes:
Array[Byte]) =>
 MyDeserializerWrapper.deser.deserialize(topic, bytes)
)

df.selectExpr("""deserialize("topic1", value) AS message""")

column named “value”, and optionally a column named “key”. If a key
column is not specified, then a null valued key column will be
automatically added. A null valued key column may, in some cases,
lead to uneven data partitioning in Kafka, and should be used with
care.

The destination topic for the records of the DataFrame can either be
specified statically as an option to the DataStreamWriter or on a per-
record basis as a column named “topic” in the DataFrame.

The above query takes a DataFrame containing user information and
writes it to Kafka. The userId is serialized as a string and used as the
key. We take all the columns of the DataFrame and serialize them as a
JSON string, putting the results in the value of the record.

The two required options for writing to Kafka are the
kafka.bootstrap.servers and the checkpointLocation. As in the above
example, an additional topic option can be used to set a single topic to
write to, and this option will override the “topic” column if it exists in
the DataFrame.

End-to-End Example with Nest Devices
In this section, we will explore an end-to-end pipeline involving Kafka
along with other data sources and sinks. We will work with a data set
involving a collection of Nest device logs, with a JSON format
described here. We’ll specifically examine data from Nest’s cameras,
which look like the following JSON:

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 41

Write key-value data from a DataFrame to a Kafka topic
specified in an option
query = df \
 .selectExpr("CAST(userId AS STRING) AS key",
"to_json(struct(*)) AS value") \
 .writeStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers",
"host1:port1,host2:port2") \
 .option("topic", "topic1") \
 .option("checkpointLocation", "/path/to/HDFS/dir") \
 .start()

"devices": {
 "cameras": {
 "device_id": "awJo6rH...",
 "last_event": {
 "has_sound": true,
 "has_motion": true,
 "has_person": true,
 "start_time": "2016-12-29T00:00:00.000Z",
 "end_time": "2016-12-29T18:42:00.000Z"
 }
 }
}

https://cwiki.apache.org/confluence/display/KAFKA/FAQ#FAQ-Whyisdatanotevenlydistributedamongpartitionswhenapartitioningkeyisnotspecified?
https://nest.com/
https://developers.nest.com/documentation/api-reference

We’ll also be joining with a static dataset (called “device_locations”)
that contains a mapping from device_id to the zip_code where the
device was registered.

At a high-level, the desired workflow looks like the graph above. Given
a stream of updates from Nest cameras, we want to use Spark to
perform several different tasks:

• Create an efficient, queryable historical archive of all events using
a columnar format like Parquet.

• Perform low-latency event-time aggregation and push the results
back to Kafka for other consumers.

• Perform batch reporting on the data stored in a compacted topic in
Kafka.

While these may sound like wildly different use-cases, you can perform
all of them using DataFrames and Structured Streaming in a single
end-to-end Spark application! In the following sections, we’ll walk
through individual steps, starting from ingest to processing to storing
aggregated results.

Read Nest Device Logs From Kafka
Our first step is to read the raw Nest data stream from Kafka and
project out the camera data that we are interested in. We first parse
the Nest JSON from the Kafka records, by calling the from_json
function and supplying the expected JSON schema and timestamp
format. Then, we apply various transformations to the data and
project the columns related to camera data in order to simplify
working with the data in the sections to follow.

Expected Schema for JSON data

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 42

schema = StructType() \
 .add("metadata", StructType() \
 .add("access_token", StringType()) \
 .add("client_version", IntegerType())) \
 .add("devices", StructType() \
 .add("thermostats", MapType(StringType(), StructType().add(...))) \
 .add("smoke_co_alarms", MapType(StringType(), StructType().add(...))) \
 .add("cameras", MapType(StringType(), StructType().add(...))) \
 .add("companyName", StructType().add(...))) \
 .add("structures", MapType(StringType(), StructType().add(...)))

nestTimestampFormat = "yyyy-MM-dd'T'HH:mm:ss.sss'Z'"

Parse the Raw JSON

Project Relevant Columns

To create the camera DataFrame, we first unnest the “cameras” json

field to make it top level. Since “cameras” is a MapType, each resulting
row contains a map of key-value pairs. So, we use the explode function

to create a new row for each key-value pair, flattening the data. Lastly,
we use star () to unnest the “value” column. The following is the result
of calling camera.printSchema()

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 43

jsonOptions = { "timestampFormat": nestTimestampFormat }
parsed = spark \
 .readStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers", "localhost:9092") \
 .option("subscribe", "nest-logs") \
 .load() \
 .select(from_json(col("value").cast("string"), schema,
jsonOptions).alias("parsed_value"))

camera = parsed \
 .select(explode("parsed_value.devices.cameras")) \
 .select("value.*")

sightings = camera \
 .select("device_id", "last_event.has_person",
"last_event.start_time") \
 .where(col("has_person") == True)

root
 |-- device_id: string (nullable = true)
 |-- software_version: string (nullable = true)
 |-- structure_id: string (nullable = true)
 |-- where_id: string (nullable = true)
 |-- where_name: string (nullable = true)
 |-- name: string (nullable = true)
 |-- name_long: string (nullable = true)
 |-- is_online: boolean (nullable = true)
 |-- is_streaming: boolean (nullable = true)
 |-- is_audio_input_enable: boolean (nullable = true)
 |-- last_is_online_change: timestamp (nullable = true)
 |-- is_video_history_enabled: boolean (nullable = true)
 |-- web_url: string (nullable = true)
 |-- app_url: string (nullable = true)
 |-- is_public_share_enabled: boolean (nullable = true)
 |-- activity_zones: array (nullable = true)
 | |-- element: struct (containsNull = true)
 | | |-- name: string (nullable = true)
 | | |-- id: string (nullable = true)
 |-- public_share_url: string (nullable = true)
 |-- snapshot_url: string (nullable = true)
 |-- last_event: struct (nullable = true)
 | |-- has_sound: boolean (nullable = true)
 | |-- has_motion: boolean (nullable = true)
 | |-- has_person: boolean (nullable = true)
 | |-- start_time: timestamp (nullable = true)
 | |-- end_time: timestamp (nullable = true)
 | |-- urls_expire_time: timestamp (nullable = true)
 | |-- web_url: string (nullable = true)
 | |-- app_url: string (nullable = true)
 | |-- image_url: string (nullable = true)
 | |-- animated_image_url: string (nullable = true)
 | |-- activity_zone_ids: array (nullable = true)
 | | |-- element: string (containsNull = true)

Aggregate and Write Back to Kafka
We will now process the sightings DataFrame by augmenting each

sighting with its location. Recall that we have some location data that
lets us look up the zip code of a device by its device id. We first create a
DataFrame representing this location data, and then join it with the
sightings DataFrame, matching on device id. What we are doing here
is joining the streaming DataFrame sightings with a static DataFrame

of locations!

Add Location Data

Aggregate Statistics and Write Out to Kafka
Now, let’s generate a streaming aggregate that counts the number of
camera person sightings in each zip code for each hour, and write it
out to a compacted Kafka topic1 called “nest-camera-stats”. 

The above query will process any sighting as it occurs and write out
the updated count of the sighting to Kafka, keyed on the zip code and
hour window of the sighting. Over time, many updates to the same key
will result in many records with that key, and Kafka topic compaction
will delete older updates as new values arrive for the key. This way,
compaction tries to ensure that eventually, only the latest value is kept
for any given key.

Archive Results in Persistent Storage
In addition to writing out aggregation results to Kafka, we may want to
save the raw camera records in persistent storage for later use. The
following example writes out the camera DataFrame to S3 in Parquet
format. We have chosen Parquet for compression and columnar
storage, though many different formats such as ORC, Avro, CSV, etc. are
supported to tailor to varied use-cases.

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 44

locationDF =
spark.table("device_locations").select("device_id",
"zip_code")
sightingLoc = sightings.join(locationDF, "device_id")

sightingLoc \
 .groupBy("zip_code", window("start_time", "1 hour")) \
 .count() \
 .select(\
 to_json(struct("zip_code", "window")).alias("key"),
 col("count").cast("string").alias("value")) \
 .writeStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers", "localhost:9092") \
 .option("topic", "nest-camera-stats") \
 .option("checkpointLocation", "/path/to/HDFS/dir") \
 .outputMode("complete") \
 .start()

Note that we can simply reuse the same camera DataFrame to start

multiple streaming queries. For instance, we can query the DataFrame
to get a list of cameras that are offline, and send a notification to the
network operations center for further investigation.

Batch Query for Reporting
Our next example is going to run a batch query over the Kafka “nest-
camera-stats” compacted topic and generate a report showing zip
codes with a significant number of sightings.

Writing batch queries is similar to streaming queries with the exception
that we use the read method instead of the readStream method and

write instead of writeStream.

Batch Read and Format the Data 

This report DataFrame can be used for reporting or to create a real-
time dashboard showing events with extreme sightings.

Conclusion
In this blog post, we showed examples of consuming and transforming
real-time data streams from Kafka. We implemented an end-to-end
example of a continuous application, demonstrating the conciseness
and ease of programming with Structured Streaming APIs, while
leveraging the powerful exactly-once semantics these APIs provide.

In the future blog posts in this series, we’ll cover more on:

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 45

camera.writeStream \
 .format("parquet") \
 .option("startingOffsets", "earliest") \
 .option("path", "s3://nest-logs") \
 .option("checkpointLocation", "/path/to/HDFS/dir") \
 .start()

report = spark \
 .read \
 .format("kafka") \
 .option("kafka.bootstrap.servers", "localhost:9092") \
 .option("subscribe", "nest-camera-stats") \
 .load() \
 .select(\
 json_tuple(col("key").cast("string"), "zip_code",
"window").alias("zip_code", "window"),

col("value").cast("string").cast("integer").alias("count")) \
 .where("count > 1000") \
 .select("zip_code", "window") \
 .distinct()

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html

• Monitoring your streaming applications
• Computing event-time aggregations with Structured Streaming

If you want to learn more about the Structured Streaming, here are a
few useful links:

• Previous blogs posts explaining the motivation and concepts of
Structured Streaming:

- Continuous Applications: Evolving Streaming in Apache Spark
2.0

- Structured Streaming In Apache Spark
- Real-time Streaming ETL with Structured Streaming in Apache

Spark 2.1

- Working with Complex with Structured Streaming in Apache
Spark 2.1

• Structured Streaming Programming Guide

• Talk at Spark Summit 2017 East – Making Structured Streaming
Ready for Production and Future Directions

To try Structured Streaming in Apache Spark 2.1, try Databricks today.

Additional Configuration

Kafka Integration Guide
Contains further examples and Spark specific configuration options for
processing data in Kafka.

Kafka Consumer and Producer Configuration Docs

Kafka’s own configurations can be set via DataStreamReader.option
and DataStreamWriter.option with the kafka. prefix, e.g:

For possible kafka parameters, see the Kafka consumer config docs for
parameters related to reading data, and the Kafka producer config
docs for parameters related to writing data.

See the Kafka Integration Guide for the list of options managed by
Spark, which are consequently not configurable.

1. A compacted Kafka topic is a topic where retention is enforced by compaction to
ensure that the log is guaranteed to have at least the last state for each key. See Kafka
Log Compaction for more information. 

Processing Data in Apache Kafka with Structured Streaming in Apache Spark 2.2 46

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark-summit.org/east-2017/events/making-structured-streaming-ready-for-production-updates-and-future-directions/
https://databricks.com/try-databricks
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
http://kafka.apache.org/documentation.html#newconsumerconfigs
http://kafka.apache.org/documentation/#producerconfigs
http://kafka.apache.org/documentation.html#newconsumerconfigs
http://kafka.apache.org/documentation/#producerconfigs
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

Part 5: Event-
time
Aggregations
and
Watermarking

Event-time Aggregation and Watermarking in Apache Spark’s Structured Streaming 47

Part 5: Event-time Aggregations and
Watermarking

Event-time Aggregation and
Watermarking in Apache Spark’s
Structured Streaming
Part 4 of Scalable Data @ Databricks
February 23, 2017 | by Tathagata Das

Continuous applications often require near real-time decisions on real-
time aggregated statistics—such as health of and readings from IoT
devices or detecting anomalous behavior. In this blog, we will explore
how easily streaming aggregations can be expressed in Structured
Streaming, and how naturally late, and out-of-order data is handled.

Streaming Aggregations
Structured Streaming allows users to express the same streaming
query as a batch query, and the Spark SQL engine incrementalizes the
query and executes on streaming data. For example, suppose you have
a streaming DataFrame having events with signal strength from IoT
devices, and you want to calculate the running average signal strength
for each device, then you would write the following Python code:

This code is no different if eventsDF was a DataFrame on static data.
However, in this case, the average will be continuously updated as new
events arrive. You choose different output modes for writing the
updated averages to external systems like file systems and databases.
Furthermore, you can also implement custom aggregations using
Spark’s user-defined aggregation function (UDAFs).

Aggregations on Windows over Event-Time
In many cases, rather than running aggregations over the whole
stream, you want aggregations over data bucketed by time windows
(say, every 5 minutes or every hour). In our earlier example, it’s
insightful to see what is the average signal strength in last 5 minutes in
case if the devices have started to behave anomalously. Also, this 5
minute window should be based on the timestamp embedded in the
data (aka. event-time) and not on the time it is being processed (aka.
processing-time).

Earlier Spark Streaming DStream APIs made it hard to express such
event-time windows as the API was designed solely for processing-
time windows (that is, windows on the time the data arrived in Spark).
In Structured Streaming, expressing such windows on event-time is
simply performing a special grouping using the window() function. For

example, counts over 5 minute tumbling (non-overlapping) windows
on the eventTime column in the event is as following.

Event-time Aggregation and Watermarking in Apache Spark’s Structured Streaming 48

DataFrame w/ schema [eventTime: timestamp, deviceId: string,
signal: bigint]
eventsDF = ...

avgSignalDF = eventsDF.groupBy("deviceId").avg("signal")

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#starting-streaming-queries
https://docs.databricks.com/spark/latest/spark-sql/udaf-scala.html

In the above query, every record is going to be assigned to a 5 minute
tumbling window as illustrated below.

Each window is a group for which running counts are calculated. You
can also define overlapping windows by specifying both the window
length and the sliding interval. For example:

In the above query, every record will be assigned to multiple
overlapping windows as illustrated below.Mapping of event-time to
overlapping windows of length 10 mins and sliding interval 5 mins

This grouping strategy automatically handles late and out-of-order
data — the late event would just update older window groups instead
of the latest ones. Here is an end-to-end illustration of a query that is
grouped by both the deviceId and the overlapping windows. The

illustration below shows how the final result of a query changes after

Event-time Aggregation and Watermarking in Apache Spark’s Structured Streaming 49

from pyspark.sql.functions import *

windowedAvgSignalDF = \
 eventsDF \
 .groupBy(window("eventTime", "5 minute")) \
 .count()

from pyspark.sql.functions import *

windowedAvgSignalDF = \
 eventsDF \
 .groupBy(window("eventTime", "10 minutes", "5 minutes")) \
 .count()

new data is processed with 5 minute triggers when you are grouping by
both deviceId and sliding windows (for brevity, the “signal” field is
omitted).

Note how the late, out-of-order record [12:04, dev2] updated an old
window’s count.

Stateful Incremental Execution
While executing any streaming aggregation query, the Spark SQL
engine internally maintains the intermediate aggregations as fault-
tolerant state. This state is structured as key-value pairs, where the key
is the group, and the value is the intermediate aggregation. These pairs
are stored in an in-memory, versioned, key-value “state store” in the
Spark executors that is checkpointed using write ahead logs in an
HDFS-compatible file system (in the configured checkpoint location).
At every trigger, the state is read and updated in the state store, and all
updates are saved to the write ahead log. In case of any failure, the
correct version of the state is restored from checkpoint information,
and the query proceeds from the point it failed. Together with
replayable sources, and idempotent sinks, Structured Streaming
ensures exactly-once guarantees for stateful stream processing.

Event-time Aggregation and Watermarking in Apache Spark’s Structured Streaming 50

windowedCountsDF = \
 eventsDF \
 .groupBy(
 "deviceId",
 window("eventTime", "10 minutes", "5 minutes")) \
 .count()

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

This fault-tolerant state management naturally incurs some processing
overheads. To keep these overheads bounded within acceptable limits,
the size of the state data should not grow indefinitely. However, with
sliding windows, the number of windows/groups will grow indefinitely,
and so can the size of state (proportional to the number of groups). To
bound the state size, we have to be able to drop old aggregates that
are not going to be updated any more, for example seven day old
averages. We achieve this using watermarking.

Watermarking to Limit State while Handling
Late Data
As mentioned before, the arrival of late data can result in updates to
older windows. This complicates the process of defining which old
aggregates are not going to be updated and therefore can be dropped
from the state store to limit the state size. In Apache Spark 2.1, we have
introduced watermarking that enables automatic dropping of old
state data.

Watermark is a moving threshold in event-time that trails behind the
maximum event-time seen by the query in the processed data. The
trailing gap defines how long we will wait for late data to arrive. By
knowing the point at which no more data will arrive for a given group,
we can limit the total amount of state that we need to maintain for a
query. For example, suppose the configured maximum lateness is 10
minutes. That means the events that are up to 10 minutes late will be
allowed to aggregate. And if the maximum observed event time is
12:33, then all the future events with event-time older than 12:23 will

be considered as “too late” and dropped. Additionally, all the state for
windows older than 12:23 will be cleared. You can set this parameter
based on the requirements of your application — larger values of this
parameter allows data to arrive later but at the cost of increased state
size, that is, memory usage and vice versa.

Here is the earlier example but with watermarking.

When this query is executed, Spark SQL will automatically keep track
of the maximum observed value of the eventTime column, update the
watermark and clear old state. This is illustrated below.

Event-time Aggregation and Watermarking in Apache Spark’s Structured Streaming 51

windowedCountsDF = \
 eventsDF \
 .withWatermark("eventTime", "10 minutes") \
 .groupBy(
 "deviceId",
 window("eventTime", "10 minutes", "5 minutes")) \
 .count()

Note the two events that arrive between the processing-times 12:20
and 12:25. The watermark is used to differentiate between the late and
the “too-late” events and treat them accordingly.

Conclusion
In short, I covered Structured Streaming’s windowing strategy to
handle key streaming aggregations: windows over event-time and late
and out-of-order data. Using this windowing strategy allows
Structured Streaming engine to implement watermarking, in which

late data can be discarded. As a result of this design, we can manage
the size of the state-store.

In the upcoming version of Apache Spark 2.2, we have added more
advanced stateful stream processing operations to streaming
DataFrames/Datasets. Stay tuned to this blog series for more
information. If you want to learn more about Structured Streaming,
read our previous posts in the series.

• Structured Streaming In Apache Spark

• Real-time Streaming ETL with Structured Streaming in Apache
Spark 2.1

• Working with Complex Data Formats with Structured Streaming in
Apache Spark 2.1

• Processing Data in Apache Kafka with Structured Streaming in
Apache Spark 2.2

To try Structured Streaming in Apache Spark 2.0, try Databricks today.

Event-time Aggregation and Watermarking in Apache Spark’s Structured Streaming 52

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html
https://databricks.com/try

Part 6: Vital
Steps to
Ensure
Production
Readiness

Taking Apache Spark’s Structured Streaming to Production 53

Part 6:  
Vital Steps to Ensure
Production Readiness

Taking Apache Spark’s
Structured Streaming to
Production
Part 5 of Scalable Data @ Databricks
February 23, 2017 | by Bill Chambers and Michael Armbrust

At Databricks, we’ve migrated our production pipelines to Structured
Streaming over the past several months and wanted to share our out-
of-the-box deployment model to allow our customers to rapidly build
production pipelines in Databricks.

A production application requires monitoring, alerting, and an
automatic (cloud native) approach to failure recovery. This post will
not just walk you through the APIs available for tackling these
challenges but will also show you how Databricks makes running
Structured Streaming in production simple.

Metrics and Monitoring
Structured Streaming in Apache Spark provides a simple
programmatic API to get information about a stream that is currently
executing. There are two key commands that you can run on a
currently active stream in order to get relevant information about the

query execution in progress: a command to get the current status of
the query and a command to get recentProgress of the query.

Status
The first question you might ask is, “what processing is my stream
performing right now?” The status maintains information about the
current state of the stream, and is accessible through the object that
was returned when you started the query. For example, you might
have a simple counts stream that provides counts of IOT devices
defined by the following query.

Running query.status will return the current status of the stream.

This gives us details about what is happening at that point in time in
the stream.

Taking Apache Spark’s Structured Streaming to Production 54

query = streamingCountsDF \
 .writeStream \
 .format("memory") \
 .queryName("counts") \
 .outputMode("complete") \
 .start()

{
 "message" : "Getting offsets from FileStreamSource[dbfs:/
databricks-datasets/structured-streaming/events]",
 "isDataAvailable" : true,
 "isTriggerActive" : true
}

https://databricks.com/blog/2017/05/18/taking-apache-sparks-structured-structured-streaming-to-production.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

Databricks notebooks give you a simple way to see that status of any
streaming query. Simply hover over the green streaming icon
available in a streaming query. You’ll get the same
information, making it much more convenient to quickly understand
the state of your stream.

Recent Progress
While the query status is certainly important, equally important is an
ability to view query’s historical progress. Progress metadata will allow
us to answer questions like “At what rate am I processing tuples?” or
“How fast are tuples arriving from the source?”

By running stream.recentProgress you’ll get access to some more

time-based information like the processing rate and batch durations.
However, a picture is worth a thousand JSON blobs, so at Databricks,
we created visualizations in order to facilitate rapid analysis of the
recent progress of the stream.

 
Let’s explore why we chose to display these metrics and why they’re
important for you to understand.

Taking Apache Spark’s Structured Streaming to Production 55

Input Rate and Processing Rate
The input rate specifies how much data is flowing into Structured
Streaming from a system like Kafka or Kinesis. The processing rate is
how quickly we were able to analyze that data. In the ideal case, these
should vary consistently together; however, they will vary according to
how much input data exists when processing starts. If the input rate far
outpaces the processing rate, our streams will fall behind, and we will
have to scale the cluster up to a larger size to handle the greater load.

Batch Duration
Nearly all streaming systems utilize batching to operate at any
reasonable throughput (some have an option of high latency in
exchange for lower throughput). Structured Streaming achieves both.
As it operates on the data, you will likely see this oscillate as
Structured Streaming processes varying numbers of events over time.
On this single core cluster on Community Edition, we can see that our
batch duration is oscillating consistently around three seconds. Larger
clusters will naturally have much faster processing rates as well as
much shorter batch durations.

Taking Apache Spark’s Structured Streaming to Production 56

Production Alerting on Streaming Jobs
Metrics and Monitoring are all well and good, but in order to react
quickly to any issues that arise without having to babysit your
streaming jobs all day, you’re going to need a robust alerting story.
Databricks makes alerting easy by allowing you to run your Streaming
jobs as production pipelines.

For instance, let’s define a Databricks jobs with the following
specifications: 

 
Notice how we set an email address to trigger an alert in PagerDuty.
This will trigger a product alert (or to the level that you specify) when
the job fails. 

Automated Failure Recovery
While alerting is convenient, having to force a human to respond to an
outage is inconvenient at best and impossible at worst. In order to
truly productionize Structured Streaming, you’re going to want to be
able to recover automatically to failures as quickly as you can, while
ensuring data consistency and no data loss. Databricks makes this
seamless: simply set the number of retries before a unrecoverable

failure and Databricks will try to recover the streaming job
automatically for you. On each failure, you can trigger a notification as
a production outage.

You get the best of both worlds. The system will attempt to self-heal
while keeping employees and developers informed of the status.

Updating Your Application
There are two circumstances that you need to reason about when you
are updating your streaming application. For the most part, if you’re
not changing significant business logic (like the output schema) you
can simply restart the streaming job using the same checkpoint
directory. The new updated streaming application will pick up where it
left off and continue functioning.

However, if you’re changing stateful operations (like aggregations or
the output schema), the update is a bit more involved. You’ll have to
start an entirely new stream with a new checkpoint directory. Luckily,

Taking Apache Spark’s Structured Streaming to Production 57

it’s easy to start up another stream in Databricks in order to run both in
parallel while you transition to the new stream.

Advanced Alerting and Monitoring
There are several other advanced monitoring techniques that
Databricks supports as well. For example, you can output notifications
using a system like Datadog, Apache Kafka, or Coda Hale Metrics.
These advanced techniques can be used to implement external
monitoring and alerting systems.

Below is an example of how you can create a StreamingQueryListener
that will forward all query progress information to Kafka.

Conclusion
In this post, we showed how simple it is to take Structured Streaming
from prototype to production using Databricks. To read more about
other aspects of Structured Streaming, read our series of blogs:

• Structured Streaming In Apache Spark

• Real-time Streaming ETL with Structured Streaming in Apache
Spark 2.1

• Working with Complex Data Formats with Structured Streaming in
Apache Spark 2.1

• Processing Data in Apache Kafka with Structured Streaming in
Apache Spark 2.2

• Event-time Aggregation and Watermarking in Apache Spark’s
Structured Streaming 

You can learn more about using streaming from the Databricks
Documentation or sign up to start a free trial today. 

Taking Apache Spark’s Structured Streaming to Production 58

class KafkaMetrics(servers: String) extends
StreamingQueryListener {
 val kafkaProperties = new Properties()
 kafkaProperties.put("bootstrap.servers", servers)
 kafkaProperties.put("key.serializer",
"kafkashaded.org.apache.kafka.common.serialization.StringSeria
lizer")
 kafkaProperties.put("value.serializer",
"kafkashaded.org.apache.kafka.common.serialization.StringSeria
lizer")

 val producer = new KafkaProducer[String, String]
(kafkaProperties)

 def onQueryProgress(event:
org.apache.spark.sql.streaming.StreamingQueryListener.QueryPro
gressEvent): Unit = {
 producer.send(new ProducerRecord("streaming-metrics",
event.progress.json))
 }

 def onQueryStarted(event:
org.apache.spark.sql.streaming.StreamingQueryListener.QuerySta
rtedEvent): Unit = {}
 def onQueryTerminated(event:
org.apache.spark.sql.streaming.StreamingQueryListener.QueryTer
minatedEvent): Unit = {}
}

https://www.datadoghq.com/
https://kafka.apache.org/
https://github.com/dropwizard/metrics
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://docs.databricks.com/spark/latest/structured-streaming/index.html
https://databricks.com/try-databricks

Part 7: Better Cost
Management through
APIs 

Running Streaming Jobs Once a Day For 10x Cost Savings 59

Load your Streaming DataFrame
sdf = spark.readStream.load(path="/in/path", format="json",
schema=my_schema)
Perform transformations and then write…
sdf.writeStream.trigger(once=True).start(path="/out/path",
format="parquet")

Part 7:  
Better Cost Management
through APIs

Running Streaming Jobs Once a
Day For 10x Cost Savings
Part 6 of Scalable Data @ Databricks
May 22, 2017 | by Burak Yavuz and Tyson Condie

Traditionally, when people think about streaming, terms such as “real-
time,” “24/7,” or “always on” come to mind. You may have cases where
data only arrives at fixed intervals. That is, data appears every hour or
once a day. For these use cases, it is still beneficial to perform
incremental processing on this data. However, it would be wasteful to
keep a cluster up and running 24/7 just to perform a short amount of
processing once a day.

Fortunately, by using the new Run Once trigger feature added to
Structured Streaming in Apache Spark 2.2, you will get all the benefits
of the Catalyst Optimizer incrementalizing your workload, and the cost
savings of not having an idle cluster lying around. In this post, we will
examine how to employ triggers to accomplish both.

Triggers in Structured Streaming
In Structured Streaming, triggers are used to specify how often a
streaming query should produce results. Once a trigger fires, Spark
checks to see if there is new data available. If there is new data, then
the query is executed incrementally on whatever has arrived since the

last trigger. If there is no new data, then the stream sleeps until the
next trigger fires.

The default behavior of Structured Streaming is to run with the lowest
latency possible, so triggers fire as soon as the previous trigger
finishes. For use cases with lower latency requirements, Structured
Streaming supports a ProcessingTime trigger which will fire every user-
provided interval, for example every minute.

While this is great, it still requires the cluster to remain running 24/7. In
contrast, a RunOnce trigger will fire only once and then will stop the
query. As we’ll see below, this lets you effectively utilize an external
scheduling mechanism such as Databricks Jobs.

Triggers are specified when you start your streams.

PYTHON

Running Streaming Jobs Once a Day For 10x Cost Savings 60

Load your Streaming DataFrame
sdf = spark.readStream.load(path="/in/path", format="json",
schema=my_schema)
Perform transformations and then write…
sdf.writeStream.trigger(once=True).start(path="/out/path",
format="parquet")

https://databricks.com/blog/2017/05/22/running-streaming-jobs-day-10x-cost-savings.html

SCALA

Why Streaming and RunOnce is Better than
Batch
You may ask, how is this different than simply running a batch job?
Let’s go over the benefits of running Structured Streaming over a batch
job.

Bookkeeping
When you’re running a batch job that performs incremental updates,
you generally have to deal with figuring out what data is new, what you
should process, and what you should not. Structured Streaming
already does all this for you. In writing general streaming applications,
you should only care about the business logic, and not the low-level
bookkeeping.

Table Level Atomicity
The most important feature of a big data processing engine is how it
can tolerate faults and failures. The ETL jobs may (in practice, often
will) fail. If your job fails, then you need to ensure that the output of
your job should be cleaned up, otherwise you will end up with
duplicate or garbage data after the next successful run of your job.

While using Structured Streaming to write out a file-based table,
Structured Streaming commits all files created by the job to a log after
each successful trigger. When Spark reads back the table, it uses this
log to figure out which files are valid. This ensures that garbage
introduced by failures are not consumed by downstream applications.

Stateful Operations Across Runs
If your data pipeline has the possibility of generating duplicate
records, but you would like exactly once semantics, how do you
achieve that with a batch workload? With Structured Streaming, it’s as
easy as setting a watermark and using dropDuplicates(). By

configuring the watermark long enough to encompass several runs of
your streaming job, you will make sure that you don’t get duplicate
data across runs.

Cost Savings
Running a 24/7 streaming job is a costly ordeal. You may have use
cases where latency of hours is acceptable, or data comes in hourly or
daily. To get all the benefits of Structured Streaming described above,

Running Streaming Jobs Once a Day For 10x Cost Savings 61

import org.apache.spark.sql.streaming.Trigger

// Load your Streaming DataFrame
val sdf =
spark.readStream.format("json").schema(my_schema).load("/in/
path")
// Perform transformations and then write…
sdf.writeStream.trigger(Trigger.Once).format("parquet").start(
"/out/path")=

you may think you need to keep a cluster up and running all the time.
But now, with the “execute once” trigger, you don’t need to!

At Databricks, we had a two stage data pipeline, consisting of one
incremental job that would make the latest data available, and one job
at the end of the day that processed the whole day’s worth of data,
performed de-duplication, and overwrote the output of the
incremental job. The second job would use considerably larger
resources than the first job (4x), and would run much longer as well
(3x). We were able to get rid of the second job in many of our pipelines
that amounted to a 10x total cost savings. We were also able to clean
up a lot of code in our codebase with the new execute once trigger.
Those are cost savings that makes both financial and engineering
managers happy!

Scheduling Runs with Databricks
Databricks’ Jobs scheduler allows users to schedule production jobs
with a few simple clicks. Jobs scheduler is ideal for scheduling
Structured Streaming jobs that run with the execute once trigger.

 
At Databricks, we use the Jobs scheduler to run all of our production
jobs. As engineers, we ensure that the business logic within our ETL job
is well tested. We upload our code to Databricks as a library, and we
set up notebooks to set the configurations for the ETL job such as the
input file directory. The rest is up to Databricks to manage clusters,
schedule and execute the jobs, and Structured Streaming to figure out
which files are new, and process incoming data. The end result is an
end-to-end — from data origin to data warehouse, not only within
Spark — exactly once data pipeline. Check out our documentation on
how to best run Structured Streaming with Jobs.

Running Streaming Jobs Once a Day For 10x Cost Savings 62

http://go.databricks.com/databricks-data-pipeline
https://databricks.com/blog/2015/03/18/databricks-launches-jobs-feature-for-production-workloads.html
https://docs.databricks.com/spark/latest/structured-streaming/production.html

Summary
In this blog post we introduced the new “execute once” trigger for
Structured Streaming. While the execute once trigger resembles
running a batch job, we discussed all the benefits it has over the batch
job approach, specifically:

• Managing all the bookkeeping of what data to process
• Providing table level atomicity for ETL jobs to a file store
• Ensuring stateful operations across runs of the job, which allow for

easy de-duplication

In addition to all these benefits over batch processing, you also get the
cost savings of not having an idle 24/7 cluster up and running for an
irregular streaming job. The best of both worlds for batch and
streaming processing are now under your fingertips.

Try Structured Streaming today in Databricks by signing up for a 14-
day free trial.

Other parts of this blog series explain other benefits as well:

• Real-time Streaming ETL with Structured Streaming in Apache
Spark 2.1

• Working with Complex Data Formats with Structured Streaming in
Apache Spark 2.1

• Processing Data in Apache Kafka with Structured Streaming in
Apache Spark 2.2

• Event-time Aggregation and Watermarking in Apache Spark’s
Structured Streaming

• Taking Apache Spark’s Structured Structured Streaming to
Production

• Running Streaming Jobs Once a Day For 10x Cost Savings

Running Streaming Jobs Once a Day For 10x Cost Savings 63

http://databricks.com/try
https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://databricks.com/blog/2017/05/18/taking-apache-sparks-structured-structured-streaming-to-production.html
https://databricks.com/blog/2017/05/22/running-streaming-jobs-day-10x-cost-savings.html

Part 8:
Customized
and Arbitrary
Stateful
Processing 

Arbitrary Stateful Processing in Apache Spark’s Structured Streaming 64

Part 8:  
Customized and Arbitrary
Stateful Processing

Arbitrary Stateful Processing in
Apache Spark’s Structured
Streaming
Part 7 of Scalable Data @ Databricks
October 17, 2017 | by Bill Chambers and Jules Damji

Introduction
Most data streams, though continuous in flow, have discrete events
within streams, each marked by a timestamp when an event
transpired. As a consequence, this idea of “event-time” is central to
how Structured Streaming APIs are fashioned for event-time
processing—and the functionality they offer to process these discrete
events.

Event-time basics and event-time processing are adequately covered
in Structured Streaming documentation and our anthology of
technical assets on Structure Streaming. So for brevity, we won’t cover
them here. Built on the concepts developed (and tested at scale) in
event-time processing, such as sliding windows, tumbling windows,
and watermarking, this blog will focus on two topics:

1. How to handle duplicates in your event streams
2. How to handle arbitrary or custom stateful processing

Dropping Duplicates
No streaming events are free of duplicate entries. Dropping duplicate
entries in record-at-a-time systems is imperative—and often a
cumbersome operation for a couple of reasons. First, you’ll have to
process small or large batches of records at time to discard them.
Second, some events, because of network high latencies, may arrive
out-of-order or late, which may force you to reiterate or repeat the
process. How do you account for that?

Structured Streaming, which ensures exactly once-semantics, can drop
duplicate messages as they come in based on arbitrary keys. To
deduplicate data, Spark will maintain a number of user-specified keys
and ensure that duplicates, when encountered, are discarded.

Just as other stateful processing APIs in Structured Streaming are
bounded by declaring watermarking for late data semantics, so is
dropping duplicates. Without watermarking, the maintained state can
grow infinitely over the course of your stream.

The API to instruct Structured Streaming to drop duplicates is as
simple as all other APIs we have shown so far in our blogs and
documentation. Using the API, you can declare arbitrarily columns on
which to drop duplicates—for example, user_id and timestamp. An
entry with same timestamp and user_id is marked as duplicate and
dropped, but the same entry with two different timestamps is not.

Arbitrary Stateful Processing in Apache Spark’s Structured Streaming 65

https://databricks.com/blog/2017/10/17/arbitrary-stateful-processing-in-apache-sparks-structured-streaming.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://databricks.com/blog/2017/08/24/anthology-of-technical-assets-on-apache-sparks-structured-streaming.html
https://databricks.com/blog/2017/08/24/anthology-of-technical-assets-on-apache-sparks-structured-streaming.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html

Let’s see an example how we can use the simple API to drop
duplicates.

PYTHON 

 
SCALA

Over the course of the query, if you were to issue a SQL query, you will
get an accurate results, with all duplicates dropped.

 
Next, we will expand on how to implement a customized stateful
processing using two Structured Streaming APIs.

Working with Arbitrary or Custom Stateful
Processing
Not all event-time based processing is equal or as simple as
aggregating a specific data column within an event. Others events are
more complex; they require processing by rows of events ascribed to a
group; and they only make sense when processed in their entirety by

Arbitrary Stateful Processing in Apache Spark’s Structured Streaming 66

from pyspark.sql.functions import expr

withEventTime\
 .withWatermark("event_time", "5 seconds")\
 .dropDuplicates(["User", "event_time"])\
 .groupBy("User")\
 .count()\
 .writeStream\
 .queryName("pydeduplicated")\
 .format("memory")\
 .outputMode("complete")\
 .start()

import org.apache.spark.sql.functions.expr

withEventTime
 .withWatermark("event_time", "5 seconds")
 .dropDuplicates("User", "event_time")
 .groupBy("User")
 .count()
 .writeStream
 .queryName("deduplicated")
 .format("memory")
 .outputMode("complete")
 .start()

SELECT * FROM deduplicated
+----+-----+
|User|count|
+----+-----+
a	8085
b	9123
c	7715
g	9167
h	7733
e	9891
f	9206
d	8124
i	9255
+----+-----+

emitting either a single result or multiple rows of results, depending on
your use cases.

Consider these use-cases where arbitrary or customized stateful
processing become imperative:

1. We want to emit an alert based on a group or type of events if we
observe that they exceed a threshold over time

2. We want to maintain user sessions, over definite or indefinite time
and persist those sessions for post analysis.

All of the above scenarios require customized processing. Structured
Streaming APIs offer a set of APIs to handle these cases:
mapGroupsWithState and flatMapGroupsWithState.

mapGroupsWithState can operate on groups and output only a single
result row for each group, whereas flatMapGroupsWithState can emit

a single row or multiple rows of results per group.  

Timeouts and State
One thing to note is that because we manage the state of the group
based on user-defined concepts, as expressed above for the use-cases,
the semantics of watermark (expiring or discarding an event) may not
always apply here. Instead, we have to specify an appropriate timeout
ourselves. Timeout dictates how long we should wait before timing out
some intermediate state.

Timeouts can either be based on processing time
(GroupStateTimeout.ProcessingTimeTimeout) or event time

(GroupStateTimeout.EventTimeTimeout). When using timeouts, you
can check for timeout first before processing the values by checking
the flag state.hasTimedOut.

Arbitrary Stateful Processing in Apache Spark’s Structured Streaming 67

To set processing timeout, use GroupState.setTimeoutDuration(...)

method. That means the timeout guarantee will occur under the
following conditions:

• Timeout will never occur before the clock has advanced X ms
specified in the method

• Timeout will eventually occur when there is a trigger in the query,
after X ms

To set event time timeout, use
GroupState.setTimeoutTimestamp(...). Only for timeouts based on

event time must you specify watermark. As such all events in the group
older than watermark will be filtered out, and the timeout will occur
when the watermark has advanced beyond the set timestamp.

When timeouts occur, your function supplied in the streaming query
will be invoked with arguments: the key by which you keep the state;
an iterator rows of input, and an old state. The example with
mapGroupsWithState below defines a number of functional classes

and objects used.

Example with mapGroupsWithState
Let’s take a simple example where we want to find out when
(timestamp) a user performed his or her first and last activity in a given
dataset in a stream. In this case, we will group on (or map on) on a user
key and activity key combination.

But first, mapGroupsWithState requires a number of functional classes

and objects:

1. Three class definitions: an input definition, a state definition, and
optionally an output definition.

2. An update function based on a key, an iterator of events, and a
previous state.

3. A timeout parameter as described above.

So let’s define our input, output, and state data structure definitions. 

Arbitrary Stateful Processing in Apache Spark’s Structured Streaming 68

case class InputRow(user:String, timestamp:java.sql.Timestamp,
activity:String)
case class UserState(user:String,
 var activity:String,
 var start:java.sql.Timestamp,
 var end:java.sql.Timestamp)

Based on a given input row, we define our update function And finally, we write our function that defines the way state is updated
based on an epoch of rows.

With these pieces in place, we can now use them in our query. As
discussed above, we have to specify our timeout so that the method
can timeout a given group’s state and we can control what should be
done with the state when no update is received after a timeout. For
this illustration, we will maintain state indefinitely.

Arbitrary Stateful Processing in Apache Spark’s Structured Streaming 69

def updateUserStateWithEvent(state:UserState,
input:InputRow):UserState = {
// no timestamp, just ignore it
if (Option(input.timestamp).isEmpty) {
 return state
 }
//does the activity match for the input row
if (state.activity == input.activity) {
 if (input.timestamp.after(state.end)) {
 state.end = input.timestamp
 }
 if (input.timestamp.before(state.start)) {
 state.start = input.timestamp
 }
 } else {
 //some other activity
 if (input.timestamp.after(state.end)) {
 state.start = input.timestamp
 state.end = input.timestamp
 state.activity = input.activity
 }
 }
 //return the updated state
 state
}

import org.apache.spark.sql.streaming.{GroupStateTimeout,
OutputMode, GroupState}

def updateAcrossEvents(user:String,
 inputs: Iterator[InputRow],
 oldState: GroupState[UserState]):UserState = {
 var state:UserState = if (oldState.exists) oldState.get
else UserState(user,
 "",
 new java.sql.Timestamp(6284160000000L),
 new java.sql.Timestamp(6284160L)
)
 // we simply specify an old date that we can compare against
and
 // immediately update based on the values in our data

 for (input <- inputs) {
 state = updateUserStateWithEvent(state, input)
 oldState.update(state)
 }
 state
}

We can now query our results in the stream:

And our sample result that shows user activity for the first and last
time stamp:  

What’s Next
In this blog, we expanded on two additional functionalities and APIs
for advanced streaming analytics. The first allows removing duplicates
bounded by a watermark. With the second, you can implement
customized stateful aggregations, beyond event-time basics and
event-time processing.

Through an example using mapGroupsWithState APIs, we

demonstrated how you can implement your customized stateful
aggregation for events whose processing semantics can be defined not
only by timeout but also by user semantics and business logic.

Our next blog in this series, we will explore advanced aspects of
flatMapGroupsWithState use cases, as was discussed at Spark Summit
Europe, in Dublin, in a deep dive session on Structured Streaming:
Session 1. Session 2.

Arbitrary Stateful Processing in Apache Spark’s Structured Streaming 70

import org.apache.spark.sql.streaming.GroupStateTimeout

withEventTime
 .selectExpr("User as user", "cast(Creation_Time/1000000000
as timestamp) as timestamp", "gt as activity")
 .as[InputRow]
 // group the state by user key
 .groupByKey(_.user)
 .mapGroupsWithState(GroupStateTimeout.NoTimeout)
(updateAcrossEvents)
 .writeStream
 .queryName("events_per_window")
 .format("memory")
 .outputMode("update")
 .start()

+----+--------+--------------------+--------------------+
|user|activity| start| end|
+----+--------+--------------------+--------------------+
| a| bike|2015-02-23 13:30:...|2015-02-23 14:06:...|
| a| bike|2015-02-23 13:30:...|2015-02-23 14:06:...|
...
b	bike	2015-02-24 14:01:...	2015-02-24 14:38:...
b	bike	2015-02-24 14:01:...	2015-02-24 14:38:...
c	bike	2015-02-23 12:40:...	2015-02-23 13:15:...
...			
d	bike	2015-02-24 13:07:...	2015-02-24 13:42:...
+----+--------+--------------------+--------------------+

SELECT * FROM events_per_window order by user, start

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#handling-event-time-and-late-data
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#window-operations-on-event-time
https://spark-summit.org/eu-2017/
https://spark-summit.org/eu-2017/
https://databricks.com/session/easy-scalable-fault-tolerant-stream-processing-with-structured-streaming-in-apache-spark
https://databricks.com/session/easy-scalable-fault-tolerant-stream-processing-with-structured-streaming-in-apache-spark-continues

Read More
Over the course of Structured Streaming development and release
since Apache Spark 2.0, we have compiled a comprehensive
compendium of technical assets, including our Structured Series
blogs. You can read the relevant assets here:

• Anthology of Technical Assets on Apache Spark’s Structured
Streaming

Try Apache Spark’s Structured Streaming latest APIs on Databricks’
Unified Analytics Platform.

Arbitrary Stateful Processing in Apache Spark’s Structured Streaming 71

https://databricks.com/blog/2017/08/24/anthology-of-technical-assets-on-apache-sparks-structured-streaming.html
https://databricks.com/product/databricks

Conclusion
Our mission at Databricks is to dramatically simplify big data and AI.
Our Unified Analytics Platform enables this through the unification of
data science, engineering, and the business — accelerating innovation
that delivers transformative business outcomes. We hope this eBook
will provide you with the insights and tools to help you solve your
streaming problems. If you enjoyed the technical content in this
eBook, visit the Databricks Blog for more technical tips, best practices,
and case studies from the Spark experts at Databricks.

To try out Databricks for yourself, sign-up for a 14-day free trial today!

To try Databricks yourself, start your  
free trial today!

Conclusion

 72

https://databricks.com/product/unified-analytics-platform
https://databricks.com/blog
https://databricks.com/try-databricks

