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Introduction 
 
Since its release, Apache Spark Streaming has become one of the most 
widely used distributed streaming engines, thanks to its high-level API 
and exactly-once semantics. Most streaming engines focus on 
performing computations on a stream. Instead, stream processing 
happens as part of a larger application, which we’ll call a continuous 
application.  

We define a continuous application as an end-to-end application that 
reacts to data in real-time. Structured Streaming is a high-level API 
originally contributed to Apache Spark 2.0 to support continuous 
applications and was recently improved upon in the release of Apache 
Spark 2.3. Structured Streaming incorporates the idea of continuous 
applications to provide a number of features that no other streaming 
engines offer strong guarantees about consistency with batch jobs, 
transactional integration with storage systems, and tight integration 
with the rest of Spark. 

 
At Databricks, we’ve worked with thousands of users to understand 
how to simplify real-time applications. This ebook provides an 
overview of Structured Streaming and explores how we are using the 
new features of Apache Spark 2.1 and 2.2 to overcome the primary 
challenges of building continuous applications and building our own 
production pipelines. Highlights include how to use Structured 
Streaming to: 

• Easily build an end-to-end streaming ETL pipeline; 
• Solve complex data transformation challenges; 
• Perform monitoring and alerting; 
• Consume and transform complex data streams with Spark and 

Kafka; 
• Easily process streaming aggregations; and 
• Better manage resources for incremental processing of data. 
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Structured Streaming In Apache 
Spark 
A new high-level API for streaming 
July 28, 2016 | by Matei Zaharia, Tathagata Das, Michael Armbrust and 
Reynold Xin 

Try this notebook in Databricks: Scala Notebook, Python Notebook 

Apache Spark 2.0 adds the first version of a new higher-level API, 
Structured Streaming, for building continuous applications. The main 
goal is to make it easier to build end-to-end streaming applications, 
which integrate with storage, serving systems, and batch jobs in a 
consistent and fault-tolerant way. In this post, we explain why this is 
hard to do with current distributed streaming engines, and introduce 
Structured Streaming. 

Why Streaming is Difficult 
At first glance, building a distributed streaming engine might seem as 
simple as launching a set of servers and pushing data between them. 
Unfortunately, distributed stream processing runs into multiple 
complications that don’t affect simpler computations like batch jobs. 

To start, consider a simple application: we receive (phone_id, time, 
action) events from a mobile app, and want to count how many 

actions of each type happened each hour, then store the result in 
MySQL. If we were running this application as a batch job and had a 
table with all the input events, we could express it as the following SQL 
query: 

In a distributed streaming engine, we might set up nodes to process 
the data in a “map-reduce” pattern, as shown below. Each node in the 
first layer reads a partition of the input data (say, the stream from one 
set of phones), then hashes the events by (action, hour) to send them 
to a reducer node, which tracks that group’s count and periodically 
updates MySQL. 
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SELECT action, WINDOW(time, "1 hour"), COUNT(*)
FROM events
GROUP BY action, WINDOW(time, "1 hour")

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Scala%20DataFrames%20API.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Python%20DataFrames%20API.html
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html


Unfortunately, this type of design can introduce quite a few challenges: 

1. Consistency: This distributed design can cause records to be 
processed in one part of the system before they’re processed in 
another, leading to nonsensical results. For example, suppose our 
app sends an “open” event when users open it, and a “close” event 
when closed. If the reducer node responsible for “open” is slower 
than the one for “close”, we might see a higher total count of 

“closes” than “opens” in MySQL, which would not make sense. The 
image above actually shows one such example. 

2. Fault tolerance: What happens if one of the mappers or reducers 
fails? A reducer should not count an action in MySQL twice, but 
should somehow know how to request old data from the mappers 
when it comes up. Streaming engines go through a great deal of 
trouble to provide strong semantics here, at least within the 
engine. In many engines, however, keeping the result consistent in 
external storage is left to the user. 

3. Out-of-order data: In the real world, data from different sources 
can come out of order: for example, a phone might upload its data 
hours late if it’s out of coverage. Just writing the reducer operators 
to assume data arrives in order of time fields will not work—they 
need to be prepared to receive out-of-order data, and to update 
the results in MySQL accordingly. 

In most current streaming systems, some or all of these concerns are 
left to the user. This is unfortunate because these issues—how the 
application interacts with the outside world—are some of the hardest 
to reason about and get right. In particular, there is no easy way to get 
semantics as simple as the SQL query above. 

Structured Streaming Model 
In Structured Streaming, we tackle the issue of semantics head-on by 
making a strong guarantee about the system: at any time, the output of 

the application is equivalent to executing a batch job on a prefix of the 
data. For example, in our monitoring application, the result table in 
MySQL will always be equivalent to taking a prefix of each phone’s 
update stream (whatever data made it to the system so far) and 
running the SQL query we showed above. There will never be “open” 
events counted faster than “close” events, duplicate updates on 
failure, etc. Structured Streaming automatically handles consistency 
and reliability both within the engine and in interactions with external 
systems (e.g. updating MySQL transactionally). 

This prefix integrity guarantee makes it easy to reason about the three 
challenges we identified. In particular: 

1. Output tables are always consistent with all the records in a prefix 
of the data. For example, as long as each phone uploads its data as 
a sequential stream (e.g., to the same partition in Apache Kafka), 
we will always process and count its events in order. 
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2. Fault tolerance is handled holistically by Structured Streaming, 
including in interactions with output sinks. This was a major goal 
in supporting continuous applications. 

3. The effect of out-of-order data is clear. We know that the job 
outputs counts grouped by action and time for a prefix of the 
stream. If we later receive more data, we might see a time field for 
an hour in the past, and we will simply update its respective row in 
MySQL. Structured Streaming also supports APIs for filtering out 
overly old data if the user wants. But fundamentally, out-of-order 
data is not a “special case”: the query says to group by time field, 
and seeing an old time is no different than seeing a repeated 
action. 

The last benefit of Structured Streaming is that the API is very easy to 
use: it is simply Spark’s DataFrame and Dataset API. Users just describe 
the query they want to run, the input and output locations, and 
optionally a few more details. The system then runs their query 
incrementally, maintaining enough state to recover from failure, keep 
the results consistent in external storage, etc. For example, here is how 
to write our streaming monitoring application: 

This code is nearly identical to the batch version below—only the 
“read” and “write” changed: 

The next sections explain the model in more detail, as well as the API. 

Model Details 
Conceptually, Structured Streaming treats all the data arriving as an 
unbounded input table. Each new item in the stream is like a row 
appended to the input table. We won’t actually retain all the input, but 
our results will be equivalent to having all of it and running a batch job. 

Structured Streaming In Apache Spark  8

// Read data continuously from an S3 location
val inputDF = spark.readStream.json("s3://logs")
 
// Do operations using the standard DataFrame API and write to 
MySQL
inputDF.groupBy($"action", window($"time", "1 hour")).count()
       .writeStream.format("jdbc")
       .start("jdbc:mysql//…")

// Read data once from an S3 location
val inputDF = spark.read.json("s3://logs")
 
// Do operations using the standard DataFrame API and write to 
MySQL
inputDF.groupBy($"action", window($"time", "1 hour")).count()
       .writeStream.format("jdbc")
       .save("jdbc:mysql//…")

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html


The developer then defines a query on this input table, as if it were a 
static table, to compute a final result table that will be written to an 
output sink. Spark automatically converts this batch-like query to a 
streaming execution plan. This is called incrementalization: Spark 
figures out what state needs to be maintained to update the result 
each time a record arrives. Finally, developers specify triggers to 
control when to update the results. Each time a trigger fires, Spark 
checks for new data (new row in the input table), and incrementally 
updates the result. 

The last part of the model is output modes. Each time the result table 
is updated, the developer wants to write the changes to an external 
system, such as S3, HDFS, or a database. We usually want to write 
output incrementally. For this purpose, Structured Streaming provides 
three output modes: 

• Append: Only the new rows appended to the result table since the 
last trigger will be written to the external storage. This is applicable 
only on queries where existing rows in the result table cannot 
change (e.g. a map on an input stream). 

• Complete: The entire updated result table will be written to 
external storage. 

• Update: Only the rows that were updated in the result table since 
the last trigger will be changed in the external storage. This mode 
works for output sinks that can be updated in place, such as a 
MySQL table. 

Let’s see how we can run our mobile monitoring application in this 
model. Our batch query is to compute a count of actions grouped by 
(action, hour). To run this query incrementally, Spark will maintain 
some state with the counts for each pair so far, and update when new 
records arrive. For each record changed, it will then output data 
according to its output mode. The figure below shows this execution 
using the Update output mode: 
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At every trigger point, we take the previous grouped counts and 
update them with new data that arrived since the last trigger to get a 
new result table. We then emit only the changes required by our 
output mode to the sink—here, we update the records for (action, 
hour) pairs that changed during that trigger in MySQL (shown in red). 

Note that the system also automatically handles late data. In the figure 
above, the “open” event for phone3, which happened at 1:58 on the 
phone, only gets to the system at 2:02. Nonetheless, even though it’s 
past 2:00, we update the record for 1:00 in MySQL. However, the prefix 
integrity guarantee in Structured Streaming ensures that we process 

the records from each source in the order they arrive. For example, 
because phone1’s “close” event arrives after its “open” event, we will 
always update the “open” count before we update the “close” count. 

Fault Recovery and Storage System 
Requirements 
Structured Streaming keeps its results valid even if machines fail. To 
do this, it places two requirements on the input sources and output 
sinks: 

1. Input sources must be replayable, so that recent data can be re-
read if the job crashes. For example, message buses like Amazon 
Kinesis and Apache Kafka are replayable, as is the file system input 
source. Only a few minutes’ worth of data needs to be retained; 
Structured Streaming will maintain its own internal state after 
that. 

2. Output sinks must support transactional updates, so that the 
system can make a set of records appear atomically. The current 
version of Structured Streaming implements this for file sinks, and 
we also plan to add it for common databases and key-value stores. 

3. We found that most Spark applications already use sinks and 
sources with these properties, because users want their jobs to be 
reliable. 
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Apart from these requirements, Structured Streaming will manage its 
internal state in a reliable storage system, such as S3 or HDFS, to store 
data such as the running counts in our example. Given these 
properties, Structured Streaming will enforce prefix integrity end-to-
end. 

Structured Streaming API 
Structured Streaming is integrated into Spark’s Dataset and DataFrame 
APIs; in most cases, you only need to add a few method calls to run a 
streaming computation. It also adds new operators for windowed 
aggregation and for setting parameters of the execution model (e.g. 
output modes). In Apache Spark 2.0, we’ve built an alpha version of 
the system with the core APIs. More operators, such as sessionization, 
will come in future releases. 

API Basics 
Streams in Structured Streaming are represented as DataFrames or 
Datasets with the isStreaming property set to true. You can create 
them using special read methods from various sources. For example, 
suppose we wanted to read data in our monitoring application from 
JSON files uploaded to Amazon S3. The code below shows how to do 
this in Scala: 

Our resulting DataFrame, inputDF, is our input table, which will be 
continuously extended with new rows as new files are added to the 
directory. The table has two columns—time and action. Now you can 
use the usual DataFrame/Dataset operations to transform the data. In 
our example, we want to count action types each hour. To do that we 
have to group the data by action and 1 hours windows of time. 

The new DataFrame countsDF is our result table, which has the 
columns action, window, and count, and will be continuously updated 
when the query is started. Note that this transformation would give 
hourly counts even if inputDF was a static table. This allows developers 
to test their business logic on static datasets and seamless apply them 
on streaming data without changing the logic. 

Finally, we tell the engine to write this table to a sink and start the 
streaming computation. 

The returned query is a StreamingQuery, a handle to the active 

streaming execution and can be used to manage and monitor the 
execution. You can run this complete example by importing the 
following notebooks into Databricks Community edition: 
Scala Notebook, Python Notebook. 
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val inputDF = spark.readStream.json("s3://logs")

val countsDF = inputDF.groupBy($"action", window($"time", "1 hour"))
                      .count()

val query = countsDF.writeStream.format("jdbc").start("jdbc://...")

https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks.com/blog/2016/07/26/introducing-apache-spark-2-0.html
https://databricks.com/try-databricks
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Scala%20DataFrames%20API.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Python%20DataFrames%20API.html


Beyond these basics, there are many more operations that can be 
done in Structured Streaming. 

Mapping, Filtering and Running Aggregations 
Structured Streaming programs can use DataFrame and Dataset’s 
existing methods to transform data, including map, filter, select, and 
others. In addition, running (or infinite) aggregations, such as a count 

from the beginning of time, are available through the existing APIs. 
This is what we used in our monitoring application above. 

Windowed Aggregations on Event Time 

Streaming applications often need to compute data on various types 
of windows, including sliding windows, which overlap with each other 
(e.g. a 1-hour window that advances every 5 minutes), and tumbling 
windows, which do not (e.g. just every hour). In Structured Streaming, 
windowing is simply represented as a group-by. Each input event can be 
mapped to one or more windows, and simply results in updating one 
or more result table rows. 

Windows can be specified using the window function in DataFrames. 
For example, we could change our monitoring job to count actions by 
sliding windows as follows: 

Whereas our previous application outputted results of the form (hour, 
action, count), this new one will output results of the form (window, 
action, count), such as (“1:10-2:10”, “open”, 17). If a late record arrives, 
we will update all the corresponding windows in MySQL. And unlike in 
many other systems, windowing is not just a special operator for 
streaming computations; we can run the same code in a batch job to 
group data in the same way. 

Windowed aggregation is one area where we will continue to expand 
Structured Streaming. In particular, in Spark 2.1, we plan to add 
watermarks, a feature for dropping overly old data when sufficient 
time has passed. Without this type of feature, the system might have to 
track state for all old windows, which would not scale as the 
application runs. In addition, we plan to add support for session-based 
windows, i.e. grouping the events from one source into variable-length 
sessions according to business logic. 

Joining Streams with Static Data 
Because Structured Streaming simply uses the DataFrame API, it is 
straightforward to join a stream against a static DataFrame, such as an 
Apache Hive table: 
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inputDF.groupBy($"action", window($"time", "1 hour", "5 
minutes"))
       .count()

// Bring in data about each customer from a static "customers" 
table,
// then join it with a streaming DataFrame
val customersDF = spark.table("customers")
inputDF.join(customersDF, "customer_id")
       .groupBy($"customer_name", hour($"time"))
       .count()



Moreover, the static DataFrame could itself be computed using a Spark 
query, allowing us to mix batch and streaming computations. 

Interactive Queries 
Structured Streaming can expose results directly to interactive queries 
through Spark’s JDBC server. In Spark 2.0, there is a rudimentary 
“memory” output sink for this purpose that is not designed for large 
data volumes. However, in future releases, this will let you write query 
results to an in-memory Spark SQL table, and run queries directly 
against it. 

Comparison With Other Engines 
To show what’s unique about Structured Streaming, the next table 
compares it with several other systems. As we discussed, Structured 
Streaming’s strong guarantee of prefix integrity makes it equivalent to 
batch jobs and easy to integrate into larger applications. Moreover, 
building on Spark enables integration with batch and interactive 
queries. 

 
Conclusion 
Structured Streaming promises to be a much simpler model for 
building end-to-end real-time applications, built on the features that 
work best in Spark Streaming. Although Structured Streaming is in 
alpha for Apache Spark 2.0, we hope this post encourages you to try it 
out. 

Long-term, much like the DataFrame API, we expect Structured 
Streaming to complement Spark Streaming by providing a more 
restricted but higher-level interface. If you are running Spark 
Streaming today, don’t worry—it will continue to be supported. But we 
believe that Structured Streaming can open up real-time computation 
to many more users. 
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// Save our previous counts query to an in-memory table
countsDF.writeStream.format("memory")
  .queryName("counts")
  .outputMode("complete")
  .start()

// Then any thread can query the table using SQL
sql("select sum(count) from counts where action=’login’")



Structured Streaming is also fully supported on Databricks, including 
in the free Databricks Community Edition. Try out any of our sample 
notebooks to see it in action: 

• Scala notebook for monitoring app 
• Python notebook for monitoring app 

Read More 
In addition, the following resources cover Structured Streaming: 

• Structuring Spark: DataFrames, Datasets and Streaming 
• Structured Streaming Programming Guide 
• Apache Spark 2.0 and Structured Streaming 
• A Deep Dive Into Structured Streaming 
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Real-time Streaming ETL with 
Structured Streaming in Apache 
Spark 2.1 
Part 1 of Scalable Data @ Databricks 
January 19, 2017 | by Tathagata Das, Michael Armbrust and Tyson 
Condie  

Try this notebook in Databricks:  Scala Notebook, Python Notebook 

We are well into the Big Data era, with organizations collecting massive 
amounts of data on a continual basis. Yet, the value of this data deluge 
hinges on the ability to extract actionable insights in a timely fashion. 
Hence, there is an increasing need for continuous applications that can 
derive real-time actionable insights from massive data ingestion 
pipelines. 

However, building production-grade continuous applications can be 
challenging, as developers need to overcome many obstacles, 
including: 

• Providing end-to-end reliability and correctness guarantees – 
Long running data processing systems must be resilient to failures 
by ensuring that outputs are consistent with results processed in 

batch. Additionally, unusual activities (e.g failures in upstream 
components, traffic spikes, etc.) must be continuously monitored 
and automatically mitigated to ensure highly available insights are 
delivered in real-time. 

• Performing complex transformations – Data arrives in a myriad 
formats (CSV, JSON, Avro, etc.) that often must be restructured, 
transformed and augmented before being consumed. Such 
restructuring requires that all the traditional tools from batch 
processing systems are available, but without the added latencies 
that they typically entail. 

• Handling late or out-of-order data – When dealing with the 
physical world, data arriving late or out-of-order is a fact of life. As 
a result, aggregations and other complex computations must be 
continuously (and accurately) revised as new information arrives. 

• Integrating with other systems – Information originates from a 
variety of sources (Kafka, HDFS, S3, etc), which must be integrated 
to see the complete picture. 

Structured Streaming in Apache Spark builds upon the strong 
foundation of Spark SQL, leveraging its powerful APIs to provide a 
seamless query interface, while simultaneously optimizing its 
execution engine to enable low-latency, continually updated 
answers. This blog post kicks off a series in which we will explore how 
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we are using the new features of Apache Spark 2.1 to overcome the 
above challenges and build our own production pipelines. 

In this first post, we will focus on an ETL pipeline that converts raw 
AWS CloudTrail audit logs into a JIT data warehouse for faster ad-hoc 
queries. We will show how easy it is to take an existing batch ETL job 
and subsequently productize it as a real-time streaming pipeline 
using Structured Streaming in Databricks. Using this pipeline, we 
have converted 3.8 million JSON files containing 7.9 billion records 
into a Parquet table, which allows us to do ad-hoc queries on updated-
to-the-minute Parquet table 10x faster than those on raw JSON files. 

The Need for Streaming ETL 
Extract, Transform, and Load (ETL) pipelines prepare raw, unstructured 
data into a form that can be queried easily and efficiently. Specifically, 
they need to be able to do the following: 

• Filter, transform, and clean up data – Raw data is naturally 
messy and needs to be cleaned up to fit into a well-defined 
structured format. For example, parsing timestamp strings to date/
time types for faster comparisons, filtering corrupted data, 
nesting/unnesting/flattening complex structures to better 
organize important columns, etc. 

• Convert to a more efficient storage format – Text, JSON and CSV 
data are easy to generate and are human readable, but are very 
expensive to query. Converting it to more efficient formats like 

Parquet, Avro, or ORC can reduce file size and improve processing 
speed. 

• Partition data by important columns – By partitioning the data 
based on the value of one or more columns, common queries can 
be answered more efficiently by reading only the relevant fraction 
of the total dataset. 

Traditionally, ETL is performed as periodic batch jobs. For example, 
dump the raw data in real time, and then convert it to structured form 
every few hours to enable efficient queries. We had initially setup our 
system this way, but this technique incurred a high latency; we had to 
wait for few hours before getting any insights. For many use cases, this 
delay is unacceptable. When something suspicious is happening in an 
account, we need to be able to ask questions immediately. Waiting 
minutes to hours could result in an unreasonable delay in responding 
to an incident. 

Fortunately, Structured Streaming makes it easy to convert these 
periodic batch jobs to a real-time data pipeline. Streaming jobs are 
expressed using the same APIs as batch data. Additionally, the engine 
provides the same fault-tolerance and data consistency guarantees as 
periodic batch jobs, while providing much lower end-to-end latency. 

In the rest of post, we dive into the details of how we transform AWS 
CloudTrail audit logs into an efficient, partitioned, parquet data 
warehouse. AWS CloudTrail allows us to track all actions performed in 
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a variety of AWS accounts, by delivering gzipped JSON logs files to a S3 
bucket. These files enable a variety of business and mission critical 
intelligence, such as cost attribution and security monitoring. 
However, in their original form, they are very costly to query, even with 
the capabilities of Apache Spark. To enable rapid insight, we run a 
Continuous Application that transforms the raw JSON logs files into an 
optimized Parquet table. Let’s dive in and look at how to write this 
pipeline. If you want to see the full code, here are the Scala and Python 
notebooks. Import them into Databricks and run them yourselves. 

Transforming Raw Logs with Structured 
Streaming 
We start by defining the schema of the JSON records based on 
CloudTrail documentation. 

See the attached notebook for the full schema. With this, we can 
define a streaming DataFrame that represents the data stream from 
CloudTrail files that are being written in a S3 bucket. 

A good way to understand what this rawRecords DataFrame represents 

is to first understand the Structured Streaming programming model. 
The key idea is to treat any data stream as an unbounded table: new 
records added to the stream are like rows being appended to the table. 

This allows us to treat both batch and streaming data as tables. Since 
tables and DataFrames/Datasets are semantically synonymous, the 
same batch-like DataFrame/Dataset queries can be applied to both 
batch and streaming data. In this case, we will transform the raw JSON 
data such that it’s easier to query using Spark SQL’s built-in support for 
manipulating complex nested schemas. Here is an abridged version of 
the transformation. 
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val cloudTrailSchema = new StructType()
  .add("Records", ArrayType(new StructType()
    .add("additionalEventData", StringType)
    .add("apiVersion", StringType)
    .add("awsRegion", StringType)
    // ...

val rawRecords = spark.readStream
  .schema(cloudTrailSchema)
  .json("s3n://mybucket/AWSLogs/*/CloudTrail/*/2017/*/*")
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Here, we explode (split) the array of records loaded from each file into 

separate records. We also parse the string event time string in each 
record to Spark’s timestamp type, and flatten out the nested columns 
for easier querying. Note that if cloudtrailEvents was a batch 

DataFrame on a fixed set of files, then we would have written the same 
query, and we would have written the results only once as 
parsed.write.parquet("/cloudtrail"). Instead, we will start a 

StreamingQuery that runs continuously to transform new data as it 
arrives. 

Here we are specifying the following configurations for the 
StreamingQuery before starting it. 

• Derive the date from the timestamp column 

• Check for new files every 10 seconds (i.e., trigger interval) 

• Write the transformed data from parsed DataFrame as a Parquet-
formatted table at the path /cloudtrail. 

• Partition the Parquet table by date so that we can later efficiently 
query time slices of the data; a key requirement in monitoring 
applications. 

• Save checkpoint information at the path checkpoints/cloudtrail 
for fault-tolerance (explained later in the blog) 

In terms of the Structured Streaming Model, this is how the execution 
of this query is performed. 
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val cloudtrailEvents = rawRecords 
  .select(explode($"records") as 'record)
  .select(
    unix_timestamp(
      $"record.eventTime", 
      "yyyy-MM-dd'T'hh:mm:ss").cast("timestamp") as 
'timestamp, $"record.*")

val streamingETLQuery = cloudtrailEvents
  .withColumn("date", $"timestamp".cast("date") // derive the 
date
  .writeStream
  .trigger(ProcessingTime("10 seconds")) // check for files 
every 10s
  .format("parquet") // write as Parquet partitioned by date
  .partitionBy("date")
  .option("path", "/cloudtrail")
  .option("checkpointLocation", "/cloudtrail.checkpoint/")
  .start()



Conceptually, the rawRecords DataFrame is an append-only Input 

Table, and the cloudtrailEvents DataFrame is the transformed Result 
Table. In other words, when new rows are appended to the input 
(rawRecords), the result table (cloudtrailEvents) will have new 
transformed rows. In this particular case, every 10 seconds, Spark SQL 
engine triggers a check for new files. When it finds new data (i.e., new 
rows in the Input Table), it transforms the data to generate new rows in 
the Result Table, which then get written out as Parquet files. 

Furthermore, while this streaming query is running, you can use Spark 
SQL to simultaneously query the Parquet table. The streaming query 
writes the Parquet data transactionally such that concurrent 

interactive query processing will always see a consistent view of the 
latest data. This strong guarantee is known as prefix-integrity and it 
makes Structured Streaming pipelines integrate nicely with the larger 
Continuous Application. 

You can read more details about the Structured Streaming model, and 
its advantages over other streaming engines in our previous blog. 

Solving Production Challenges 
Earlier, we highlighted a number of challenges that must be solved for 
running a streaming ETL pipeline in production. Let’s see how 
Structured Streaming running on the Databricks platform solves them. 

Recovering from Failures to get Exactly-once Fault-
tolerance Guarantees 
Long running pipelines must be able to tolerate machine failures. With 
Structured Streaming, achieving fault-tolerance is as easy as specifying 
a checkpoint location for the query. In the earlier code snippet, we did 
so in the following line. 

This checkpoint directory is per query, and while a query is active, 
Spark continuously writes metadata of the processed data to the 
checkpoint directory. Even if the entire cluster fails, the query can be 
restarted on a new cluster, using the same checkpoint directory, and 
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.option("checkpointLocation", "/cloudtrail.checkpoint/")

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
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consistently recover. More specifically, on the new cluster, Spark uses 
the metadata to start the new query where the failed one left off, thus 
ensuring end-to-end exactly-once guarantees and data consistency 
(see Fault Recovery section of our previous blog). 

Furthermore, this same mechanism allows you to upgrade your query 
between restarts, as long as the input sources and output schema 
remain the same. Since Spark 2.1, we encode the checkpoint data in 
JSON for future-proof compatibility. So you can restart your query 
even after updating your Spark version. In all cases, you will get the 
same fault-tolerance and consistency guarantees. 

Note that Databricks makes it very easy to set up automatic 
recovery, as we will show in the next section. 

Monitoring, Alerting and Upgrading 
For a Continuous Application to run smoothly, it must be robust to 
individual machine or even whole cluster failures. In Databricks, we 
have developed tight integration with Structured Streaming that 
allows us continuously monitor your StreamingQueries for failures 
(and automatically restart them. All you have to do is create a new Job, 
and configure the Job retry policy. You can also configure the job to 
send emails to notify you of failures. 

Application upgrades can be easily made by updating your code and/
or Spark version and then restarting the Job. See our guide on running 
Structured Streaming in Production for more details. 

Machine failures are not the only situations that we need to handle to 
ensure robust processing. We will discuss how to monitor for traffic 
spikes and upstream failures in more detail later in this series. 

Combining Live Data with Historical/Batch Data 
Many applications require historical/batch data to be combined with 
live data. For example, besides the incoming audit logs, we may 
already have a large backlog of logs waiting to be converted. Ideally, 
we would like to achieve both, interactively query the latest data as 
soon as possible, and also have access to historical data for future 
analysis. It is often complex to set up such a pipeline using most 
existing systems as you would have to set up multiples processes: a 
batch job to convert the historical data, a streaming pipeline to 
convert the live data, and maybe a another step to combine the 
results. 
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Structured Streaming eliminates this challenge. You can configure the 
above query to prioritize the processing new data files as they arrive, 
while using the space cluster capacity to process the old files. First, we 
set the option latestFirst for the file source to true, so that new files 

are processed first. Then, we set the maxFilesPerTrigger to limit how 
many files to process every time. This tunes the query to update the 
downstream data warehouse more frequently, so that the latest data is 
made available for querying as soon as possible. Together, we can 
define the rawLogs DataFrame as follows: 
In this way, we can write a single query that easily combines live data 
with historical data, while ensuring low-latency, efficiency and data 
consistency. 

Conclusion 
Structured Streaming in Apache Spark is the best framework for 
writing your streaming ETL pipelines, and Databricks makes it easy to 
run them in production at scale, as we demonstrated above. We 
shared a high level overview of the steps—extracting, transforming, 
loading and finally querying—to set up your streaming ETL production 
pipeline. We also discussed and demonstrated how Structured 

Streaming overcomes the challenges in solving and setting up high-
volume and low-latency streaming pipelines in production. 

In the future blog posts in this series, we’ll cover how we address other 
hurdles, including: 

• Applying complex transformations to nested JSON data 
• Processing Data in Apache Kafka with Structured Streaming in 

Apache Spark 2.2 
• Monitoring your streaming applications 
• Integrating Structured Streaming with Apache Kafka 
• Computing event time aggregations with Structured Streaming 
• Running Streaming Jobs Once a Day For 10x Cost Savings 

If you want to learn more about the Structured Streaming, here are a 
few useful links. 

• Previous blogs posts explaining the motivation and concepts of 
Structured Streaming: 
- Continuous Applications: Evolving Streaming in Apache Spark 

2.0 
- Structured Streaming In Apache Spark 

• Structured Streaming Programming Guide for Apache Spark 2.1 
• Spark Summit 2016 Talk – A Deep Dive Into Structured Streaming 
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val rawJson = spark.readStream
  .schema(cloudTrailSchema)
  .option("latestFirst", "true")
  .option("maxFilesPerTrigger", "20")
  .json("s3n://mybucket/AWSLogs/*/CloudTrail/*/2017/01/*")

https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html
https://databricks.com/blog/2017/05/18/taking-apache-sparks-structured-structured-streaming-to-production.html
https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://databricks.com/blog/2017/05/22/running-streaming-jobs-day-10x-cost-savings.html
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark-summit.org/2016/events/a-deep-dive-into-structured-streaming/


What’s Next 
You can try two notebooks with your own AWS CloudTrail Logs. Import 
the notebooks into Databricks. 

• Try the Scala Notebook 
• Try the Python Notebook 
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Working with Complex Data 
Formats with Structured 
Streaming in Apache Spark 2.1 
Part 2 of Scalable Data @ Databricks 
February 23, 2017 | by Burak Yavuz, Michael Armbrust, Tathagata Das 
and Tyson Condie  

Try this notebook in Databricks:  Scala Notebook, Python Notebook, SQL 
Notebook 

In part 1 of this series on Structured Streaming blog posts, we 
demonstrated how easy it is to write an end-to-end streaming ETL 
pipeline using Structured Streaming that converts JSON CloudTrail 
logs into a Parquet table. The blog highlighted that one of the major 
challenges in building such pipelines is to read and transform data 
from various sources and complex formats. In this blog post, we are 
going to examine this problem in further detail, and show how Apache 
Spark SQL’s built-in functions can be used to solve all your data 
transformation challenges. 

Specifically, we are going to discuss the following: 

• What are the different data formats and their tradeoffs 
• How to work with them easily using Spark SQL 
• How to choose the right final format for your use case 

Data sources and formats 
Data is available in a myriad of different formats. Spreadsheets can be 
expressed in XML, CSV, TSV; application metrics can be written out in 
raw text or JSON. Every use case has a particular data format tailored 
for it. In the world of Big Data, we commonly come across formats like 
Parquet, ORC, Avro, JSON, CSV, SQL and NoSQL data sources, and 
plain text files. We can broadly classify these data formats into three 
categories: structured, semi-structured, and unstructured data. Let’s 
try to understand the benefits and shortcomings of each category. 
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Structured data 
Structured data sources define a schema on the data. With this extra 
bit of information about the underlying data, structured data sources 
provide efficient storage and performance. For example, columnar 
formats such as Parquet and ORC make it much easier to extract values 
from a subset of columns. Reading each record row by row first, then 
extracting the values from the specific columns of interest can read 
much more data than what is necessary when a query is only 
interested in a small fraction of the columns. A row-based storage 
format such as Avro efficiently serializes and stores data providing 
storage benefits. However, these advantages often come at the cost of 
flexibility. For example, because of rigidity in structure, evolving a 
schema can be challenging. 

Unstructured data 
By contrast, unstructured data sources are generally free-form text or 
binary objects that contain no markup, or metadata (e.g., commas in 
CSV files), to define the organization of data. Newspaper articles, 
medical records, image blobs, application logs are often treated as 
unstructured data. These sorts of sources generally require context 
around the data to be parseable. That is, you need to know that the file 
is an image or is a newspaper article. Most sources of data are 
unstructured. The cost of having unstructured formats is that it 
becomes cumbersome to extract value out of these data sources as 
many transformations and feature extraction techniques are required 
to interpret these datasets. 

Semi-structured data 
Semi-structured data sources are structured per record but don’t 
necessarily have a well-defined global schema spanning all records. As 
a result, each data record is augmented with its schema information. 
JSON and XML are popular examples. The benefits of semi-structured 
data formats are that they provide the most flexibility in expressing 
your data as each record is self-describing. These formats are very 
common across many applications as many lightweight parsers exist 
for dealing with these records, and they also have the benefit of being 
human readable. However, the main drawback for these formats is 
that they incur extra parsing overheads, and are not particularly built 
for ad-hoc querying. 

Interchanging data formats with Spark SQL 
In our previous blog post, we discussed how transforming Cloudtrail 
Logs from JSON into Parquet shortened the runtime of our ad-hoc 
queries by 10x. Spark SQL allows users to ingest data from these 
classes of data sources, both in batch and streaming queries. It 
natively supports reading and writing data in Parquet, ORC, JSON, CSV, 
and text format and a plethora of other connectors exist on Spark 
Packages. You may also connect to SQL databases using the JDBC 
DataSource. 

Apache Spark can be used to interchange data formats as easily as: 
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Whether batch or streaming data, we know how to read and write to 
different data sources and formats, but different sources support 
different kinds of schema and data types. Traditional databases only 
support primitive data types, whereas formats like JSON allow users to 
nest objects within columns, have an array of values or represent a set 
of key-value pairs. Users will generally have to go in-between these 
data types to efficiently store and represent their data. Fortunately, 
Spark SQL makes it easy to handle both primitive and complex data 
types. Let’s now dive into a quick overview of how we can go from 
complex data types to primitive data types and vice-a-versa.  

Transforming complex data types 

It is common to have complex data types such as structs, maps, and 
arrays when working with semi-structured formats. For example, you 
may be logging API requests to your web server. This API request will 
contain HTTP Headers, which would be a string-string map. The 
request payload may contain form-data in the form of JSON, which 
may contain nested fields or arrays. Some sources or formats may or 
may not support complex data types. Some formats may provide 
performance benefits when storing the data in a specific data type. For 
example, when using Parquet, all struct columns will receive the same 
treatment as top-level columns. Therefore, if you have filters on a 
nested field, you will get the same benefits as a top-level column. 
However, maps are treated as two array columns, hence you wouldn’t 
receive efficient filtering semantics. 

Let’s look at some examples on how Spark SQL allows you to shape 
your data ad libitum with some data transformation techniques. 
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events = spark.readStream \
  .format("json") \           # or parquet, kafka, orc...
  .option() \                 # format specific options
  .schema(my_schema) \        # required
  .load("path/to/data")

output = …                   # perform your transformations

output.writeStream \          # write out your data 
  .format("parquet") \
  .start("path/to/write")



Selecting from nested columns 
Dots (.) can be used to access nested columns for structs and maps. 

Flattening structs 
A star (*) can be used to select all of the subfields in a struct. 
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// input
{
  "a": {
     "b": 1
  }
}

Python: events.select("a.b")
 Scala: events.select("a.b")
   SQL: select a.b from events

// output
{
  "b": 1
}

// input
{
  "a": {
     "b": 1,
     "c": 2
  }
}

Python:  events.select("a.*")
 Scala:  events.select("a.*")
   SQL:  select a.* from events

// output
{
  "b": 1,
  "c": 2
}



Nesting columns 
The struct function or just parentheses in SQL can be used to create a 
new struct. 

Nesting all columns 
The star (*) can also be used to include all columns in a nested struct. 
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// input
{
  "a": 1,
  "b": 2,
  "c": 3
}

Python: events.select(struct(col("a").alias("y")).alias("x"))
 Scala: events.select(struct('a as 'y) as 'x)
   SQL: select named_struct("y", a) as x from events

// output
{
  "x": {
    "y": 1
  }
}

// input
{
  "a": 1,
  "b": 2
}

Python: events.select(struct("*").alias("x"))
 Scala: events.select(struct("*") as 'x)
   SQL: select struct(*) as x from events

// output
{
  "x": {
    "a": 1,
    "b": 2
  }
}



Selecting a single array or map element 
getItem() or square brackets (i.e. [ ]) can be used to select a single 

element out of an array or a map. 

Creating a row for each array or map element 
explode() can be used to create a new row for each element in an 

array or each key-value pair. This is similar to LATERAL VIEW EXPLODE 
in HiveQL. 
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// input
{
  "a": [1, 2]
}

Python: events.select(col("a").getItem(0).alias("x"))
 Scala: events.select('a.getItem(0) as 'x)
   SQL: select a[0] as x from events

// output
{ "x": 1 }

// input
{
  "a": {
    "b": 1
  }
}

Python: events.select(col("a").getItem("b").alias("x"))
 Scala: events.select('a.getItem("b") as 'x)
   SQL: select a['b'] as x from events

// output
{ "x": 1 }

// input
{
  "a": [1, 2]
}

Python: events.select(explode("a").alias("x"))
 Scala: events.select(explode('a) as 'x)
   SQL: select explode(a) as x from events

// output
[{ "x": 1 }, { "x": 2 }]

// input
{
  "a": {
    "b": 1,
    "c": 2
  }
}

Python: events.select(explode("a").alias("x", "y"))
 Scala: events.select(explode('a) as Seq("x", "y"))
   SQL: select explode(a) as (x, y) from events

// output
[{ “x”: "b", "y": 1 }, { "x": "c", "y": 2 }]



Collecting multiple rows into an array 
collect_list() and collect_set() can be used to aggregate items 

into an array. 

Selecting one field from each item in an array 
When you use dot notation on an array we return a new array where 
that field has been selected from each array element. 
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// input
[{ "x": 1 }, { "x": 2 }]

Python: events.select(collect_list("x").alias("x"))
 Scala: events.select(collect_list('x) as 'x)
   SQL: select collect_list(x) as x from events

// output
{ "x": [1, 2] }

// input
[{ "x": 1, "y": "a" }, { "x": 2, "y": "b" }]

Python: events.groupBy("y").agg(collect_list("x").alias("x"))
 Scala: events.groupBy("y").agg(collect_list('x) as 'x)
   SQL: select y, collect_list(x) as x from events group by y

// output
[{ "y": "a", "x": [1]}, { "y": "b", "x": [2]}]

// input
{
  "a": [
    {"b": 1},
    {"b": 2}
  ]
}

Python: events.select("a.b")
 Scala: events.select("a.b")
   SQL: select a.b from events

// output
{
  "b": [1, 2]
}



Power of to_json() and from_json() 
What if you really want to preserve your column’s complex structure 
but you need it to be encoded as a string to store it? Are you doomed? 
Of course not! Spark SQL provides functions like to_json() to encode 
a struct as a string and from_json() to retrieve the struct as a complex 

type. Using JSON strings as columns are useful when reading from or 
writing to a streaming source like Kafka. Each Kafka key-value record 
will be augmented with some metadata, such as the ingestion 
timestamp into Kafka, the offset in Kafka, etc. If the “value” field that 
contains your data is in JSON, you could use from_json() to extract 
your data, enrich it, clean it, and then push it downstream to Kafka 
again or write it out to a file. 

Encode a struct as json  
to_json() can be used to turn structs into JSON strings. This method 

is particularly useful when you would like to re-encode multiple 
columns into a single one when writing data out to Kafka. This method 
is not presently available in SQL. 

Decode json column as a struct 
from_json() can be used to turn a string column with JSON data into 

a struct. Then you may flatten the struct as described above to have 
individual columns. This method is not presently available in SQL. 

Sometimes you may want to leave a part of the JSON string still as 
JSON to avoid too much complexity in your schema. 
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// input
{
  "a": {
    "b": 1
  }
}

Python: events.select(to_json("a").alias("c"))
 Scala: events.select(to_json('a) as 'c)

// output
{
  "c": "{\"b\":1}"
}

// input
{
  "a": "{\"b\":1}"
}

Python: 
  schema = StructType().add("b", IntegerType())
  events.select(from_json("a", schema).alias("c"))
Scala:
  val schema = new StructType().add("b", IntegerType)
  events.select(from_json('a, schema) as 'c)

// output
{
  "c": {
    "b": 1
  }
}



Parse a set of fields from a column containing JSON 

json_tuple() can be used to extract fields available in a string column 
with JSON data. 

Sometimes a string column may not be self-describing as JSON, but 
may still have a well-formed structure. For example, it could be a log 
message generated using a specific Log4j format. Spark SQL can be 
used to structure those strings for you with ease! 

Parse a well-formed string column 
regexp_extract() can be used to parse strings using regular 

expressions. 
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// input
{
  "a": "{\"b\":{\"x\":1,\"y\":{\"z\":2}}}"
}

Python: 
  schema = StructType().add("b", StructType().add("x", 
IntegerType())
                              .add("y", StringType()))
  events.select(from_json("a", schema).alias("c"))
Scala:
  val schema = new StructType().add("b", new 
StructType().add("x", IntegerType)
    .add("y", StringType))
  events.select(from_json('a, schema) as 'c)

// output
{
  "c": {
    "b": {
      "x": 1,
      "y": "{\"z\":2}"
    }
  }
}

// input
{
  "a": "{\"b\":1}"
}

Python: events.select(json_tuple("a", "b").alias("c"))
Scala:  events.select(json_tuple('a, "b") as 'c)
SQL:    select json_tuple(a, "b") as c from events

// output
{ "c": 1 }

// input
[{ "a": "x: 1" }, { "a": "y: 2" }]

Python: events.select(regexp_extract("a", "([a-z]):", 
1).alias("c"))
Scala:  events.select(regexp_extract('a, "([a-z]):", 1) as 'c)
SQL:    select regexp_extract(a, "([a-z]):", 1) as c from 
events

// output
[{ "c": "x" }, { "c": "y" }]



That’s a lot of transformations! Let’s now look at some real life use 
cases to put all of these data formats, and data manipulation 
capabilities to good use. 

Harnessing all of this power 
At Databricks, we collect logs from our services and use them to 
perform real-time monitoring to detect issues, before our customers 
are affected. Log files are unstructured files, but they are parseable 
because they have a well-defined Log4j format. We run a log collector 
service that sends each log entry and additional metadata about the 
entry (e.g. source) in JSON to Kinesis. These JSON records are then 
batch-uploaded to S3 as files. Querying these JSON logs to answer any 
question is tedious: these files contain duplicates, and for answering 
any query, even if it involves a single column, the whole JSON record 
may require deserialization. 

To address this issue, we run a pipeline that reads these JSON records 
and performs de-duplication on the metadata. Now we are left with 
the original log record, which may be in JSON format or as 
unstructured text. If we’re dealing with JSON, we use from_json() and 
several of the transformations described above to format our data. If it 
is text, we use methods such as regexp_extract() to parse our Log4j 

format into a more structured form. Once we are done with all of our 
transformations and restructuring, we save the records in Parquet 
partitioned by date. This gives us 10-100x speed-up when answering 
questions like ”how many ERROR messages did we see between 

10:00-10:30 for this specific service”? The speed-ups can be attributed 
to: 

• We no longer pay the price of deserializing JSON records 

• We don’t have to perform complex string comparisons on the 
original log message 

• We only have to extract two columns in our query: the time, and 
the log level 

Here are a few more common use cases that we have seen among our 
customers: 

“I would like to run a Machine Learning pipeline with my data. My 

data is already pre-processed, and I will use all my features 

throughout the pipeline.” 

Avro is a good choice when you will access the whole row of data. 

“I have an IoT use case where my sensors send me events. For each 

event the metadata that matters is different.” 

In cases where you would like flexibility in your schema, you may 
consider using JSON to store your data. 
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“I would like to train a speech recognition algorithm on newspaper 

articles or sentiment analysis on product comments.” 

In cases where your data may not have a fixed schema, nor a fixed 
pattern/structure, it may just be easier to store it as plain text files. You 
may also have a pipeline that performs feature extraction on this 
unstructured data and stores it as Avro in preparation for your Machine 
Learning pipeline. 

Conclusion 
In this blog post, we discussed how Spark SQL allows you to consume 
data from many sources and formats, and easily perform 
transformations and interchange between these data formats. We 
shared how we curate our data at Databricks, and considered other 
production use cases where you may want to do things differently. 

Spark SQL provides you with the necessary tools to access your data 
wherever it may be, in whatever format it may be in and prepare it for 
downstream applications either with low latency on streaming data or 
high throughput on old historical data! 

In the future blog posts in this series, we’ll cover more on: 

• Monitoring your streaming applications 
• Integrating Structured Streaming with Apache Kafka 
• Computing event time aggregations with Structured Streaming 

If you want to learn more about the Structured Streaming, here are a 
few useful links. 

• Previous blogs posts explaining the motivation and concepts of 
Structured Streaming: 
- Continuous Applications: Evolving Streaming in Apache Spark 

2.0 
- Structured Streaming In Apache Spark 

• Processing Data in Apache Kafka with Structured Streaming in 
Apache Spark 2.2 
- Real-time Streaming ETL with Structured Streaming in Apache 

Spark 2.1 

• Structured Streaming Programming Guide 

• Talk at Spark Summit 2017 East – Making Structured Streaming 
Ready for Production and Future Directions 

Finally, try our example notebooks that demonstrate transforming 
complex data types in Python, Scala, or SQL in Databricks: 

• Python Notebook 
• Scala Notebook 
• SQL Notebook 
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Processing Data in Apache 
Kafka with Structured 
Streaming in Apache Spark 2.2 
Part 3 of Scalable Data @ Databricks 
April 26, 2017 | by Kunal Khamar, Tyson Condie and Michael Armbrust  

In this blog, we will show how Spark SQL’s APIs can be leveraged to 
consume and transform complex data streams from Apache Kafka. 
Using these simple APIs, you can express complex transformations like 
exactly-once event-time aggregation and output the results to a 
variety of systems. Together, you can use Apache Spark and Apache 
Kafka to: 

• Transform and augment real-time data read from Apache Kafka 
using the same APIs as working with batch data. 

• Integrate data read from Kafka with information stored in other 
systems including S3, HDFS, or MySQL. 

• Automatically benefit from incremental execution provided by the 
Catalyst optimizer and subsequent efficient code generation by 
Tungsten. 

We start with a review of Kafka terminology and then present 
examples of Structured Streaming queries that read data from and 
write data to Apache Kafka. And finally, we’ll explore an end-to-end 
real-world use case. 

Apache Kafka 
Kafka is a distributed pub-sub messaging system that is popular for 
ingesting real-time data streams and making them available to 
downstream consumers in a parallel and fault-tolerant manner. This 
renders Kafka suitable for building real-time streaming data pipelines 
that reliably move data between heterogeneous processing systems. 
Before we dive into the details of Structured Streaming’s Kafka 
support, let’s recap some basic concepts and terms. 

Data in Kafka is organized into topics that are split into partitions for 
parallelism. Each partition is an ordered, immutable sequence of 
records, and can be thought of as a structured commit log. Producers 
append records to the tail of these logs and consumers read the logs at 
their own pace. Multiple consumers can subscribe to a topic and 
receive incoming records as they arrive. As new records arrive to a 
partition in a Kafka topic, they are assigned a sequential id number 
called the offset. A Kafka cluster retains all published records—whether 
or not they have been consumed—for a configurable retention period, 
after which they are marked for deletion. 
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https://kafka.apache.org/


Specifying What Data to Read from Kafka 

A Kafka topic can be viewed as an infinite stream where data is 
retained for a configurable amount of time. The infinite nature of this 
stream means that when starting a new query, we have to first decide 
what data to read and where in time we are going to begin. At a high 
level, there are three choices: 

• earliest — start reading at the beginning of the stream. This 
excludes data that has already been deleted from Kafka because it 
was older than the retention period (“aged out” data). 

• latest — start now, processing only new data that arrives after the 
query has started. 

• per-partition assignment — specify the precise offset to start from 
for every partition, allowing fine-grained control over exactly 
where processing should start. For example, if we want to pick up 
exactly where some other system or query left off, then this option 
can be leveraged. 

As you will see below, the startingOffsets option accepts one of the 
three options above, and is only used when starting a query from a 
fresh checkpoint. If you restart a query from an existing checkpoint, 
then it will always resume exactly where it left off, except when the 
data at that offset has been aged out. If any unprocessed data was 
aged out, the query behavior will depend on what is set by the 
failOnDataLoss option, which is described in the Kafka Integration 
Guide. 

Existing users of the KafkaConsumer will notice that Structured 
Streaming provides a more granular version of the configuration 
option,  auto.offset.reset. Instead of one option, we split these 

concerns into two different parameters, one that says what to do when 
the stream is first starting (startingOffsets), and another that handles 
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what to do if the query is not able to pick up from where it left off, 
because the desired data has already been aged out (failOnDataLoss). 

Apache Kafka support in Structured 
Streaming 
Structured Streaming provides a unified batch and streaming API that 
enables us to view data published to Kafka as a DataFrame. When 
processing unbounded data in a streaming fashion, we use the same 
API and get the same data consistency guarantees as in batch 
processing. The system ensures end-to-end exactly-once fault-
tolerance guarantees, so that a user does not have to reason about 
low-level aspects of streaming. 

Let’s examine and explore examples of reading from and writing to 
Kafka, followed by an end-to-end application. 

Reading Records from Kafka topics 
The first step is to specify the location of our Kafka cluster and which 
topic we are interested in reading from. Spark allows you to read an 
individual topic, a specific set of topics, a regex pattern of topics, or 
even a specific set of partitions belonging to a set of topics. We will 
only look at an example of reading from an individual topic, the other 
possibilities are covered in the Kafka Integration Guide. 

The DataFrame above is a streaming DataFrame subscribed to 
“topic1”. The configuration is set by providing options to the 
DataStreamReader, and the minimal required parameters are the 
location of the kafka.bootstrap.servers (i.e. host:port) and the topic 

that we want to subscribe to. Here, we have also specified 
startingOffsets to be “earliest”, which will read all data available in the 
topic at the start of the query. If the startingOffsets option is not 
specified, the default value of “latest” is used and only data that 
arrives after the query starts will be processed. 

df.printSchema() reveals the schema of our DataFrame. 
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# Construct a streaming DataFrame that reads from topic1
df = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", 
"host1:port1,host2:port2") \
  .option("subscribe", "topic1") \
  .option("startingOffsets", "earliest") \
  .load()

https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html


The returned DataFrame contains all the familiar fields of a Kafka 
record and its associated metadata. We can now use all of the familiar 
DataFrame or Dataset operations to transform the result. Typically, 
however, we’ll start by parsing the binary values present in the key and 
value columns. How to interpret these blobs is application specific. 
Fortunately, Spark SQL contains many built-in transformations for 
common types of serialization as we’ll show below. 

Data Stored as a UTF8 String 
If the bytes of the Kafka records represent UTF8 strings, we can simply 
use a cast to convert the binary data into the correct type. 

Data Stored as JSON 
JSON is another common format for data that is written to Kafka. In 
this case, we can use the built-in from_json function along with the 
expected schema to convert a binary value into a Spark SQL struct. 

User Defined Serializers and Deserializers 
In some cases, you may already have code that implements the Kafka 
Deserializer interface. You can take advantage of this code by wrapping 
it as a user defined function (UDF) using the Scala code shown below. 

Note that the DataFrame code above is analogous to specifying 
value.deserializer when using the standard Kafka consumer. 

 
 
Using Spark as a Kafka Producer 
Writing data from any Spark supported data source into Kafka is as 
simple as calling writeStream on any DataFrame that contains a 
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root
 |-- key: binary (nullable = true)
 |-- value: binary (nullable = true)
 |-- topic: string (nullable = true)
 |-- partition: integer (nullable = true)
 |-- offset: long (nullable = true)
 |-- timestamp: timestamp (nullable = true)
 |-- timestampType: integer (nullable = true)

df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")

# value schema: { "a": 1, "b": "string" }
schema = StructType().add("a", IntegerType()).add("b", 
StringType())
df.select( \
  col("key").cast("string"),
  from_json(col("value").cast("string"), schema))

object MyDeserializerWrapper {
  val deser = new MyDeserializer
}
spark.udf.register("deserialize", (topic: String, bytes: 
Array[Byte]) => 
  MyDeserializerWrapper.deser.deserialize(topic, bytes)
)

df.selectExpr("""deserialize("topic1", value) AS message""")



column named “value”, and optionally a column named “key”. If a key 
column is not specified, then a null valued key column will be 
automatically added. A null valued key column may, in some cases, 
lead to uneven data partitioning in Kafka, and should be used with 
care. 

The destination topic for the records of the DataFrame can either be 
specified statically as an option to the DataStreamWriter or on a per-
record basis as a column named “topic” in the DataFrame. 

The above query takes a DataFrame containing user information and 
writes it to Kafka. The userId is serialized as a string and used as the 
key. We take all the columns of the DataFrame and serialize them as a 
JSON string, putting the results in the value of the record. 

The two required options for writing to Kafka are the 
kafka.bootstrap.servers and the checkpointLocation. As in the above 
example, an additional topic option can be used to set a single topic to 
write to, and this option will override the “topic” column if it exists in 
the DataFrame. 

End-to-End Example with Nest Devices 
In this section, we will explore an end-to-end pipeline involving Kafka 
along with other data sources and sinks. We will work with a data set 
involving a collection of Nest device logs, with a JSON format 
described here. We’ll specifically examine data from Nest’s cameras, 
which look like the following JSON: 
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# Write key-value data from a DataFrame to a Kafka topic 
specified in an option
query = df \
  .selectExpr("CAST(userId AS STRING) AS key", 
"to_json(struct(*)) AS value") \
  .writeStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", 
"host1:port1,host2:port2") \
  .option("topic", "topic1") \
  .option("checkpointLocation", "/path/to/HDFS/dir") \
  .start()

"devices": {
  "cameras": {
    "device_id": "awJo6rH...",
    "last_event": {
      "has_sound": true,
      "has_motion": true,
      "has_person": true,
      "start_time": "2016-12-29T00:00:00.000Z",
      "end_time": "2016-12-29T18:42:00.000Z"
    }
  }
}

https://cwiki.apache.org/confluence/display/KAFKA/FAQ#FAQ-Whyisdatanotevenlydistributedamongpartitionswhenapartitioningkeyisnotspecified?
https://nest.com/
https://developers.nest.com/documentation/api-reference


We’ll also be joining with a static dataset (called “device_locations”) 
that contains a mapping from device_id to the zip_code where the 
device was registered. 

At a high-level, the desired workflow looks like the graph above. Given 
a stream of updates from Nest cameras, we want to use Spark to 
perform several different tasks: 

• Create an efficient, queryable historical archive of all events using 
a columnar format like Parquet. 

• Perform low-latency event-time aggregation and push the results 
back to Kafka for other consumers. 

• Perform batch reporting on the data stored in a compacted topic in 
Kafka. 

While these may sound like wildly different use-cases, you can perform 
all of them using DataFrames and Structured Streaming in a single 
end-to-end Spark application! In the following sections, we’ll walk 
through individual steps, starting from ingest to processing to storing 
aggregated results. 

Read Nest Device Logs From Kafka 
Our first step is to read the raw Nest data stream from Kafka and 
project out the camera data that we are interested in. We first parse 
the Nest JSON from the Kafka records, by calling the from_json 
function and supplying the expected JSON schema and timestamp 
format. Then, we apply various transformations to the data and 
project the columns related to camera data in order to simplify 
working with the data in the sections to follow. 

Expected Schema for JSON data 
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schema = StructType() \
  .add("metadata", StructType() \
    .add("access_token", StringType()) \
    .add("client_version", IntegerType())) \
  .add("devices", StructType() \
    .add("thermostats", MapType(StringType(), StructType().add(...))) \
    .add("smoke_co_alarms", MapType(StringType(), StructType().add(...))) \
    .add("cameras", MapType(StringType(), StructType().add(...))) \
    .add("companyName", StructType().add(...))) \
  .add("structures", MapType(StringType(), StructType().add(...)))

nestTimestampFormat = "yyyy-MM-dd'T'HH:mm:ss.sss'Z'"



Parse the Raw JSON 

Project Relevant Columns 

To create the camera DataFrame, we first unnest the “cameras” json 

field to make it top level. Since “cameras” is a MapType, each resulting 
row contains a map of key-value pairs. So, we use the explode function 

to create a new row for each key-value pair, flattening the data. Lastly, 
we use star () to unnest the “value” column. The following is the result 
of calling camera.printSchema() 
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jsonOptions = { "timestampFormat": nestTimestampFormat }
parsed = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "nest-logs") \
  .load() \
  .select(from_json(col("value").cast("string"), schema, 
jsonOptions).alias("parsed_value"))

camera = parsed \
  .select(explode("parsed_value.devices.cameras")) \
  .select("value.*")

sightings = camera \
  .select("device_id", "last_event.has_person", 
"last_event.start_time") \
  .where(col("has_person") == True)

root
 |-- device_id: string (nullable = true)
 |-- software_version: string (nullable = true)
 |-- structure_id: string (nullable = true)
 |-- where_id: string (nullable = true)
 |-- where_name: string (nullable = true)
 |-- name: string (nullable = true)
 |-- name_long: string (nullable = true)
 |-- is_online: boolean (nullable = true)
 |-- is_streaming: boolean (nullable = true)
 |-- is_audio_input_enable: boolean (nullable = true)
 |-- last_is_online_change: timestamp (nullable = true)
 |-- is_video_history_enabled: boolean (nullable = true)
 |-- web_url: string (nullable = true)
 |-- app_url: string (nullable = true)
 |-- is_public_share_enabled: boolean (nullable = true)
 |-- activity_zones: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- name: string (nullable = true)
 |    |    |-- id: string (nullable = true)
 |-- public_share_url: string (nullable = true)
 |-- snapshot_url: string (nullable = true)
 |-- last_event: struct (nullable = true)
 |    |-- has_sound: boolean (nullable = true)
 |    |-- has_motion: boolean (nullable = true)
 |    |-- has_person: boolean (nullable = true)
 |    |-- start_time: timestamp (nullable = true)
 |    |-- end_time: timestamp (nullable = true)
 |    |-- urls_expire_time: timestamp (nullable = true)
 |    |-- web_url: string (nullable = true)
 |    |-- app_url: string (nullable = true)
 |    |-- image_url: string (nullable = true)
 |    |-- animated_image_url: string (nullable = true)
 |    |-- activity_zone_ids: array (nullable = true)
 |    |    |-- element: string (containsNull = true)



Aggregate and Write Back to Kafka 
We will now process the sightings DataFrame by augmenting each 

sighting with its location. Recall that we have some location data that 
lets us look up the zip code of a device by its device id. We first create a 
DataFrame representing this location data, and then join it with the 
sightings DataFrame, matching on device id. What we are doing here 
is joining the streaming DataFrame sightings with a static DataFrame 

of locations! 

Add Location Data 

Aggregate Statistics and Write Out to Kafka 
Now, let’s generate a streaming aggregate that counts the number of 
camera person sightings in each zip code for each hour, and write it 
out to a compacted Kafka topic1 called “nest-camera-stats”. 

The above query will process any sighting as it occurs and write out 
the updated count of the sighting to Kafka, keyed on the zip code and 
hour window of the sighting. Over time, many updates to the same key 
will result in many records with that key, and Kafka topic compaction 
will delete older updates as new values arrive for the key. This way, 
compaction tries to ensure that eventually, only the latest value is kept 
for any given key. 

Archive Results in Persistent Storage 
In addition to writing out aggregation results to Kafka, we may want to 
save the raw camera records in persistent storage for later use. The 
following example writes out the camera DataFrame to S3 in Parquet 
format. We have chosen Parquet for compression and columnar 
storage, though many different formats such as ORC, Avro, CSV, etc. are 
supported to tailor to varied use-cases. 
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locationDF = 
spark.table("device_locations").select("device_id", 
"zip_code")
sightingLoc = sightings.join(locationDF, "device_id")

sightingLoc \
  .groupBy("zip_code", window("start_time", "1 hour")) \
  .count() \
  .select( \
    to_json(struct("zip_code", "window")).alias("key"),
    col("count").cast("string").alias("value")) \
  .writeStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("topic", "nest-camera-stats") \
  .option("checkpointLocation", "/path/to/HDFS/dir") \
  .outputMode("complete") \
  .start()



Note that we can simply reuse the same camera DataFrame to start 

multiple streaming queries. For instance, we can query the DataFrame 
to get a list of cameras that are offline, and send a notification to the 
network operations center for further investigation. 

Batch Query for Reporting 
Our next example is going to run a batch query over the Kafka “nest-
camera-stats” compacted topic and generate a report showing zip 
codes with a significant number of sightings. 

Writing batch queries is similar to streaming queries with the exception 
that we use the read method instead of the readStream method and 

write instead of writeStream. 

Batch Read and Format the Data 

This report DataFrame can be used for reporting or to create a real-
time dashboard showing events with extreme sightings. 

Conclusion 
In this blog post, we showed examples of consuming and transforming 
real-time data streams from Kafka. We implemented an end-to-end 
example of a continuous application, demonstrating the conciseness 
and ease of programming with Structured Streaming APIs, while 
leveraging the powerful exactly-once semantics these APIs provide. 

In the future blog posts in this series, we’ll cover more on: 
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camera.writeStream \
  .format("parquet") \
  .option("startingOffsets", "earliest") \
  .option("path", "s3://nest-logs") \
  .option("checkpointLocation", "/path/to/HDFS/dir") \
  .start()

report = spark \
  .read \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "nest-camera-stats") \
  .load() \
  .select( \
    json_tuple(col("key").cast("string"), "zip_code", 
"window").alias("zip_code", "window"),
    
col("value").cast("string").cast("integer").alias("count")) \
  .where("count > 1000") \
  .select("zip_code", "window") \
  .distinct()

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html


• Monitoring your streaming applications 
• Computing event-time aggregations with Structured Streaming 

If you want to learn more about the Structured Streaming, here are a 
few useful links: 

• Previous blogs posts explaining the motivation and concepts of 
Structured Streaming: 

- Continuous Applications: Evolving Streaming in Apache Spark 
2.0 

- Structured Streaming In Apache Spark 
- Real-time Streaming ETL with Structured Streaming in Apache 

Spark 2.1 

- Working with Complex with Structured Streaming in Apache 
Spark 2.1 

• Structured Streaming Programming Guide 

• Talk at Spark Summit 2017 East – Making Structured Streaming 
Ready for Production and Future Directions 

To try Structured Streaming in Apache Spark 2.1, try Databricks today. 

Additional Configuration 

Kafka Integration Guide 
Contains further examples and Spark specific configuration options for 
processing data in Kafka. 

Kafka Consumer and Producer Configuration Docs 

Kafka’s own configurations can be set via DataStreamReader.option 
and DataStreamWriter.option with the kafka. prefix, e.g: 

For possible kafka parameters, see the Kafka consumer config docs for 
parameters related to reading data, and the Kafka producer config 
docs for parameters related to writing data. 

See the Kafka Integration Guide for the list of options managed by 
Spark, which are consequently not configurable. 

1. A compacted Kafka topic is a topic where retention is enforced by compaction to 
ensure that the log is guaranteed to have at least the last state for each key. See Kafka 
Log Compaction for more information. 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Event-time Aggregation and 
Watermarking in Apache Spark’s 
Structured Streaming 
Part 4 of Scalable Data @ Databricks 
February 23, 2017 | by Tathagata Das   

Continuous applications often require near real-time decisions on real-
time aggregated statistics—such as health of and readings from IoT 
devices or detecting anomalous behavior. In this blog, we will explore 
how easily streaming aggregations can be expressed in Structured 
Streaming, and how naturally late, and out-of-order data is handled. 

Streaming Aggregations 
Structured Streaming allows users to express the same streaming 
query as a batch query, and the Spark SQL engine incrementalizes the 
query and executes on streaming data. For example, suppose you have 
a streaming DataFrame having events with signal strength from IoT 
devices, and you want to calculate the running average signal strength 
for each device, then you would write the following Python code: 

This code is no different if eventsDF was a DataFrame on static data. 
However, in this case, the average will be continuously updated as new 
events arrive. You choose different output modes for writing the 
updated averages to external systems like file systems and databases. 
Furthermore, you can also implement custom aggregations using 
Spark’s user-defined aggregation function (UDAFs). 

Aggregations on Windows over Event-Time 
In many cases, rather than running aggregations over the whole 
stream, you want aggregations over data bucketed by time windows 
(say, every 5 minutes or every hour). In our earlier example, it’s 
insightful to see what is the average signal strength in last 5 minutes in 
case if the devices have started to behave anomalously. Also, this 5 
minute window should be based on the timestamp embedded in the 
data (aka. event-time) and not on the time it is being processed (aka. 
processing-time). 

Earlier Spark Streaming DStream APIs made it hard to express such 
event-time windows as the API was designed solely for processing-
time windows (that is, windows on the time the data arrived in Spark). 
In Structured Streaming, expressing such windows on event-time is 
simply performing a special grouping using the window() function. For 

example, counts over 5 minute tumbling (non-overlapping) windows 
on the eventTime column in the event is as following. 
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# DataFrame w/ schema [eventTime: timestamp, deviceId: string, 
signal: bigint]
eventsDF = ... 

avgSignalDF = eventsDF.groupBy("deviceId").avg("signal")

https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#starting-streaming-queries
https://docs.databricks.com/spark/latest/spark-sql/udaf-scala.html


In the above query, every record is going to be assigned to a 5 minute 
tumbling window as illustrated below. 

Each window is a group for which running counts are calculated. You 
can also define overlapping windows by specifying both the window 
length and the sliding interval. For example: 

In the above query, every record will be assigned to multiple 
overlapping windows as illustrated below.Mapping of event-time to 
overlapping windows of length 10 mins and sliding interval 5 mins 

This grouping strategy automatically handles late and out-of-order 
data — the late event would just update older window groups instead 
of the latest ones. Here is an end-to-end illustration of a query that is 
grouped by both the deviceId and the overlapping windows. The 

illustration below shows how the final result of a query changes after 
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from pyspark.sql.functions import *

windowedAvgSignalDF = \
  eventsDF \
    .groupBy(window("eventTime", "5 minute")) \
    .count()

from pyspark.sql.functions import *

windowedAvgSignalDF = \
  eventsDF \
    .groupBy(window("eventTime", "10 minutes", "5 minutes")) \
    .count()



new data is processed with 5 minute triggers when you are grouping by 
both deviceId and sliding windows (for brevity, the “signal” field is 
omitted). 

Note how the late, out-of-order record [12:04, dev2] updated an old 
window’s count. 

Stateful Incremental Execution 
While executing any streaming aggregation query, the Spark SQL 
engine internally maintains the intermediate aggregations as fault-
tolerant state. This state is structured as key-value pairs, where the key 
is the group, and the value is the intermediate aggregation. These pairs 
are stored in an in-memory, versioned, key-value “state store” in the 
Spark executors that is checkpointed using write ahead logs in an 
HDFS-compatible file system (in the configured checkpoint location). 
At every trigger, the state is read and updated in the state store, and all 
updates are saved to the write ahead log. In case of any failure, the 
correct version of the state is restored from checkpoint information, 
and the query proceeds from the point it failed. Together with 
replayable sources, and idempotent sinks, Structured Streaming 
ensures exactly-once guarantees for stateful stream processing. 

Event-time Aggregation and Watermarking in Apache Spark’s Structured Streaming  50

windowedCountsDF = \
  eventsDF \
    .groupBy(
      "deviceId",
      window("eventTime", "10 minutes", "5 minutes")) \
    .count()

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html


This fault-tolerant state management naturally incurs some processing 
overheads. To keep these overheads bounded within acceptable limits, 
the size of the state data should not grow indefinitely. However, with 
sliding windows, the number of windows/groups will grow indefinitely, 
and so can the size of state (proportional to the number of groups). To 
bound the state size, we have to be able to drop old aggregates that 
are not going to be updated any more, for example seven day old 
averages. We achieve this using watermarking. 

Watermarking to Limit State while Handling 
Late Data 
As mentioned before, the arrival of late data can result in updates to 
older windows. This complicates the process of defining which old 
aggregates are not going to be updated and therefore can be dropped 
from the state store to limit the state size. In Apache Spark 2.1, we have 
introduced watermarking that enables automatic dropping of old 
state data. 

Watermark is a moving threshold in event-time that trails behind the 
maximum event-time seen by the query in the processed data. The 
trailing gap defines how long we will wait for late data to arrive. By 
knowing the point at which no more data will arrive for a given group, 
we can limit the total amount of state that we need to maintain for a 
query. For example, suppose the configured maximum lateness is 10 
minutes. That means the events that are up to 10 minutes late will be 
allowed to aggregate. And if the maximum observed event time is 
12:33, then all the future events with event-time older than 12:23 will 

be considered as “too late” and dropped. Additionally, all the state for 
windows older than 12:23 will be cleared. You can set this parameter 
based on the requirements of your application — larger values of this 
parameter allows data to arrive later but at the cost of increased state 
size, that is, memory usage and vice versa. 

Here is the earlier example but with watermarking. 

When this query is executed, Spark SQL will automatically keep track 
of the maximum observed value of the eventTime column, update the 
watermark and clear old state. This is illustrated below. 
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windowedCountsDF = \
  eventsDF \
    .withWatermark("eventTime", "10 minutes") \
    .groupBy(
      "deviceId",
      window("eventTime", "10 minutes", "5 minutes")) \
    .count()



Note the two events that arrive between the processing-times 12:20 
and 12:25. The watermark is used to differentiate between the late and 
the “too-late” events and treat them accordingly. 

Conclusion 
In short, I covered Structured Streaming’s windowing strategy to 
handle key streaming aggregations: windows over event-time and late 
and out-of-order data. Using this windowing strategy allows 
Structured Streaming engine to implement watermarking, in which 

late data can be discarded. As a result of this design, we can manage 
the size of the state-store. 

In the upcoming version of Apache Spark 2.2, we have added more 
advanced stateful stream processing operations to streaming 
DataFrames/Datasets. Stay tuned to this blog series for more 
information. If you want to learn more about Structured Streaming, 
read our previous posts in the series. 

• Structured Streaming In Apache Spark 

• Real-time Streaming ETL with Structured Streaming in Apache 
Spark 2.1 

• Working with Complex Data Formats with Structured Streaming in 
Apache Spark 2.1 

• Processing Data in Apache Kafka with Structured Streaming in 
Apache Spark 2.2 

To try Structured Streaming in Apache Spark 2.0, try Databricks today. 
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Taking Apache Spark’s 
Structured Streaming to 
Production 
Part 5 of Scalable Data @ Databricks 
February 23, 2017 | by Bill Chambers and Michael Armbrust    

At Databricks, we’ve migrated our production pipelines to Structured 
Streaming over the past several months and wanted to share our out-
of-the-box deployment model to allow our customers to rapidly build 
production pipelines in Databricks. 

A production application requires monitoring, alerting, and an 
automatic (cloud native) approach to failure recovery. This post will 
not just walk you through the APIs available for tackling these 
challenges but will also show you how Databricks makes running 
Structured Streaming in production simple. 

Metrics and Monitoring 
Structured Streaming in Apache Spark provides a simple 
programmatic API to get information about a stream that is currently 
executing. There are two key commands that you can run on a 
currently active stream in order to get relevant information about the 

query execution in progress: a command to get the current status of 
the query and a command to get recentProgress of the query. 

Status 
The first question you might ask is, “what processing is my stream 
performing right now?” The status maintains information about the 
current state of the stream, and is accessible through the object that 
was returned when you started the query. For example, you might 
have a simple counts stream that provides counts of IOT devices 
defined by the following query. 

Running query.status will return the current status of the stream. 

This gives us details about what is happening at that point in time in 
the stream. 
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query = streamingCountsDF \
    .writeStream \
    .format("memory") \
    .queryName("counts") \
    .outputMode("complete") \
    .start()

{
  "message" : "Getting offsets from FileStreamSource[dbfs:/
databricks-datasets/structured-streaming/events]",
  "isDataAvailable" : true,
  "isTriggerActive" : true
}

https://databricks.com/blog/2017/05/18/taking-apache-sparks-structured-structured-streaming-to-production.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html


Databricks notebooks give you a simple way to see that status of any 
streaming query. Simply hover over the green streaming icon 
available in a streaming query. You’ll get the same 
information, making it much more convenient to quickly understand 
the state of your stream. 

Recent Progress 
While the query status is certainly important, equally important is an 
ability to view query’s historical progress. Progress metadata will allow 
us to answer questions like “At what rate am I processing tuples?” or 
“How fast are tuples arriving from the source?” 

By running stream.recentProgress you’ll get access to some more 

time-based information like the processing rate and batch durations. 
However, a picture is worth a thousand JSON blobs, so at Databricks, 
we created visualizations in order to facilitate rapid analysis of the 
recent progress of the stream. 

 
Let’s explore why we chose to display these metrics and why they’re 
important for you to understand. 
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Input Rate and Processing Rate 
The input rate specifies how much data is flowing into Structured 
Streaming from a system like Kafka or Kinesis. The processing rate is 
how quickly we were able to analyze that data. In the ideal case, these 
should vary consistently together; however, they will vary according to 
how much input data exists when processing starts. If the input rate far 
outpaces the processing rate, our streams will fall behind, and we will 
have to scale the cluster up to a larger size to handle the greater load. 

Batch Duration 
Nearly all streaming systems utilize batching to operate at any 
reasonable throughput (some have an option of high latency in 
exchange for lower throughput). Structured Streaming achieves both. 
As it operates on the data, you will likely see this oscillate as 
Structured Streaming processes varying numbers of events over time. 
On this single core cluster on Community Edition, we can see that our 
batch duration is oscillating consistently around three seconds. Larger 
clusters will naturally have much faster processing rates as well as 
much shorter batch durations. 

Taking Apache Spark’s Structured Streaming to Production  56



Production Alerting on Streaming Jobs 
Metrics and Monitoring are all well and good, but in order to react 
quickly to any issues that arise without having to babysit your 
streaming jobs all day, you’re going to need a robust alerting story. 
Databricks makes alerting easy by allowing you to run your Streaming 
jobs as production pipelines. 

For instance, let’s define a Databricks jobs with the following 
specifications: 

 
Notice how we set an email address to trigger an alert in PagerDuty. 
This will trigger a product alert (or to the level that you specify) when 
the job fails. 

Automated Failure Recovery 
While alerting is convenient, having to force a human to respond to an 
outage is inconvenient at best and impossible at worst. In order to 
truly productionize Structured Streaming, you’re going to want to be 
able to recover automatically to failures as quickly as you can, while 
ensuring data consistency and no data loss. Databricks makes this 
seamless: simply set the number of retries before a unrecoverable 

failure and Databricks will try to recover the streaming job 
automatically for you. On each failure, you can trigger a notification as 
a production outage. 

You get the best of both worlds. The system will attempt to self-heal 
while keeping employees and developers informed of the status. 

Updating Your Application 
There are two circumstances that you need to reason about when you 
are updating your streaming application. For the most part, if you’re 
not changing significant business logic (like the output schema) you 
can simply restart the streaming job using the same checkpoint 
directory. The new updated streaming application will pick up where it 
left off and continue functioning. 

However, if you’re changing stateful operations (like aggregations or 
the output schema), the update is a bit more involved. You’ll have to 
start an entirely new stream with a new checkpoint directory. Luckily, 
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it’s easy to start up another stream in Databricks in order to run both in 
parallel while you transition to the new stream. 

Advanced Alerting and Monitoring 
There are several other advanced monitoring techniques that 
Databricks supports as well. For example, you can output notifications 
using a system like Datadog, Apache Kafka, or Coda Hale Metrics. 
These advanced techniques can be used to implement external 
monitoring and alerting systems. 

Below is an example of how you can create a StreamingQueryListener 
that will forward all query progress information to Kafka. 

Conclusion 
In this post, we showed how simple it is to take Structured Streaming 
from prototype to production using Databricks. To read more about 
other aspects of Structured Streaming, read our series of blogs: 

• Structured Streaming In Apache Spark 

• Real-time Streaming ETL with Structured Streaming in Apache 
Spark 2.1 

• Working with Complex Data Formats with Structured Streaming in 
Apache Spark 2.1 

• Processing Data in Apache Kafka with Structured Streaming in 
Apache Spark 2.2 

• Event-time Aggregation and Watermarking in Apache Spark’s 
Structured Streaming 

You can learn more about using streaming from the Databricks 
Documentation or sign up to start a free trial today. 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class KafkaMetrics(servers: String) extends 
StreamingQueryListener {
  val kafkaProperties = new Properties()
  kafkaProperties.put("bootstrap.servers", servers)
  kafkaProperties.put("key.serializer", 
"kafkashaded.org.apache.kafka.common.serialization.StringSeria
lizer")
  kafkaProperties.put("value.serializer", 
"kafkashaded.org.apache.kafka.common.serialization.StringSeria
lizer")

  val producer = new KafkaProducer[String, String]
(kafkaProperties)

  def onQueryProgress(event: 
org.apache.spark.sql.streaming.StreamingQueryListener.QueryPro
gressEvent): Unit = {
    producer.send(new ProducerRecord("streaming-metrics", 
event.progress.json))
  }

  def onQueryStarted(event: 
org.apache.spark.sql.streaming.StreamingQueryListener.QuerySta
rtedEvent): Unit = {}
  def onQueryTerminated(event: 
org.apache.spark.sql.streaming.StreamingQueryListener.QueryTer
minatedEvent): Unit = {}
}

https://www.datadoghq.com/
https://kafka.apache.org/
https://github.com/dropwizard/metrics
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2017/01/19/real-time-streaming-etl-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/02/23/working-complex-data-formats-structured-streaming-apache-spark-2-1.html
https://databricks.com/blog/2017/04/26/processing-data-in-apache-kafka-with-structured-streaming-in-apache-spark-2-2.html
https://databricks.com/blog/2017/05/08/event-time-aggregation-watermarking-apache-sparks-structured-streaming.html
https://docs.databricks.com/spark/latest/structured-streaming/index.html
https://databricks.com/try-databricks
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# Load your Streaming DataFrame
sdf = spark.readStream.load(path="/in/path", format="json", 
schema=my_schema)
# Perform transformations and then write…
sdf.writeStream.trigger(once=True).start(path="/out/path", 
format="parquet")
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Running Streaming Jobs Once a 
Day For 10x Cost Savings 
Part 6 of Scalable Data @ Databricks 
May 22, 2017 | by Burak Yavuz and Tyson Condie  

Traditionally, when people think about streaming, terms such as “real-
time,” “24/7,” or “always on” come to mind. You may have cases where 
data only arrives at fixed intervals. That is, data appears every hour or 
once a day. For these use cases, it is still beneficial to perform 
incremental processing on this data. However, it would be wasteful to 
keep a cluster up and running 24/7 just to perform a short amount of 
processing once a day. 

Fortunately, by using the new Run Once trigger feature added to 
Structured Streaming in Apache Spark 2.2, you will get all the benefits 
of the Catalyst Optimizer incrementalizing your workload, and the cost 
savings of not having an idle cluster lying around. In this post, we will 
examine how to employ triggers to accomplish both. 

Triggers in Structured Streaming 
In Structured Streaming, triggers are used to specify how often a 
streaming query should produce results. Once a trigger fires, Spark 
checks to see if there is new data available. If there is new data, then 
the query is executed incrementally on whatever has arrived since the 

last trigger. If there is no new data, then the stream sleeps until the 
next trigger fires. 

The default behavior of Structured Streaming is to run with the lowest 
latency possible, so triggers fire as soon as the previous trigger 
finishes. For use cases with lower latency requirements, Structured 
Streaming supports a ProcessingTime trigger which will fire every user-
provided interval, for example every minute. 

While this is great, it still requires the cluster to remain running 24/7. In 
contrast, a RunOnce trigger will fire only once and then will stop the 
query. As we’ll see below, this lets you effectively utilize an external 
scheduling mechanism such as Databricks Jobs. 

Triggers are specified when you start your streams. 

PYTHON 
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# Load your Streaming DataFrame
sdf = spark.readStream.load(path="/in/path", format="json", 
schema=my_schema)
# Perform transformations and then write…
sdf.writeStream.trigger(once=True).start(path="/out/path", 
format="parquet")

https://databricks.com/blog/2017/05/22/running-streaming-jobs-day-10x-cost-savings.html


SCALA 

Why Streaming and RunOnce is Better than 
Batch 
You may ask, how is this different than simply running a batch job? 
Let’s go over the benefits of running Structured Streaming over a batch 
job. 

Bookkeeping 
When you’re running a batch job that performs incremental updates, 
you generally have to deal with figuring out what data is new, what you 
should process, and what you should not. Structured Streaming 
already does all this for you. In writing general streaming applications, 
you should only care about the business logic, and not the low-level 
bookkeeping. 

Table Level Atomicity 
The most important feature of a big data processing engine is how it 
can tolerate faults and failures. The ETL jobs may (in practice, often 
will) fail. If your job fails, then you need to ensure that the output of 
your job should be cleaned up, otherwise you will end up with 
duplicate or garbage data after the next successful run of your job. 

While using Structured Streaming to write out a file-based table, 
Structured Streaming commits all files created by the job to a log after 
each successful trigger. When Spark reads back the table, it uses this 
log to figure out which files are valid. This ensures that garbage 
introduced by failures are not consumed by downstream applications. 

Stateful Operations Across Runs 
If your data pipeline has the possibility of generating duplicate 
records, but you would like exactly once semantics, how do you 
achieve that with a batch workload? With Structured Streaming, it’s as 
easy as setting a watermark and using dropDuplicates(). By 

configuring the watermark long enough to encompass several runs of 
your streaming job, you will make sure that you don’t get duplicate 
data across runs. 

Cost Savings 
Running a 24/7 streaming job is a costly ordeal. You may have use 
cases where latency of hours is acceptable, or data comes in hourly or 
daily. To get all the benefits of Structured Streaming described above, 
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import org.apache.spark.sql.streaming.Trigger

// Load your Streaming DataFrame
val sdf = 
spark.readStream.format("json").schema(my_schema).load("/in/
path")
// Perform transformations and then write…
sdf.writeStream.trigger(Trigger.Once).format("parquet").start(
"/out/path")=



you may think you need to keep a cluster up and running all the time. 
But now, with the “execute once” trigger, you don’t need to! 

At Databricks, we had a two stage data pipeline, consisting of one 
incremental job that would make the latest data available, and one job 
at the end of the day that processed the whole day’s worth of data, 
performed de-duplication, and overwrote the output of the 
incremental job. The second job would use considerably larger 
resources than the first job (4x), and would run much longer as well 
(3x). We were able to get rid of the second job in many of our pipelines 
that amounted to a 10x total cost savings. We were also able to clean 
up a lot of code in our codebase with the new execute once trigger. 
Those are cost savings that makes both financial and engineering 
managers happy! 

Scheduling Runs with Databricks 
Databricks’ Jobs scheduler allows users to schedule production jobs 
with a few simple clicks. Jobs scheduler is ideal for scheduling 
Structured Streaming jobs that run with the execute once trigger. 

 
At Databricks, we use the Jobs scheduler to run all of our production 
jobs. As engineers, we ensure that the business logic within our ETL job 
is well tested. We upload our code to Databricks as a library, and we 
set up notebooks to set the configurations for the ETL job such as the 
input file directory. The rest is up to Databricks to manage clusters, 
schedule and execute the jobs, and Structured Streaming to figure out 
which files are new, and process incoming data. The end result is an 
end-to-end — from data origin to data warehouse, not only within 
Spark — exactly once data pipeline. Check out our documentation on 
how to best run Structured Streaming with Jobs. 
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http://go.databricks.com/databricks-data-pipeline
https://databricks.com/blog/2015/03/18/databricks-launches-jobs-feature-for-production-workloads.html
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Summary 
In this blog post we introduced the new “execute once” trigger for 
Structured Streaming. While the execute once trigger resembles 
running a batch job, we discussed all the benefits it has over the batch 
job approach, specifically: 

• Managing all the bookkeeping of what data to process 
• Providing table level atomicity for ETL jobs to a file store 
• Ensuring stateful operations across runs of the job, which allow for 

easy de-duplication 

In addition to all these benefits over batch processing, you also get the 
cost savings of not having an idle 24/7 cluster up and running for an 
irregular streaming job. The best of both worlds for batch and 
streaming processing are now under your fingertips. 

Try Structured Streaming today in Databricks by signing up for a 14-
day free trial. 

Other parts of this blog series explain other benefits as well: 

• Real-time Streaming ETL with Structured Streaming in Apache 
Spark 2.1 

• Working with Complex Data Formats with Structured Streaming in 
Apache Spark 2.1 

• Processing Data in Apache Kafka with Structured Streaming in 
Apache Spark 2.2 

• Event-time Aggregation and Watermarking in Apache Spark’s 
Structured Streaming 

• Taking Apache Spark’s Structured Structured Streaming to 
Production 

• Running Streaming Jobs Once a Day For 10x Cost Savings 
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Introduction 
Most data streams, though continuous in flow, have discrete events 
within streams, each marked by a timestamp when an event 
transpired. As a consequence, this idea of “event-time” is central to 
how Structured Streaming APIs are fashioned for event-time 
processing—and the functionality they offer to process these discrete 
events. 

Event-time basics and event-time processing are adequately covered 
in Structured Streaming documentation and our anthology of 
technical assets on Structure Streaming. So for brevity, we won’t cover 
them here. Built on the concepts developed (and tested at scale) in 
event-time processing, such as sliding windows, tumbling windows, 
and watermarking, this blog will focus on two topics: 

1. How to handle duplicates in your event streams 
2. How to handle arbitrary or custom stateful processing 

Dropping Duplicates 
No streaming events are free of duplicate entries. Dropping duplicate 
entries in record-at-a-time systems is imperative—and often a 
cumbersome operation for a couple of reasons. First, you’ll have to 
process small or large batches of records at time to discard them. 
Second, some events, because of network high latencies, may arrive 
out-of-order or late, which may force you to reiterate or repeat the 
process. How do you account for that? 

Structured Streaming, which ensures exactly once-semantics, can drop 
duplicate messages as they come in based on arbitrary keys. To 
deduplicate data, Spark will maintain a number of user-specified keys 
and ensure that duplicates, when encountered, are discarded. 

Just as other stateful processing APIs in Structured Streaming are 
bounded by declaring watermarking for late data semantics, so is 
dropping duplicates. Without watermarking, the maintained state can 
grow infinitely over the course of your stream. 

The API to instruct Structured Streaming to drop duplicates is as 
simple as all other APIs we have shown so far in our blogs and 
documentation. Using the API, you can declare arbitrarily columns on 
which to drop duplicates—for example, user_id and timestamp. An 
entry with same timestamp and user_id is marked as duplicate and 
dropped, but the same entry with two different timestamps is not. 
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Let’s see an example how we can use the simple API to drop 
duplicates. 

PYTHON 

 
SCALA 

Over the course of the query, if you were to issue a SQL query, you will 
get an accurate results, with all duplicates dropped. 

 
Next, we will expand on how to implement a customized stateful 
processing using two Structured Streaming APIs. 

Working with Arbitrary or Custom Stateful 
Processing 
Not all event-time based processing is equal or as simple as 
aggregating a specific data column within an event. Others events are 
more complex; they require processing by rows of events ascribed to a 
group; and they only make sense when processed in their entirety by 
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from pyspark.sql.functions import expr

withEventTime\
  .withWatermark("event_time", "5 seconds")\
  .dropDuplicates(["User", "event_time"])\
  .groupBy("User")\
  .count()\
  .writeStream\
  .queryName("pydeduplicated")\
  .format("memory")\
  .outputMode("complete")\
  .start()

import org.apache.spark.sql.functions.expr

withEventTime
  .withWatermark("event_time", "5 seconds")
  .dropDuplicates("User", "event_time")
  .groupBy("User")
  .count()
  .writeStream
  .queryName("deduplicated")
  .format("memory")
  .outputMode("complete")
  .start()

SELECT * FROM deduplicated
+----+-----+
|User|count|
+----+-----+
|   a| 8085|
|   b| 9123|
|   c| 7715|
|   g| 9167|
|   h| 7733|
|   e| 9891|
|   f| 9206|
|   d| 8124|
|   i| 9255|
+----+-----+



emitting either a single result or multiple rows of results, depending on 
your use cases. 

Consider these use-cases where arbitrary or customized stateful 
processing become imperative: 

1. We want to emit an alert based on a group or type of events if we 
observe that they exceed a threshold over time 

2. We want to maintain user sessions, over definite or indefinite time 
and persist those sessions for post analysis. 

All of the above scenarios require customized processing. Structured 
Streaming APIs offer a set of APIs to handle these cases: 
mapGroupsWithState and flatMapGroupsWithState. 

mapGroupsWithState can operate on groups and output only a single 
result row for each group, whereas flatMapGroupsWithState can emit 

a single row or multiple rows of results per group.  

Timeouts and State 
One thing to note is that because we manage the state of the group 
based on user-defined concepts, as expressed above for the use-cases, 
the semantics of watermark (expiring or discarding an event) may not 
always apply here. Instead, we have to specify an appropriate timeout 
ourselves. Timeout dictates how long we should wait before timing out 
some intermediate state. 

Timeouts can either be based on processing time 
(GroupStateTimeout.ProcessingTimeTimeout) or event time 

(GroupStateTimeout.EventTimeTimeout). When using timeouts, you 
can check for timeout first before processing the values by checking 
the flag state.hasTimedOut. 
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To set processing timeout, use GroupState.setTimeoutDuration(...) 

method. That means the timeout guarantee will occur under the 
following conditions: 

• Timeout will never occur before the clock has advanced X ms 
specified in the method 

• Timeout will eventually occur when there is a trigger in the query, 
after X ms 

To set event time timeout, use 
GroupState.setTimeoutTimestamp(...). Only for timeouts based on 

event time must you specify watermark. As such all events in the group 
older than watermark will be filtered out, and the timeout will occur 
when the watermark has advanced beyond the set timestamp. 

When timeouts occur, your function supplied in the streaming query 
will be invoked with arguments: the key by which you keep the state; 
an iterator rows of input, and an old state. The example with 
mapGroupsWithState below defines a number of functional classes 

and objects used. 

Example with mapGroupsWithState 
Let’s take a simple example where we want to find out when 
(timestamp) a user performed his or her first and last activity in a given 
dataset in a stream. In this case, we will group on (or map on) on a user 
key and activity key combination. 

But first, mapGroupsWithState requires a number of functional classes 

and objects: 

1. Three class definitions: an input definition, a state definition, and 
optionally an output definition. 

2. An update function based on a key, an iterator of events, and a 
previous state. 

3. A timeout parameter as described above. 

So let’s define our input, output, and state data structure definitions. 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case class InputRow(user:String, timestamp:java.sql.Timestamp, 
activity:String)
case class UserState(user:String,
  var activity:String,
  var start:java.sql.Timestamp,
  var end:java.sql.Timestamp)



Based on a given input row, we define our update function And finally, we write our function that defines the way state is updated 
based on an epoch of rows. 

With these pieces in place, we can now use them in our query. As 
discussed above, we have to specify our timeout so that the method 
can timeout a given group’s state and we can control what should be 
done with the state when no update is received after a timeout. For 
this illustration, we will maintain state indefinitely. 
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def updateUserStateWithEvent(state:UserState, 
input:InputRow):UserState = {
// no timestamp, just ignore it  
if (Option(input.timestamp).isEmpty) {
    return state
  }
//does the activity match for the input row
if (state.activity == input.activity) {
    if (input.timestamp.after(state.end)) {
      state.end = input.timestamp
    }
    if (input.timestamp.before(state.start)) {
      state.start = input.timestamp
    }
  } else { 
   //some other activity
    if (input.timestamp.after(state.end)) {
      state.start = input.timestamp
      state.end = input.timestamp
      state.activity = input.activity
    }
  }
  //return the updated state
  state
}

import org.apache.spark.sql.streaming.{GroupStateTimeout, 
OutputMode, GroupState}

def updateAcrossEvents(user:String,
    inputs: Iterator[InputRow],
     oldState: GroupState[UserState]):UserState = {
     var state:UserState = if (oldState.exists) oldState.get 
else UserState(user,
        "",
        new java.sql.Timestamp(6284160000000L),
        new java.sql.Timestamp(6284160L)
    )
  // we simply specify an old date that we can compare against 
and
  // immediately update based on the values in our data

  for (input <- inputs) {
    state = updateUserStateWithEvent(state, input)
    oldState.update(state)
  }
  state
}



We can now query our results in the stream: 

And our sample result that shows user activity for the first and last 
time stamp:  

What’s Next 
In this blog, we expanded on two additional functionalities and APIs 
for advanced streaming analytics. The first allows removing duplicates 
bounded by a watermark. With the second, you can implement 
customized stateful aggregations, beyond event-time basics and 
event-time processing. 

Through an example using mapGroupsWithState APIs, we 

demonstrated how you can implement your customized stateful 
aggregation for events whose processing semantics can be defined not 
only by timeout but also by user semantics and business logic. 

Our next blog in this series, we will explore advanced aspects of 
flatMapGroupsWithState use cases, as was discussed at Spark Summit 
Europe, in Dublin, in a deep dive session on Structured Streaming: 
Session 1. Session 2. 
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import org.apache.spark.sql.streaming.GroupStateTimeout

withEventTime
  .selectExpr("User as user", "cast(Creation_Time/1000000000 
as timestamp) as timestamp", "gt as activity")
  .as[InputRow]
  // group the state by user key
  .groupByKey(_.user)
  .mapGroupsWithState(GroupStateTimeout.NoTimeout)
(updateAcrossEvents)
  .writeStream
  .queryName("events_per_window")
  .format("memory")
  .outputMode("update")
  .start()

+----+--------+--------------------+--------------------+
|user|activity|               start|                 end|
+----+--------+--------------------+--------------------+
|   a|    bike|2015-02-23 13:30:...|2015-02-23 14:06:...|
|   a|    bike|2015-02-23 13:30:...|2015-02-23 14:06:...|
...
|   b|    bike|2015-02-24 14:01:...|2015-02-24 14:38:...|
|   b|    bike|2015-02-24 14:01:...|2015-02-24 14:38:...|
|   c|    bike|2015-02-23 12:40:...|2015-02-23 13:15:...|
...
|   d|    bike|2015-02-24 13:07:...|2015-02-24 13:42:...|
+----+--------+--------------------+--------------------+

SELECT * FROM events_per_window order by user, start

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#handling-event-time-and-late-data
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#window-operations-on-event-time
https://spark-summit.org/eu-2017/
https://spark-summit.org/eu-2017/
https://databricks.com/session/easy-scalable-fault-tolerant-stream-processing-with-structured-streaming-in-apache-spark
https://databricks.com/session/easy-scalable-fault-tolerant-stream-processing-with-structured-streaming-in-apache-spark-continues


Read More 
Over the course of Structured Streaming development and release 
since Apache Spark 2.0, we have compiled a comprehensive 
compendium of technical assets, including our Structured Series 
blogs. You can read the relevant assets here: 

• Anthology of Technical Assets on Apache Spark’s Structured 
Streaming 

Try Apache Spark’s Structured Streaming latest APIs on Databricks’ 
Unified Analytics Platform. 
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Conclusion 
Our mission at Databricks is to dramatically simplify big data and AI. 
Our Unified Analytics Platform enables this through the  unification of 
data science, engineering, and the business — accelerating innovation 
that delivers transformative business outcomes. We hope this eBook 
will provide you with the insights and tools to help you solve your 
streaming problems. If you enjoyed the technical content in this 
eBook, visit the Databricks Blog for more technical tips, best practices, 
and case studies from the Spark experts at Databricks.  

To try out Databricks for yourself, sign-up for a 14-day free trial today! 

To try Databricks yourself, start your  
free trial today!      
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