{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Suspicious Log Entries\n", "Detects suspicious log entries in Linux log files" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Rule Content\n", "```\n", "- title: Suspicious Log Entries\n", " id: f64b6e9a-5d9d-48a5-8289-e1dd2b3876e1\n", " description: Detects suspicious log entries in Linux log files\n", " author: Florian Roth\n", " logsource:\n", " product: linux\n", " service: null\n", " category: null\n", " detection:\n", " keywords:\n", " - entered promiscuous mode\n", " - Deactivating service\n", " - Oversized packet received from\n", " - imuxsock begins to drop messages\n", " condition: keywords\n", " falsepositives:\n", " - Unknown\n", " level: medium\n", "\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Querying Elasticsearch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Import Libraries" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from elasticsearch import Elasticsearch\n", "from elasticsearch_dsl import Search\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Initialize Elasticsearch client" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "es = Elasticsearch(['http://helk-elasticsearch:9200'])\n", "searchContext = Search(using=es, index='logs-*', doc_type='doc')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run Elasticsearch Query" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "s = searchContext.query('query_string', query='\\*.keyword:(*entered\\ promiscuous\\ mode* OR *Deactivating\\ service* OR *Oversized\\ packet\\ received\\ from* OR *imuxsock\\ begins\\ to\\ drop\\ messages*)')\n", "response = s.execute()\n", "if response.success():\n", " df = pd.DataFrame((d.to_dict() for d in s.scan()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Show Results" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df.head()" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 4 }