mirror of https://github.com/infosecn1nja/HELK.git
127 lines
2.8 KiB
Plaintext
127 lines
2.8 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# MavInject Process Injection\n",
|
||
|
"Detects process injection using the signed Windows tool Mavinject32.exe"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Rule Content\n",
|
||
|
"```\n",
|
||
|
"- title: MavInject Process Injection\n",
|
||
|
" id: 17eb8e57-9983-420d-ad8a-2c4976c22eb8\n",
|
||
|
" status: experimental\n",
|
||
|
" description: Detects process injection using the signed Windows tool Mavinject32.exe\n",
|
||
|
" references:\n",
|
||
|
" - https://twitter.com/gN3mes1s/status/941315826107510784\n",
|
||
|
" - https://reaqta.com/2017/12/mavinject-microsoft-injector/\n",
|
||
|
" - https://twitter.com/Hexacorn/status/776122138063409152\n",
|
||
|
" author: Florian Roth\n",
|
||
|
" date: 2018/12/12\n",
|
||
|
" tags:\n",
|
||
|
" - attack.t1055\n",
|
||
|
" - attack.t1218\n",
|
||
|
" logsource:\n",
|
||
|
" category: process_creation\n",
|
||
|
" product: windows\n",
|
||
|
" service: null\n",
|
||
|
" detection:\n",
|
||
|
" selection:\n",
|
||
|
" CommandLine: '* /INJECTRUNNING *'\n",
|
||
|
" condition: selection\n",
|
||
|
" falsepositives:\n",
|
||
|
" - unknown\n",
|
||
|
" level: critical\n",
|
||
|
"\n",
|
||
|
"```"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Querying Elasticsearch"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Import Libraries"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from elasticsearch import Elasticsearch\n",
|
||
|
"from elasticsearch_dsl import Search\n",
|
||
|
"import pandas as pd"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Initialize Elasticsearch client"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"es = Elasticsearch(['http://helk-elasticsearch:9200'])\n",
|
||
|
"searchContext = Search(using=es, index='logs-*', doc_type='doc')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Run Elasticsearch Query"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"s = searchContext.query('query_string', query='process_command_line.keyword:*\\ \\/INJECTRUNNING\\ *')\n",
|
||
|
"response = s.execute()\n",
|
||
|
"if response.success():\n",
|
||
|
" df = pd.DataFrame((d.to_dict() for d in s.scan()))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Show Results"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df.head()"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 4
|
||
|
}
|