HELK/docker/helk-jupyter/notebooks/sigma/av_exploiting.ipynb

140 lines
3.2 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Antivirus Exploitation Framework Detection\n",
"Detects a highly relevant Antivirus alert that reports an exploitation framework"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rule Content\n",
"```\n",
"- title: Antivirus Exploitation Framework Detection\n",
" id: 238527ad-3c2c-4e4f-a1f6-92fd63adb864\n",
" description: Detects a highly relevant Antivirus alert that reports an exploitation\n",
" framework\n",
" date: 2018/09/09\n",
" modified: 2019/01/16\n",
" author: Florian Roth\n",
" references:\n",
" - https://www.nextron-systems.com/2018/09/08/antivirus-event-analysis-cheat-sheet-v1-4/\n",
" tags:\n",
" - attack.execution\n",
" - attack.t1203\n",
" - attack.command_and_control\n",
" - attack.t1219\n",
" logsource:\n",
" product: antivirus\n",
" service: null\n",
" category: null\n",
" detection:\n",
" selection:\n",
" Signature:\n",
" - '*MeteTool*'\n",
" - '*MPreter*'\n",
" - '*Meterpreter*'\n",
" - '*Metasploit*'\n",
" - '*PowerSploit*'\n",
" - '*CobaltSrike*'\n",
" - '*Swrort*'\n",
" - '*Rozena*'\n",
" - '*Backdoor.Cobalt*'\n",
" condition: selection\n",
" fields:\n",
" - FileName\n",
" - User\n",
" falsepositives:\n",
" - Unlikely\n",
" level: critical\n",
"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Querying Elasticsearch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import Libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from elasticsearch import Elasticsearch\n",
"from elasticsearch_dsl import Search\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialize Elasticsearch client"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"es = Elasticsearch(['http://helk-elasticsearch:9200'])\n",
"searchContext = Search(using=es, index='logs-*', doc_type='doc')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run Elasticsearch Query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"s = searchContext.query('query_string', query='signature.keyword:(*MeteTool* OR *MPreter* OR *Meterpreter* OR *Metasploit* OR *PowerSploit* OR *CobaltSrike* OR *Swrort* OR *Rozena* OR *Backdoor.Cobalt*)')\n",
"response = s.execute()\n",
"if response.success():\n",
" df = pd.DataFrame((d.to_dict() for d in s.scan()))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Show Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}