DeTTECT/technique_mapping.py

274 lines
13 KiB
Python

import simplejson
from generic import *
# Imports for pandas and plotly are because of performance reasons in the function that uses these libraries.
def generate_detection_layer(filename_techniques, filename_data_sources, overlay):
"""
Generates layer for detection coverage and optionally an overlayed version with visibility coverage.
:param filename_techniques: the filename of the yaml file containing the techniques administration
:param filename_data_sources: the filename of the yaml file containing the data sources administration
:param overlay: boolean value to specify if an overlay between detection and visibility should be generated
:return:
"""
my_techniques, name, platform = _load_detections(filename_techniques)
if not overlay:
mapped_techniques_detection = _map_and_colorize_techniques_for_detections(my_techniques)
layer_detection = get_layer_template_detections('Detections ' + name, 'description', 'attack', platform)
_write_layer(layer_detection, mapped_techniques_detection, 'detection', name)
else:
my_data_sources = _load_data_sources(filename_data_sources)
mapped_techniques_both = _map_and_colorize_techniques_for_overlayed(my_techniques, my_data_sources)
layer_both = get_layer_template_layered('Visibility and Detection ' + name, 'description', 'attack', platform)
_write_layer(layer_both, mapped_techniques_both, 'visibility_and_detection', name)
def generate_visibility_layer(filename_techniques, filename_data_sources, overlay):
"""
Generates layer for visibility coverage and optionally an overlayed version with detection coverage.
:param filename_techniques: the filename of the yaml file containing the techniques administration
:param filename_data_sources: the filename of the yaml file containing the data sources administration
:param overlay: boolean value to specify if an overlay between detection and visibility should be generated
:return:
"""
my_techniques, name, platform = _load_detections(filename_techniques)
my_data_sources = _load_data_sources(filename_data_sources)
if not overlay:
mapped_techniques_visibility = _map_and_colorize_techniques_for_visibility(my_techniques, my_data_sources)
layer_visibility = get_layer_template_visibility('Visibility ' + name, 'description', 'attack', platform)
_write_layer(layer_visibility, mapped_techniques_visibility, 'visibility', name)
else:
mapped_techniques_both = _map_and_colorize_techniques_for_overlayed(my_techniques, my_data_sources)
layer_both = get_layer_template_layered('Visibility and Detection ' + name, 'description', 'attack', platform)
_write_layer(layer_both, mapped_techniques_both, 'visibility_and_detection', name)
def plot_detection_graph(filename):
"""
Generates a line graph which shows the improvements on detections through the time.
:param filename: the filename of the yaml file containing the techniques administration
:return:
"""
my_techniques, name, platform = _load_detections(filename)
graph_values = []
for t in my_techniques.values():
if 'detection' in t.keys() and t['detection']['date_implemented']:
yyyymm = t['detection']['date_implemented'].strftime('%Y-%m')
graph_values.append({'date': yyyymm, 'count': 1})
import pandas as pd
df = pd.DataFrame(graph_values).groupby('date', as_index=False)[['count']].sum()
df['cumcount'] = df.ix[::1, 'count'].cumsum()[::1]
output_filename = 'output/graph_detection.html'
import plotly
import plotly.graph_objs as go
plotly.offline.plot(
{'data': [go.Scatter(x=df['date'], y=df['cumcount'])],
'layout': go.Layout(title="# of detections for " + name)},
filename=output_filename, auto_open=False
)
print("File written: " + output_filename)
def _load_detections(filename):
"""
Loads the techniques (including detection and visibility properties) from the given yaml file.
:param filename: the filename of the yaml file containing the techniques administration
:return: dictionary with techniques (incl. properties), name and platform
"""
my_techniques = {}
with open(filename, 'r') as yaml_file:
yaml_content = yaml.load(yaml_file, Loader=yaml.FullLoader)
for d in yaml_content['techniques']:
my_techniques[d['technique_id']] = d
name = yaml_content['name']
platform = yaml_content['platform']
return my_techniques, name, platform
def _load_data_sources(filename):
"""
Loads the data sources (including all properties) from the given yaml file.
:param filename: the filename of the yaml file containing the data sources administration
:return: dictionary with data sources (including properties)
"""
my_data_sources = {}
with open(filename, 'r') as yaml_file:
yaml_content = yaml.load(yaml_file, Loader=yaml.FullLoader)
for d in yaml_content['data_sources']:
dq = d['data_quality']
if dq['device_completeness'] > 0 and dq['data_field_completeness'] > 0 and dq['timeliness'] > 0 and dq['consistency'] > 0:
my_data_sources[d['data_source_name']] = d
return my_data_sources
def _write_layer(layer, mapped_techniques, filename_prefix, name):
"""
Writes the json layer file to disk.
:param layer: the prepped layer dictionary
:param mapped_techniques: the techniques section that will be included in the layer
:param filename_prefix: the prefix for the output filename
:param name: the name that will be used in the filename together with the prefix
:return:
"""
layer['techniques'] = mapped_techniques
json_string = simplejson.dumps(layer).replace('}, ', '},\n')
output_filename = 'output/%s_%s.json' % (filename_prefix, normalize_name_to_filename(name))
with open(output_filename, 'w') as f:
f.write(json_string)
print("File written: " + output_filename)
def _map_and_colorize_techniques_for_detections(my_techniques):
"""
Determine the color of the techniques based on the detection score in the given yaml file.
:param my_techniques: the configured techniques
:return: a dictionary with techniques that can be used in the layer's output file
"""
techniques = load_attack_data(DATATYPE_ALL_TECH)
# Color the techniques based on how the coverage defined in the detections definition and generate a list with
# techniques to be used in the layer output file.
mapped_techniques = []
try:
for d, c in my_techniques.items():
s = -1 if 'detection' not in c.keys() else c['detection']['score']
color = COLOR_D_0 if s == 0 else COLOR_D_1 if s == 1 else COLOR_D_2 if s == 2 else COLOR_D_3 \
if s == 3 else COLOR_D_4 if s == 4 else COLOR_D_5 if s == 5 else ''
technique = get_technique(techniques, d)
for tactic in technique['tactic']:
location = ', '.join(c['detection']['location']) if 'detection' in c.keys() else '-'
location = location if location != '' else '-'
x = {}
x['techniqueID'] = d
x['color'] = color
x['comment'] = ''
x['enabled'] = True
x['tactic'] = tactic.lower().replace(' ', '-')
x['metadata'] = [{'name': '-Detection score', 'value': str(s)},
{'name': '-Detection location', 'value': location}]
mapped_techniques.append(x)
except Exception:
print('[!] Possible error in YAML file at: ' + d)
quit()
return mapped_techniques
def _map_and_colorize_techniques_for_visibility(my_techniques, my_data_sources):
"""
Determine the color of the techniques based on the visibility score in the given yaml file.
:param my_techniques: the configured techniques
:param my_data_sources: the configured data sources
:return: a dictionary with techniques that can be used in the layer's output file
"""
techniques = load_attack_data(DATATYPE_ALL_TECH)
technique_ds_mapping = map_techniques_to_data_sources(techniques, my_data_sources)
# Color the techniques based on how the coverage defined in the detections definition and generate a list with
# techniques to be used in the layer output file.
mapped_techniques = []
for d, c in my_techniques.items():
s = 0 if 'visibility' not in c.keys() else c['visibility']['score']
if 'visibility' in c.keys():
comment = str(c['visibility']['comment']) if str(c['visibility']['comment']) != '' else '-'
else:
comment = '-'
my_ds = ', '.join(technique_ds_mapping[d]['my_data_sources']) if d in technique_ds_mapping.keys() and technique_ds_mapping[d]['my_data_sources'] else '-'
color = COLOR_V_1 if s == 1 else COLOR_V_2 if s == 2 else COLOR_V_3 if s == 3 else COLOR_V_4 if s == 4 else ''
technique = get_technique(techniques, d)
for tactic in technique['tactic']:
x = {}
x['techniqueID'] = d
x['color'] = color
x['comment'] = ''
x['enabled'] = True
x['tactic'] = tactic.lower().replace(' ', '-')
x['metadata'] = [{'name': '-Visibility score', 'value': str(s)},
{'name': '-Comment', 'value': comment},
{'name': '-Available data sources', 'value': my_ds},
{'name': '-ATT&CK data sources', 'value': ', '.join(technique['data_sources'])}]
mapped_techniques.append(x)
for t in techniques:
if t['technique_id'] not in my_techniques.keys():
if t['tactic']:
for tactic in t['tactic']:
x = {}
x['techniqueID'] = t['technique_id']
x['comment'] = ''
x['enabled'] = True
x['tactic'] = tactic.lower().replace(' ', '-')
ds = ', '.join(t['data_sources']) if t['data_sources'] else '-'
x['metadata'] = [{'name': '-ATT&CK data sources', 'value': ds}]
mapped_techniques.append(x)
return mapped_techniques
def _map_and_colorize_techniques_for_overlayed(my_techniques, my_data_sources):
"""
Determine the color of the techniques based on both detection and visibility.
:param my_techniques: the configured techniques
:param my_data_sources: the configured data sources
:return: a dictionary with techniques that can be used in the layer's output file
"""
techniques = load_attack_data(DATATYPE_ALL_TECH)
technique_ds_mapping = map_techniques_to_data_sources(techniques, my_data_sources)
# Color the techniques based on how the coverage defined in the detections definition and generate a list with
# techniques to be used in the layer output file.
mapped_techniques = []
for d, c in my_techniques.items():
detection_score = 0 if 'detection' not in c.keys() else c['detection']['score']
visibility_score = 0 if 'visibility' not in c.keys() else c['visibility']['score']
detection = True if detection_score > 0 else False
visibility = True if visibility_score > 0 else False
if detection and visibility:
color = COLOR_OVERLAY_BOTH
elif detection and not visibility:
color = COLOR_OVERLAY_DETECTION
elif not detection and visibility:
color = COLOR_OVERLAY_VISIBILITY
location = ', '.join(c['detection']['location']) if 'detection' in c.keys() else '-'
location = location if location != '' else '-'
if 'visibility' in c.keys():
comment = str(c['visibility']['comment']) if str(c['visibility']['comment']) != '' else '-'
else:
comment = '-'
my_ds = ', '.join(technique_ds_mapping[d]['my_data_sources']) if d in technique_ds_mapping.keys() and technique_ds_mapping[d]['my_data_sources'] else '-'
technique = get_technique(techniques, d)
for tactic in technique['tactic']:
x = {}
x['techniqueID'] = d
x['color'] = color
x['comment'] = ''
x['enabled'] = True
x['tactic'] = tactic.lower().replace(' ', '-')
x['metadata'] = [{'name': '-Visibility score', 'value': str(visibility_score)},
{'name': '-Comment', 'value': comment},
{'name': '-Available data sources', 'value': my_ds},
{'name': '-ATT&CK data sources', 'value': ', '.join(technique['data_sources'])},
{'name': '-Detection score', 'value': str(detection_score)},
{'name': '-Detection location', 'value': location}]
mapped_techniques.append(x)
return mapped_techniques