DeTTECT/data_source_mapping.py

609 lines
29 KiB
Python

from copy import deepcopy
from datetime import datetime
import xlsxwriter
import simplejson
from generic import *
# Imports for pandas and plotly are because of performance reasons in the function that uses these libraries.
def generate_data_sources_layer(filename, output_filename, layer_name, platform=None):
"""
Generates a generic layer for data sources.
:param filename: the filename of the YAML file containing the data sources administration
:param output_filename: the output filename defined by the user
:param layer_name: the name of the Navigator layer
:param platform: one or multiple values from PLATFORMS constant
:return:
"""
my_data_sources, name, platform_yaml, exceptions = _load_data_sources(filename)
platform = set_platform(platform_yaml, platform)
# Do the mapping between my data sources and MITRE data sources:
my_techniques = _map_and_colorize_techniques(my_data_sources, platform, exceptions)
if not layer_name:
layer_name = 'Data sources ' + name
layer = get_layer_template_data_sources(layer_name, 'description', 'attack', platform)
layer['techniques'] = my_techniques
json_string = simplejson.dumps(layer).replace('}, ', '},\n')
if not output_filename:
output_filename = create_output_filename('data_sources', name)
write_file(output_filename, json_string)
def plot_data_sources_graph(filename, output_filename):
"""
Generates a line graph which shows the improvements on numbers of data sources through time.
:param filename: the filename of the YAML file containing the data sources administration
:param output_filename: the output filename defined by the user
:return:
"""
# pylint: disable=unused-variable
my_data_sources, name, platform, exceptions = _load_data_sources(filename)
graph_values = []
for t in my_data_sources.values():
if t['date_connected']:
yyyymm = t['date_connected'].strftime('%Y-%m')
graph_values.append({'date': yyyymm, 'count': 1})
import pandas as pd
df = pd.DataFrame(graph_values).groupby('date', as_index=False)[['count']].sum()
df['cumcount'] = df['count'].cumsum()
if not output_filename:
output_filename = 'graph_data_sources'
elif output_filename.endswith('.html'):
output_filename = output_filename.replace('.html', '')
output_filename = get_non_existing_filename('output/' + output_filename, 'html')
import plotly
import plotly.graph_objs as go
plotly.offline.plot(
{'data': [go.Scatter(x=df['date'], y=df['cumcount'])],
'layout': go.Layout(title="# of data sources for " + name)},
filename=output_filename, auto_open=False
)
print("File written: " + output_filename)
def export_data_source_list_to_excel(filename, output_filename, eql_search=False):
"""
Makes an overview of all MITRE ATT&CK data sources (via techniques) and lists which data sources are present
in the YAML administration including all properties and data quality score.
:param filename: the filename of the YAML file containing the data sources administration
:param output_filename: the output filename defined by the user
:param eql_search: specify if an EQL search was performed which may have resulted in missing ATT&CK data sources
:return:
"""
# pylint: disable=unused-variable
my_data_sources, name, platforms, exceptions = _load_data_sources(filename, filter_empty_scores=False)
if not output_filename:
output_filename = 'data_sources'
elif output_filename.endswith('.xlsx'):
output_filename = output_filename.replace('.xlsx', '')
excel_filename = get_non_existing_filename('output/' + output_filename, 'xlsx')
workbook = xlsxwriter.Workbook(excel_filename)
worksheet = workbook.add_worksheet('Data sources')
# Formatting:
format_bold_left = workbook.add_format({'align': 'left', 'bold': True})
format_title = workbook.add_format({'align': 'left', 'bold': True, 'font_size': '14'})
format_center_valign_top = workbook.add_format({'align': 'center', 'valign': 'top'})
wrap_text = workbook.add_format({'text_wrap': True, 'valign': 'top'})
valign_top = workbook.add_format({'valign': 'top'})
no_score = workbook.add_format({'valign': 'top', 'align': 'center'})
dq_score_1 = workbook.add_format({'valign': 'top', 'align': 'center', 'bg_color': COLOR_DS_25p})
dq_score_2 = workbook.add_format({'valign': 'top', 'align': 'center', 'bg_color': COLOR_DS_50p})
dq_score_3 = workbook.add_format({'valign': 'top', 'align': 'center', 'bg_color': COLOR_DS_75p, 'font_color': '#ffffff'})
dq_score_4 = workbook.add_format({'valign': 'top', 'align': 'center', 'bg_color': COLOR_DS_99p, 'font_color': '#ffffff'})
dq_score_5 = workbook.add_format({'valign': 'top', 'align': 'center', 'bg_color': COLOR_DS_100p, 'font_color': '#ffffff'})
# Title
worksheet.write(0, 0, 'Data sources for ' + name, format_title)
# Header columns
worksheet.write(2, 0, 'Data source name', format_bold_left)
worksheet.write(2, 1, 'Date registered', format_bold_left)
worksheet.write(2, 2, 'Date connected', format_bold_left)
worksheet.write(2, 3, 'Products', format_bold_left)
worksheet.write(2, 4, 'Comment', format_bold_left)
worksheet.write(2, 5, 'Available for data analytics', format_bold_left)
worksheet.write(2, 6, 'DQ: device completeness', format_bold_left)
worksheet.write(2, 7, 'DQ: data field completeness', format_bold_left)
worksheet.write(2, 8, 'DQ: timeliness', format_bold_left)
worksheet.write(2, 9, 'DQ: consistency', format_bold_left)
worksheet.write(2, 10, 'DQ: retention', format_bold_left)
worksheet.write(2, 11, 'DQ: score', format_bold_left)
worksheet.set_column(0, 0, 35)
worksheet.set_column(1, 2, 15)
worksheet.set_column(3, 3, 35)
worksheet.set_column(4, 4, 50)
worksheet.set_column(5, 5, 24)
worksheet.set_column(6, 7, 25)
worksheet.set_column(8, 10, 15)
worksheet.set_column(11, 11, 10)
# Putting the data sources data:
y = 3
# check if an ATT&CK data source is missing from the data source YAML administration file
if eql_search:
ds_miss_text = 'ATT&CK data source is missing from the YAML file or was excluded by an EQL search'
else:
ds_miss_text = 'ATT&CK data source is missing from the YAML file'
# pylint: disable=consider-iterating-dictionary
my_ds_list = [ds.lower() for ds in my_data_sources.keys()]
applicable_data_sources = get_applicable_data_sources_platform(platforms)
for ds in applicable_data_sources:
if ds.lower() not in my_ds_list:
ds_obj = deepcopy(YAML_OBJ_DATA_SOURCE)
ds_obj['data_source_name'] = ds
ds_obj['comment'] = ds_miss_text
my_data_sources[ds] = ds_obj
for d in sorted(my_data_sources.keys()):
ds = my_data_sources[d]
worksheet.write(y, 0, d, valign_top)
date_registered = ds['date_registered'].strftime('%Y-%m-%d') if isinstance(ds['date_registered'], datetime) else ds['date_registered']
date_connected = ds['date_connected'].strftime('%Y-%m-%d') if isinstance(ds['date_connected'], datetime) else ds['date_connected']
worksheet.write(y, 1, str(date_registered).replace('None', ''), valign_top)
worksheet.write(y, 2, str(date_connected).replace('None', ''), valign_top)
worksheet.write(y, 3, ', '.join(ds['products']).replace('None', ''), valign_top)
worksheet.write(y, 4, ds['comment'][:-1] if ds['comment'].endswith('\n') else ds['comment'], wrap_text)
worksheet.write(y, 5, str(ds['available_for_data_analytics']), valign_top)
worksheet.write(y, 6, ds['data_quality']['device_completeness'], format_center_valign_top)
worksheet.write(y, 7, ds['data_quality']['data_field_completeness'], format_center_valign_top)
worksheet.write(y, 8, ds['data_quality']['timeliness'], format_center_valign_top)
worksheet.write(y, 9, ds['data_quality']['consistency'], format_center_valign_top)
worksheet.write(y, 10, ds['data_quality']['retention'], format_center_valign_top)
score = 0
score_count = 0
for k, v in ds['data_quality'].items():
# the below DQ dimensions are given more weight in the calculation of the DQ score.
if k in ['device_completeness', 'data_field_completeness', 'retention']:
score += (v * 2)
score_count += 2
else:
score += v
score_count += 1
if score > 0:
score = score / score_count
worksheet.write(y, 11, score, dq_score_1 if score < 2 else dq_score_2 if score < 3 else dq_score_3 if score < 4 else dq_score_4 if score < 5 else dq_score_5 if score < 6 else no_score) # noqa
y += 1
worksheet.autofilter(2, 0, 2, 11)
worksheet.freeze_panes(3, 0)
try:
workbook.close()
print("File written: " + excel_filename)
except Exception as e:
print('[!] Error while writing Excel file: %s' % str(e))
def _load_data_sources(file, filter_empty_scores=True):
"""
Loads the data sources (including all properties) from the given YAML file.
:param file: the file location of the YAML file containing the data sources administration or a dict
:return: dictionary with data sources, name, platform and exceptions list.
"""
my_data_sources = {}
if isinstance(file, dict):
# file is a dict created due to the use of an EQL query by the user
yaml_content = file
else:
# file is a file location on disk
_yaml = init_yaml()
with open(file, 'r') as yaml_file:
yaml_content = _yaml.load(yaml_file)
for d in yaml_content['data_sources']:
d['comment'] = d.get('comment', '')
dq = d['data_quality']
if not filter_empty_scores:
my_data_sources[d['data_source_name']] = d
elif dq['device_completeness'] > 0 or dq['data_field_completeness'] > 0 or dq['timeliness'] > 0 or dq['consistency'] > 0 or dq['retention'] > 0:
my_data_sources[d['data_source_name']] = d
name = yaml_content['name']
platform = get_platform_from_yaml(yaml_content)
exceptions = []
if 'exceptions' in yaml_content:
exceptions = [t['technique_id'] for t in yaml_content['exceptions'] if t['technique_id'] is not None]
return my_data_sources, name, platform, exceptions
def _count_applicable_data_sources(technique, applicable_data_sources):
"""
get the count of applicable data sources for the provided technique.
This takes into account which data sources are applicable for a platform(s)
:param technique: ATT&CK CTI technique object
:param applicable_data_sources: a list of applicable ATT&CK data sources
:return: a count of the applicable data sources for this technique
"""
applicable_ds_count = 0
for ds in technique['x_mitre_data_sources']:
if ds in applicable_data_sources:
applicable_ds_count += 1
return applicable_ds_count
def _map_and_colorize_techniques(my_ds, platforms, exceptions):
"""
Determine the color of the techniques based on how many data sources are available per technique.
:param my_ds: the configured data sources
:param platforms: the configured platform(s)
:param exceptions: the list of ATT&CK technique exception within the data source YAML file
:return: a dictionary with techniques that can be used in the layer's output file
"""
techniques = load_attack_data(DATA_TYPE_STIX_ALL_TECH)
applicable_data_sources = get_applicable_data_sources_platform(platforms)
technique_colors = {}
# Color the techniques based on how many data sources are available.
for t in techniques:
if 'x_mitre_data_sources' in t:
total_ds_count = _count_applicable_data_sources(t, applicable_data_sources)
ds_count = 0
for ds in t['x_mitre_data_sources']:
if ds in my_ds.keys() and ds in applicable_data_sources:
ds_count += 1
if total_ds_count > 0:
result = (float(ds_count) / float(total_ds_count)) * 100
color = COLOR_DS_25p if result <= 25 else COLOR_DS_50p if result <= 50 else COLOR_DS_75p \
if result <= 75 else COLOR_DS_99p if result <= 99 else COLOR_DS_100p
technique_colors[get_attack_id(t)] = color
my_techniques = map_techniques_to_data_sources(techniques, my_ds)
output_techniques = []
for t, v in my_techniques.items():
if t not in exceptions and t in technique_colors:
d = dict()
d['techniqueID'] = t
d['color'] = technique_colors[t]
d['comment'] = ''
d['enabled'] = True
d['metadata'] = [{'name': 'Available data sources', 'value': ', '.join(v['my_data_sources'])},
{'name': 'ATT&CK data sources', 'value': ', '.join(get_applicable_data_sources_technique(v['data_sources'],
applicable_data_sources))},
{'name': 'Products', 'value': ', '.join(v['products'])}]
d['metadata'] = make_layer_metadata_compliant(d['metadata'])
output_techniques.append(d)
determine_and_set_show_sub_techniques(output_techniques)
return output_techniques
def _indent_comment(comment, indent):
"""
Indent a multiline general, visibility, detection comment by x spaces
:param comment: The comment to indent
:param indent: The number of spaces to use in the indent
:return: indented comment or the original
"""
if '\n' in comment:
new_comment = comment.replace('\n', '\n' + ' ' * indent)
return new_comment
else:
return comment
def _get_technique_yaml_obj(techniques, tech_id):
"""
Get at technique YAML obj from the provided list of techniques YAML objects which as the provided technique ID
:param techniques: list of technique YAML objects
:param tech_id: ATT&CK ID
:return: technique YAML obj
"""
for tech in techniques:
if tech['technique_id'] == tech_id:
return tech
def update_technique_administration_file(file_data_sources, file_tech_admin):
"""
Update the visibility scores in the provided technique administration file
:param file_data_sources: file location of the data source admin. file
:param file_tech_admin: file location of the tech. admin. file
:return:
"""
# first we generate the new visibility scores contained within a temporary tech. admin YAML 'file'
new_visibility_scores = generate_technique_administration_file(file_data_sources, None, write_file=False)
# we get the date to remove the single quotes at the end of the code
today = new_visibility_scores['techniques'][0]['visibility']['score_logbook'][0]['date']
# next we load the current visibility scores from the tech. admin file
cur_visibility_scores, _, platform_tech_admin = load_techniques(file_tech_admin)
# if the platform does not match between the data source and tech. admin file we return
if set(new_visibility_scores['platform']) != set(platform_tech_admin):
print('[!] The MITRE ATT&CK platform key-value pair in the data source administration and technique '
'administration file do not match.\n Visibility update canceled.')
return
# we did not return, so init
_yaml = init_yaml()
with open(file_tech_admin) as fd:
yaml_file_tech_admin = _yaml.load(fd)
# check if we have tech IDs for which we now have visibility, but which were not yet part of the tech. admin file
cur_tech_ids = cur_visibility_scores.keys()
new_tech_ids = list(map(lambda k: k['technique_id'], new_visibility_scores['techniques']))
tech_ids_new = []
for tid in new_tech_ids:
if tid not in cur_tech_ids:
tech_ids_new.append(tid)
# Add the new tech. to the ruamel instance: 'yaml_file_tech_admin'
are_scores_updated = False
tech_new_print = []
if len(tech_ids_new) > 0:
# do we want fill in a comment for all updated visibility scores?
comment = ''
if ask_yes_no('\nDo you want to fill in the visibility comment for the updated scores?'):
comment = input(' >> Visibility comment for in the new \'score\' object: ')
print('')
# add new techniques and set the comment
x = 0
for new_tech in new_visibility_scores['techniques']:
# set the comment for all new visibility scores
# we will also be needing this later in the code to update the scores of already present techniques
new_visibility_scores['techniques'][x]['visibility']['score_logbook'][0]['comment'] = comment
if new_tech['technique_id'] in tech_ids_new:
are_scores_updated = True
yaml_file_tech_admin['techniques'].append(new_tech)
tech_new_print.append(' - ' + new_tech['technique_id'] + '\n')
x += 1
print('The following new technique IDs are added to the technique administration file with a visibility '
'score derived from the nr. of data sources:')
print(''.join(tech_new_print))
else:
print(' - No new techniques, for which we now have visibility, have been added to the techniques administration file.')
# determine how visibility scores have been assigned in the current YAML file (auto, manually or mixed)
# also determine if we have any scores that can be updated
manually_scored = False
auto_scored = False
mix_scores = False
updated_vis_score_cnt = 0
for cur_tech, cur_values in cur_visibility_scores.items():
new_tech = _get_technique_yaml_obj(new_visibility_scores['techniques'], cur_tech)
if new_tech: # new_tech will be None if technique_id is part of the 'exception' list within the
# data source administration file
new_score = new_tech['visibility']['score_logbook'][0]['score']
for cur_obj in cur_values['visibility']:
old_score = get_latest_score(cur_obj)
if get_latest_auto_generated(cur_obj) and old_score != new_score:
auto_scored = True
updated_vis_score_cnt += 1
elif old_score != new_score:
manually_scored = True
updated_vis_score_cnt += 1
if manually_scored and auto_scored:
mix_scores = True
# stop if none of the present visibility scores are eligible for an update
if not mix_scores and not manually_scored and not auto_scored:
print(' - None of the already present techniques has a visibility score that is eligible for an update.')
else:
print('\nA total of ' + str(updated_vis_score_cnt) + ' visibility scores are eligible for an update.\n')
# ask how the score should be updated
answer = 0
if mix_scores:
answer = ask_multiple_choice(V_UPDATE_Q_MIXED, [V_UPDATE_ANSWER_3, V_UPDATE_ANSWER_4,
V_UPDATE_ANSWER_1, V_UPDATE_ANSWER_2, V_UPDATE_ANSWER_CANCEL])
elif manually_scored:
answer = ask_multiple_choice(V_UPDATE_Q_ALL_MANUAL, [V_UPDATE_ANSWER_1, V_UPDATE_ANSWER_2, V_UPDATE_ANSWER_CANCEL])
elif auto_scored:
answer = ask_multiple_choice(V_UPDATE_Q_ALL_AUTO, [V_UPDATE_ANSWER_1, V_UPDATE_ANSWER_2, V_UPDATE_ANSWER_CANCEL])
if answer == V_UPDATE_ANSWER_CANCEL:
return
# identify which visibility scores have changed and set the action to perform on the score
# tech_update {tech_id: ..., {obj_idx: { action: 1|2|3, score_obj: {...} } } }
tech_update = dict()
for new_tech in new_visibility_scores['techniques']:
tech_id = new_tech['technique_id']
new_score_obj = new_tech['visibility']['score_logbook'][0]
new_score = new_score_obj['score']
if tech_id in cur_visibility_scores:
old_visibility_objects = cur_visibility_scores[tech_id]['visibility']
obj_idx = 0
for old_vis_obj in old_visibility_objects:
old_score = get_latest_score(old_vis_obj)
auto_gen = get_latest_auto_generated(old_vis_obj)
# continue if score can be updated
if old_score != new_score:
if tech_id not in tech_update:
tech_update[tech_id] = dict()
if (answer == V_UPDATE_ANSWER_1) or (answer == V_UPDATE_ANSWER_3 and auto_gen):
tech_update[tech_id][obj_idx] = {'action': V_UPDATE_ACTION_AUTO, 'score_obj': new_score_obj}
elif answer == V_UPDATE_ANSWER_2:
tech_update[tech_id][obj_idx] = {'action': V_UPDATE_ACTION_DIFF, 'score_obj': new_score_obj}
elif answer == V_UPDATE_ANSWER_4:
if auto_gen:
tech_update[tech_id][obj_idx] = {'action': V_UPDATE_ACTION_AUTO, 'score_obj': new_score_obj}
else:
tech_update[tech_id][obj_idx] = {'action': V_UPDATE_ACTION_DIFF, 'score_obj': new_score_obj}
obj_idx += 1
# perform the above set actions
score_updates_handled = 0
for old_tech in yaml_file_tech_admin['techniques']:
tech_id = old_tech['technique_id']
tech_name = old_tech['technique_name']
obj_idx = 0
if tech_id in tech_update:
if isinstance(old_tech['visibility'], list):
old_vis_obj = old_tech['visibility']
else:
old_vis_obj = [old_tech['visibility']]
while obj_idx <= len(tech_update[tech_id]):
# continue if an action has been set for this visibility object
if obj_idx in tech_update[tech_id]:
update_action = tech_update[tech_id][obj_idx]['action']
new_score_obj = tech_update[tech_id][obj_idx]['score_obj']
if update_action == V_UPDATE_ACTION_AUTO:
are_scores_updated = True
old_vis_obj[obj_idx]['score_logbook'].insert(0, new_score_obj)
print(' - Updated a score in technique ID: ' + tech_id +
' (applicable to: ' + ', '.join(old_vis_obj[obj_idx]['applicable_to']) + ')')
elif update_action == V_UPDATE_ACTION_DIFF:
print('-' * 80)
tmp_txt = '[updates remaining: ' + str(updated_vis_score_cnt - score_updates_handled) + ']'
print(' ' * (80 - len(tmp_txt)) + tmp_txt)
print('')
print('Visibility object:')
print(' - ATT&CK ID/name ' + tech_id + ' / ' + tech_name)
print(' - Applicable to: ' + ', '.join(old_vis_obj[obj_idx]['applicable_to']))
print(' - Technique comment: ' + _indent_comment(old_vis_obj[obj_idx]['comment'], 23))
print('')
print('OLD score object:')
old_score_date = get_latest_date(old_vis_obj[obj_idx])
old_score_date = old_score_date.strftime('%Y-%m-%d') if old_score_date is not None else ''
print(' - Date: ' + old_score_date)
print(' - Score: ' + str(get_latest_score(old_vis_obj[obj_idx])))
print(' - Visibility comment: ' + _indent_comment(get_latest_comment(old_vis_obj[obj_idx]), 23))
print(' - Auto generated: ' + str(get_latest_score_obj(old_vis_obj[obj_idx]).get('auto_generated', 'False')))
print('NEW score object:')
print(' - Date: ' + str(new_score_obj['date']))
print(' - Score: ' + str(new_score_obj['score']))
print(' - Visibility comment: ' + _indent_comment(new_score_obj['comment'], 23))
print(' - Auto generated: True')
print('')
if ask_yes_no('Update the score?'):
are_scores_updated = True
old_vis_obj[obj_idx]['score_logbook'].insert(0, new_score_obj)
print(' - Updated a score in technique ID: ' + tech_id +
' (applicable to: ' + ', '.join(old_vis_obj[obj_idx]['applicable_to']) + ')')
score_updates_handled += 1
obj_idx += 1
# create backup of the current tech. admin YAML file
if are_scores_updated:
print('')
backup_file(file_tech_admin)
yaml_file_tech_admin = fix_date_and_remove_null(yaml_file_tech_admin, today, input_type='ruamel')
with open(file_tech_admin, 'w') as fd:
fd.writelines(yaml_file_tech_admin)
print('File written: ' + file_tech_admin)
else:
print('No visibility scores have been updated.')
# pylint: disable=redefined-outer-name
def generate_technique_administration_file(filename, output_filename, write_file=True, all_techniques=False):
"""
Generate a technique administration file based on the data source administration YAML file
:param filename: the filename of the YAML file containing the data sources administration
:param output_filename: the output filename defined by the user
:param write_file: by default the file is written to disk
:param all_techniques: include all ATT&CK techniques in the generated YAML file that are applicable to the
platform(s) specified in the data source YAML file
:return:
"""
my_data_sources, name, platform, exceptions = _load_data_sources(filename)
techniques = load_attack_data(DATA_TYPE_STIX_ALL_TECH_ENTERPRISE)
applicable_data_sources = get_applicable_data_sources_platform(platform)
yaml_file = dict()
yaml_file['version'] = FILE_TYPE_TECHNIQUE_ADMINISTRATION_VERSION
yaml_file['file_type'] = FILE_TYPE_TECHNIQUE_ADMINISTRATION
yaml_file['name'] = name
yaml_file['platform'] = platform
yaml_file['techniques'] = []
today = dt.now()
# Score visibility based on the number of available data sources and the exceptions
for t in techniques:
platforms = t.get('x_mitre_platforms', None)
if len(set(platforms).intersection(set(platform))) > 0:
# not every technique has data source listed
if 'x_mitre_data_sources' in t:
total_ds_count = _count_applicable_data_sources(t, applicable_data_sources)
ds_count = 0
for ds in t['x_mitre_data_sources']:
if ds in my_data_sources.keys() and ds in applicable_data_sources:
ds_count += 1
if total_ds_count > 0:
result = (float(ds_count) / float(total_ds_count)) * 100
score = 0 if result == 0 else 1 if result <= 49 else 2 if result <= 74 else 3 if result <= 99 else 4
else:
score = 0
# Do not add technique if score == 0 or part of the exception list
techniques_upper = list(map(lambda x: x.upper(), exceptions))
tech_id = get_attack_id(t)
if (score > 0 or all_techniques) and tech_id not in techniques_upper:
tech = deepcopy(YAML_OBJ_TECHNIQUE)
tech['technique_id'] = tech_id
tech['technique_name'] = t['name']
tech['visibility']['score_logbook'][0]['score'] = score
tech['visibility']['score_logbook'][0]['date'] = today
yaml_file['techniques'].append(tech)
yaml_file['techniques'] = sorted(yaml_file['techniques'], key=lambda k: k['technique_id'])
if write_file:
# remove the single quotes around the date key-value pair
_yaml = init_yaml()
file = StringIO()
# create the file lines by writing it to memory
_yaml.dump(yaml_file, file)
file.seek(0)
file_lines = file.readlines()
# remove the single quotes from the date
yaml_file_lines = fix_date_and_remove_null(file_lines, today, input_type='list')
if not output_filename:
output_filename = 'techniques-administration-' + normalize_name_to_filename(name + '-' + platform_to_name(platform))
elif output_filename.endswith('.yaml'):
output_filename = output_filename.replace('.yaml', '')
output_filename = get_non_existing_filename('output/' + output_filename, 'yaml')
with open(output_filename, 'w') as f:
f.writelines(yaml_file_lines)
print("File written: " + output_filename)
else:
return yaml_file