openwrt/target/linux/ubicom32/files/arch/ubicom32/mach-common/pci.c

1158 lines
28 KiB
C

/*
* arch/ubicom32/mach-common/pci.c
* PCI interface management.
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <asm/devtree.h>
#include <asm/ip5000.h>
#include <asm/ubicom32-common.h>
static int debug_pci = 1 ;
/* #define PCI_USE_INTERNAL_LOCK 1 */
#ifdef PCI_USE_INTERNAL_LOCK
#define PCI_LOCK(lock, irqflag) pci_lock_acquire(irqflag)
#define PCI_UNLOCK(lock, irqflag) pci_lock_release(irqflag)
#elif defined(CONFIG_SMP)
static DEFINE_SPINLOCK(pci_master_lock);
#define PCI_LOCK(lock, irqflag) spin_lock_irqsave(lock, irqflag)
#define PCI_UNLOCK(lock, irqflag) spin_unlock_irqrestore(lock, irqflag)
#else
#define PCI_LOCK(lock, irqflag) local_irq_save(irqflag)
#define PCI_UNLOCK(lock, irqflag) local_irq_restore(irqflag)
#endif
#define PCI_DEV0_IDSEL CONFIG_PCI_DEV0_IDSEL
#define PCI_DEV1_IDSEL CONFIG_PCI_DEV1_IDSEL
/*
* PCI commands
*/
#define PCI_CMD_INT_ACK 0x00 /* not supported */
#define PCI_CMD_SPECIAL 0x01 /* not supported */
#define PCI_CMD_IO_READ 0x02
#define PCI_CMD_IO_WRITE 0x03
#define PCI_CMD_MEM_READ 0x06
#define PCI_CMD_MEM_WRITE 0x07
#define PCI_CMD_CFG_READ 0x0a
#define PCI_CMD_CFG_WRITE 0x0b
#define PCI_CMD_MEM_READ_MULT 0x0c /* not supported */
#define PCI_CMD_DUAL_ADDR 0x0d /* not supported */
#define PCI_CMD_MEM_READ_LINE 0x0e /* not supported */
#define PCI_CMD_MEM_WRITE_INVAL 0x0f /* not supported */
/*
* Status codes, returned by pci_read_u32() and pci_write_u32()
*/
#define PCI_RESP_IN_PROGRESS 0xff /* request still in queue */
#define PCI_RESP_OK 0
/*
* The following codes indicate that the request has completed
*/
#define PCI_RESP_NO_DEVSEL 1 /* timeout before target asserted
* DEVSEL! */
#define PCI_RESP_LOST_DEVSEL 2 /* had DEVSEL, but went away before
* transfer completed! */
#define PCI_RESP_BAD_TRDY 3 /* target asserted TRDY without
* DEVSEL! */
#define PCI_RESP_NO_TRDY 4 /* timeout before target asserted
* TRDY! */
#define PCI_RESP_BAD_STOP 5 /* target asserted STOP and TRDY
* without DEVSEL! */
#define PCI_RESP_TARGET_ABORT 6
#define PCI_RESP_TARGET_RETRY 7
#define PCI_RESP_TARGET_DISCONNECT 8
#define PCI_RESP_MISMATCH 9 /* data read back doesn't match data
* written - debug only, the core PCI
* routines never return this */
#define PCI_RESP_DET_SERR 10
#define PCI_RESP_DET_PERR 11
#define PCI_RESP_MALFORMED_REQ 12 /* Could be due to misaligned
* requests or invalid address */
#define PCI_RESP_NO_RESOURCE 13 /* Could be memory or other resourse
* like queue space */
#define PCI_RESP_ERROR 14 /* All emcompassing error */
/* registers in PCI config space */
#define PCI_DEVICE_VENDOR_ID_REG 0x00
#define PCI_STATUS_COMMAND_REG 0x04
#define PCI_CLASS_REVISION_REG 0x08
#define PCI_BHLC_REG 0x0c /* BIST, Header type, Latency
* timer, Cache line size */
#define PCI_BASE_ADDR_REG 0x10
#define PCI_BASE_REG_COUNT 6
#define CARDBUS_CIS_PTR_REG 0x28
#define PCI_SUB_SYSTEM_ID_REG 0x2c
#define PCI_EXP_ROM_ADDR_REG 0x30
#define PCI_CAP_PTR_REG 0x34
#define PCI_LGPL_REG 0x3C /* max Latency, min Gnt, interrupt
* Pin, interrupt Line */
struct pci_master_request {
volatile u32_t pci_address; /* must be 4-byte aligned */
volatile u32_t data; /* must be 4-byte aligned */
volatile u8_t cmd;
volatile u8_t byte_valid;
volatile u8_t status;
};
struct pci_devnode {
struct devtree_node dn;
u32_t pci_idsel_0;
u32_t pci_idsel_1;
u32_t pci_cpu_address;
struct pci_master_request volatile *volatile req;
};
static struct pci_master_request req; /* globally used for faster master write
* (discarding result when possible) */
static struct pci_devnode *pci_node;
#if !defined(CONFIG_DEBUG_PCIMEASURE)
#define PCI_DECLARE_MEASUREMENT
#define PCI_MEASUREMENT_START()
#define PCI_MEASUREMENT_END(idx)
#else
#define PCI_DECLARE_MEASUREMENT \
int __diff; \
unsigned int __tstart;
#define PCI_MEASUREMENT_START() \
__tstart = UBICOM32_IO_TIMER->sysval;
#define PCI_MEASUREMENT_END(idx) \
__diff = (int)UBICOM32_IO_TIMER->sysval - (int)__tstart; \
pci_measurement_update((idx), __diff);
#define PCI_WEIGHT 32
struct pci_measurement {
volatile unsigned int min;
volatile unsigned int avg;
volatile unsigned int max;
};
enum pci_measurement_list {
PCI_MEASUREMENT_READ32,
PCI_MEASUREMENT_WRITE32,
PCI_MEASUREMENT_READ16,
PCI_MEASUREMENT_WRITE16,
PCI_MEASUREMENT_READ8,
PCI_MEASUREMENT_WRITE8,
PCI_MEASUREMENT_LAST,
};
static const char *pci_measurement_name_list[PCI_MEASUREMENT_LAST] = {
"READ32",
"WRITE32",
"READ16",
"WRITE16",
"READ8",
"WRITE8"
};
static struct pci_measurement pci_measurements[PCI_MEASUREMENT_LAST];
/*
* pci_measurement_update()
* Update an entry in the measurement array for this idx.
*/
static void pci_measurement_update(int idx, int sample)
{
struct pci_measurement *pm = &pci_measurements[idx];
if ((pm->min == 0) || (pm->min > sample)) {
pm->min = sample;
}
if (pm->max < sample) {
pm->max = sample;
}
pm->avg = ((pm->avg * (PCI_WEIGHT - 1)) + sample) / PCI_WEIGHT;
}
#endif
#if defined(PCI_USE_INTERNAL_LOCK)
/*
* pci_lock_release()
* Release the PCI lock.
*/
static void pci_lock_release(unsigned long irqflag)
{
UBICOM32_UNLOCK(PCI_LOCK_BIT);
}
/*
* pci_lock_acquire()
* Acquire the PCI lock, spin if not available.
*/
static void pci_lock_acquire(unsigned long irqflag)
{
UBICOM32_LOCK(PCI_LOCK_BIT);
}
#endif
/*
* pci_set_hrt_interrupt()
*/
static inline void pci_set_hrt_interrupt(struct pci_devnode *pci_node)
{
ubicom32_set_interrupt(pci_node->dn.sendirq);
}
/*
* pci_read_u32()
* Synchronously read 32 bits from PCI space.
*/
u8 pci_read_u32(u8 pci_cmd, u32 address, u32 *data)
{
u8 status;
unsigned long irqflag;
/*
* Fill in the request.
*/
volatile struct pci_master_request lreq;
PCI_DECLARE_MEASUREMENT;
lreq.pci_address = address;
lreq.cmd = pci_cmd;
lreq.byte_valid = 0xf; /* enable all bytes */
/*
* Wait for any previous request to complete and then make this request.
*/
PCI_MEASUREMENT_START();
PCI_LOCK(&pci_master_lock, irqflag);
while (unlikely(pci_node->req == &req))
;
pci_node->req = &lreq;
pci_set_hrt_interrupt(pci_node);
PCI_UNLOCK(&pci_master_lock, irqflag);
/*
* Wait for the result to show up.
*/
while (unlikely(pci_node->req == &lreq))
;
status = lreq.status;
if (likely(status == PCI_RESP_OK))
*data = le32_to_cpu(lreq.data);
else
*data = 0;
PCI_MEASUREMENT_END(PCI_MEASUREMENT_READ32);
return status;
}
/*
* pci_write_u32()
* Asyncrhnously or synchronously write 32 bits to PCI master space.
*/
u8 pci_write_u32(u8 pci_cmd, u32 address, u32 data)
{
unsigned long irqflag;
PCI_DECLARE_MEASUREMENT;
/*
* Wait for any previous write or pending read to complete.
*
* We use a global data block because once we write the request
* we do not wait for it to complete before exiting.
*/
PCI_MEASUREMENT_START();
PCI_LOCK(&pci_master_lock, irqflag);
while (unlikely(pci_node->req == &req))
;
req.pci_address = address;
req.data = cpu_to_le32(data);
req.cmd = pci_cmd;
req.byte_valid = 0xf; /* enable all bytes */
pci_node->req = &req;
pci_set_hrt_interrupt(pci_node);
PCI_UNLOCK(&pci_master_lock, irqflag);
PCI_MEASUREMENT_END(PCI_MEASUREMENT_WRITE32);
return PCI_RESP_OK;
}
/*
* pci_read_u16()
* Synchronously read 16 bits from PCI space.
*/
u8 pci_read_u16(u8 pci_cmd, u32 address, u16 *data)
{
u8 status;
unsigned long irqflag;
/*
* Fill in the request.
*/
volatile struct pci_master_request lreq;
PCI_DECLARE_MEASUREMENT;
lreq.pci_address = address & ~2;
lreq.cmd = pci_cmd;
lreq.byte_valid = (address & 2) ? 0xc : 0x3;
/*
* Wait for any previous request to complete and then make this request.
*/
PCI_MEASUREMENT_START();
PCI_LOCK(&pci_master_lock, irqflag);
while (unlikely(pci_node->req == &req))
;
pci_node->req = &lreq;
pci_set_hrt_interrupt(pci_node);
PCI_UNLOCK(&pci_master_lock, irqflag);
/*
* Wait for the result to show up.
*/
while (unlikely(pci_node->req == &lreq))
;
status = lreq.status;
if (likely(status == PCI_RESP_OK)) {
lreq.data = le32_to_cpu(lreq.data);
*data = (u16)((address & 2) ? (lreq.data >> 16) : lreq.data);
} else
*data = 0;
PCI_MEASUREMENT_END(PCI_MEASUREMENT_READ16);
return status;
}
/*
* pci_write_u16()
* Asyncrhnously or synchronously write 16 bits to PCI master space.
*/
u8 pci_write_u16(u8 pci_cmd, u32 address, u16 data)
{
unsigned long irqflag;
PCI_DECLARE_MEASUREMENT;
/*
* Wait for any previous write or pending read to complete.
*
* We use a global data block because once we write the request
* we do not wait for it to complete before exiting.
*/
PCI_MEASUREMENT_START();
PCI_LOCK(&pci_master_lock, irqflag);
while (unlikely(pci_node->req == &req))
;
req.pci_address = address & ~2;
req.data = (u32)data;
req.data = cpu_to_le32((address & 2) ? (req.data << 16) : req.data);
req.cmd = pci_cmd;
req.byte_valid = (address & 2) ? 0xc : 0x3;
pci_node->req = &req;
pci_set_hrt_interrupt(pci_node);
PCI_UNLOCK(&pci_master_lock, irqflag);
PCI_MEASUREMENT_END(PCI_MEASUREMENT_WRITE16);
return PCI_RESP_OK;
}
/*
* pci_read_u8()
* Synchronously read 8 bits from PCI space.
*/
u8 pci_read_u8(u8 pci_cmd, u32 address, u8 *data)
{
u8 status;
unsigned long irqflag;
/*
* Fill in the request.
*/
volatile struct pci_master_request lreq;
PCI_DECLARE_MEASUREMENT;
lreq.pci_address = address & ~3;
lreq.cmd = pci_cmd;
lreq.byte_valid = 1 << (address & 0x3);
/*
* Wait for any previous request to complete and then make this request.
*/
PCI_MEASUREMENT_START();
PCI_LOCK(&pci_master_lock, irqflag);
while (unlikely(pci_node->req == &req))
;
pci_node->req = &lreq;
pci_set_hrt_interrupt(pci_node);
PCI_UNLOCK(&pci_master_lock, irqflag);
/*
* Wait for the result to show up.
*/
while (unlikely(pci_node->req == &lreq))
;
status = lreq.status;
if (likely(status == PCI_RESP_OK)) {
*data = (u8)(lreq.data >> (24 - ((address & 0x3) << 3)));
} else
*data = 0;
PCI_MEASUREMENT_END(PCI_MEASUREMENT_READ8);
return status;
}
/*
* pci_write_u8()
* Asyncrhnously or synchronously write 8 bits to PCI master space.
*/
u8 pci_write_u8(u8 pci_cmd, u32 address, u8 data)
{
unsigned long irqflag;
PCI_DECLARE_MEASUREMENT;
/*
* Wait for any previous write or pending read to complete.
*
* We use a global data block because once we write the request
* we do not wait for it to complete before exiting.
*/
PCI_MEASUREMENT_START();
PCI_LOCK(&pci_master_lock, irqflag);
while (unlikely(pci_node->req == &req))
;
req.pci_address = address & ~3;
req.data = ((u32)data << (24 - ((address & 0x3) << 3)));
req.cmd = pci_cmd;
req.byte_valid = 1 << (address & 0x3);
pci_node->req = &req;
pci_set_hrt_interrupt(pci_node);
PCI_UNLOCK(&pci_master_lock, irqflag);
PCI_MEASUREMENT_END(PCI_MEASUREMENT_WRITE8);
return PCI_RESP_OK;
}
unsigned int ubi32_pci_read_u32(const volatile void __iomem *addr)
{
unsigned int data;
pci_read_u32(PCI_CMD_MEM_READ, (u32)addr, &data);
return data;
}
EXPORT_SYMBOL(ubi32_pci_read_u32);
unsigned short ubi32_pci_read_u16(const volatile void __iomem *addr)
{
unsigned short data;
pci_read_u16(PCI_CMD_MEM_READ, (u32)addr, &data);
return data;
}
EXPORT_SYMBOL(ubi32_pci_read_u16);
unsigned char ubi32_pci_read_u8(const volatile void __iomem *addr)
{
unsigned char data;
pci_read_u8(PCI_CMD_MEM_READ, (u32)addr, &data);
return data;
}
EXPORT_SYMBOL(ubi32_pci_read_u8);
void ubi32_pci_write_u32(unsigned int val, const volatile void __iomem *addr)
{
pci_write_u32(PCI_CMD_MEM_WRITE, (u32)addr, val);
}
EXPORT_SYMBOL(ubi32_pci_write_u32);
void ubi32_pci_write_u16(unsigned short val, const volatile void __iomem *addr)
{
pci_write_u16(PCI_CMD_MEM_WRITE, (u32)addr, val);
}
EXPORT_SYMBOL(ubi32_pci_write_u16);
void ubi32_pci_write_u8(unsigned char val, const void volatile __iomem *addr)
{
pci_write_u8(PCI_CMD_MEM_WRITE, (u32)addr, val);
}
EXPORT_SYMBOL(ubi32_pci_write_u8);
#if defined(CONFIG_DEBUG_PCIMEASURE)
static unsigned int pci_cycles_to_nano(unsigned int cycles, unsigned int frequency)
{
unsigned int nano = ((cycles * 1000) / (frequency / 1000000));
return nano;
}
/*
* pci_measurement_show()
* Print out the min, avg, max values for each PCI transaction type.
*
* By request, the max value is reset after each dump.
*/
static int pci_measurement_show(struct seq_file *p, void *v)
{
unsigned int min, avg, max;
unsigned int freq = processor_frequency();
int trans = *((loff_t *) v);
if (trans == 0) {
seq_puts(p, "min\tavg\tmax\t(nano-seconds)\n");
}
if (trans >= PCI_MEASUREMENT_LAST) {
return 0;
}
min = pci_cycles_to_nano(pci_measurements[trans].min, freq);
avg = pci_cycles_to_nano(pci_measurements[trans].avg, freq);
max = pci_cycles_to_nano(pci_measurements[trans].max, freq);
pci_measurements[trans].max = 0;
seq_printf(p, "%u\t%u\t%u\t%s\n", min, avg, max, pci_measurement_name_list[trans]);
return 0;
}
static void *pci_measurement_start(struct seq_file *f, loff_t *pos)
{
return (*pos < PCI_MEASUREMENT_LAST) ? pos : NULL;
}
static void *pci_measurement_next(struct seq_file *f, void *v, loff_t *pos)
{
(*pos)++;
if (*pos >= PCI_MEASUREMENT_LAST)
return NULL;
return pos;
}
static void pci_measurement_stop(struct seq_file *f, void *v)
{
/* Nothing to do */
}
static const struct seq_operations pci_measurement_seq_ops = {
.start = pci_measurement_start,
.next = pci_measurement_next,
.stop = pci_measurement_stop,
.show = pci_measurement_show,
};
static int pci_measurement_open(struct inode *inode, struct file *filp)
{
return seq_open(filp, &pci_measurement_seq_ops);
}
static const struct file_operations pci_measurement_fops = {
.open = pci_measurement_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static int __init pci_measurement_init(void)
{
proc_create("pci_measurements", 0, NULL, &pci_measurement_fops);
return 0;
}
module_init(pci_measurement_init);
#endif
static int ubi32_pci_read_config(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *value)
{
u8 cmd;
u32 addr;
u8 data8;
u16 data16;
u8 slot = PCI_SLOT(devfn);
u8 fn = PCI_FUNC(devfn);
if (slot > 1) {
return PCIBIOS_DEVICE_NOT_FOUND;
} else if (slot == 0) {
addr = PCI_DEV0_IDSEL + where;
} else {
addr = PCI_DEV1_IDSEL + where;
}
addr += (fn << 8);
cmd = PCI_CMD_CFG_READ;
if (size == 1) {
pci_read_u8(cmd, addr, &data8);
*value = (u32)data8;
} else if (size == 2) {
pci_read_u16(cmd, addr, &data16);
*value = (u32)data16;
} else {
pci_read_u32(cmd, addr, value);
}
return PCIBIOS_SUCCESSFUL;
}
static int ubi32_pci_write_config(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 value)
{
u8 cmd;
u32 addr;
u8 slot = PCI_SLOT(devfn);
u8 fn = PCI_FUNC(devfn);
if (slot > 1) {
return PCIBIOS_DEVICE_NOT_FOUND;
} else if (slot == 0) {
addr = PCI_DEV0_IDSEL + where;
} else {
addr = PCI_DEV1_IDSEL + where;
}
addr += (fn << 8);
cmd = PCI_CMD_CFG_WRITE;
if (size == 1) {
pci_write_u8(cmd, addr, (u8)value);
} else if (size == 2) {
pci_write_u16(cmd, addr, (u16)value);
} else {
pci_write_u32(cmd, addr, value);
}
return PCIBIOS_SUCCESSFUL;
}
int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
{
return -EIO;
}
EXPORT_SYMBOL(pci_set_dma_max_seg_size);
int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
{
return -EIO;
}
EXPORT_SYMBOL(pci_set_dma_seg_boundary);
void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
{
resource_size_t start = pci_resource_start(dev, bar);
resource_size_t len = pci_resource_len(dev, bar);
unsigned long flags = pci_resource_flags(dev, bar);
if (!len || !start) {
return NULL;
}
if (maxlen && len > maxlen) {
len = maxlen;
}
if (flags & IORESOURCE_IO) {
return ioport_map(start, len);
}
if (flags & IORESOURCE_MEM) {
if (flags & IORESOURCE_CACHEABLE) {
return ioremap(start, len);
}
return ioremap_nocache(start, len);
}
return NULL;
}
EXPORT_SYMBOL(pci_iomap);
void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
{
if ((unsigned long)addr >= VMALLOC_START &&
(unsigned long)addr < VMALLOC_END) {
iounmap(addr);
}
}
EXPORT_SYMBOL(pci_iounmap);
/*
* From arch/arm/kernel/bios32.c
*
* PCI bios-type initialisation for PCI machines
*
* Bits taken from various places.
*/
static void __init pcibios_init_hw(struct hw_pci *hw)
{
struct pci_sys_data *sys = NULL;
int ret;
int nr, busnr;
for (nr = busnr = 0; nr < hw->nr_controllers; nr++) {
sys = kzalloc(sizeof(struct pci_sys_data), GFP_KERNEL);
if (!sys)
panic("PCI: unable to allocate sys data!");
sys->hw = hw;
sys->busnr = busnr;
sys->map_irq = hw->map_irq;
sys->resource[0] = &ioport_resource;
sys->resource[1] = &iomem_resource;
ret = hw->setup(nr, sys);
if (ret > 0) {
sys->bus = hw->scan(nr, sys);
if (!sys->bus)
panic("PCI: unable to scan bus!");
busnr = sys->bus->subordinate + 1;
list_add(&sys->node, &hw->buses);
} else {
kfree(sys);
if (ret < 0)
break;
}
}
}
/*
* Swizzle the device pin each time we cross a bridge.
* This might update pin and returns the slot number.
*/
static u8 __devinit pcibios_swizzle(struct pci_dev *dev, u8 *pin)
{
struct pci_sys_data *sys = dev->sysdata;
int slot = 0, oldpin = *pin;
if (sys->swizzle)
slot = sys->swizzle(dev, pin);
if (debug_pci)
printk("PCI: %s swizzling pin %d => pin %d slot %d\n",
pci_name(dev), oldpin, *pin, slot);
return slot;
}
/*
* Map a slot/pin to an IRQ.
*/
static int pcibios_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
struct pci_sys_data *sys = dev->sysdata;
int irq = -1;
if (sys->map_irq)
irq = sys->map_irq(dev, slot, pin);
if (debug_pci)
printk("PCI: %s mapping slot %d pin %d => irq %d\n",
pci_name(dev), slot, pin, irq);
return irq;
}
void __init pci_common_init(struct hw_pci *hw)
{
struct pci_sys_data *sys;
INIT_LIST_HEAD(&hw->buses);
if (hw->preinit)
hw->preinit();
pcibios_init_hw(hw);
if (hw->postinit)
hw->postinit();
pci_fixup_irqs(pcibios_swizzle, pcibios_map_irq);
list_for_each_entry(sys, &hw->buses, node) {
struct pci_bus *bus = sys->bus;
/*
* Size the bridge windows.
*/
pci_bus_size_bridges(bus);
/*
* Assign resources.
*/
pci_bus_assign_resources(bus);
/*
* Tell drivers about devices found.
*/
pci_bus_add_devices(bus);
}
}
char * __init pcibios_setup(char *str)
{
if (!strcmp(str, "debug")) {
debug_pci = 1;
return NULL;
}
return str;
}
/*
* From arch/i386/kernel/pci-i386.c:
*
* We need to avoid collisions with `mirrored' VGA ports
* and other strange ISA hardware, so we always want the
* addresses to be allocated in the 0x000-0x0ff region
* modulo 0x400.
*
* Why? Because some silly external IO cards only decode
* the low 10 bits of the IO address. The 0x00-0xff region
* is reserved for motherboard devices that decode all 16
* bits, so it's ok to allocate at, say, 0x2800-0x28ff,
* but we want to try to avoid allocating at 0x2900-0x2bff
* which might be mirrored at 0x0100-0x03ff..
*/
void pcibios_align_resource(void *data, struct resource *res,
resource_size_t size, resource_size_t align)
{
resource_size_t start = res->start;
if (res->flags & IORESOURCE_IO && start & 0x300)
start = (start + 0x3ff) & ~0x3ff;
res->start = (start + align - 1) & ~(align - 1);
}
void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
{
if (debug_pci)
printk("PCI: Assigning IRQ %02d to %s\n", irq, pci_name(dev));
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
}
/*
* If the bus contains any of these devices, then we must not turn on
* parity checking of any kind. Currently this is CyberPro 20x0 only.
*/
static inline int pdev_bad_for_parity(struct pci_dev *dev)
{
return (dev->vendor == PCI_VENDOR_ID_INTERG &&
(dev->device == PCI_DEVICE_ID_INTERG_2000 ||
dev->device == PCI_DEVICE_ID_INTERG_2010)) ||
(dev->vendor == PCI_VENDOR_ID_ITE &&
dev->device == PCI_DEVICE_ID_ITE_8152);
}
/*
* Adjust the device resources from bus-centric to Linux-centric.
*/
static void __devinit
pdev_fixup_device_resources(struct pci_sys_data *root, struct pci_dev *dev)
{
resource_size_t offset;
int i;
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
if (dev->resource[i].start == 0)
continue;
if (dev->resource[i].flags & IORESOURCE_MEM)
offset = root->mem_offset;
else
offset = root->io_offset;
dev->resource[i].start += offset;
dev->resource[i].end += offset;
}
}
static void __devinit
pbus_assign_bus_resources(struct pci_bus *bus, struct pci_sys_data *root)
{
struct pci_dev *dev = bus->self;
int i;
if (!dev) {
/*
* Assign root bus resources.
*/
for (i = 0; i < 3; i++)
bus->resource[i] = root->resource[i];
}
}
/*
* pcibios_fixup_bus - Called after each bus is probed,
* but before its children are examined.
*/
void pcibios_fixup_bus(struct pci_bus *bus)
{
struct pci_sys_data *root = bus->sysdata;
struct pci_dev *dev;
u16 features = PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
PCI_COMMAND_FAST_BACK;
pbus_assign_bus_resources(bus, root);
/*
* Walk the devices on this bus, working out what we can
* and can't support.
*/
list_for_each_entry(dev, &bus->devices, bus_list) {
u16 status;
pdev_fixup_device_resources(root, dev);
pci_read_config_word(dev, PCI_STATUS, &status);
/*
* If any device on this bus does not support fast back
* to back transfers, then the bus as a whole is not able
* to support them. Having fast back to back transfers
* on saves us one PCI cycle per transaction.
*/
if (!(status & PCI_STATUS_FAST_BACK))
features &= ~PCI_COMMAND_FAST_BACK;
if (pdev_bad_for_parity(dev))
features &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
switch (dev->class >> 8) {
case PCI_CLASS_BRIDGE_PCI:
pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &status);
status |= PCI_BRIDGE_CTL_PARITY |
PCI_BRIDGE_CTL_MASTER_ABORT;
status &= ~(PCI_BRIDGE_CTL_BUS_RESET |
PCI_BRIDGE_CTL_FAST_BACK);
pci_write_config_word(dev, PCI_BRIDGE_CONTROL, status);
break;
case PCI_CLASS_BRIDGE_CARDBUS:
pci_read_config_word(dev, PCI_CB_BRIDGE_CONTROL,
&status);
status |= PCI_CB_BRIDGE_CTL_PARITY |
PCI_CB_BRIDGE_CTL_MASTER_ABORT;
pci_write_config_word(dev, PCI_CB_BRIDGE_CONTROL,
status);
break;
}
}
/*
* Now walk the devices again, this time setting them up.
*/
list_for_each_entry(dev, &bus->devices, bus_list) {
u16 cmd;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
cmd |= features;
pci_write_config_word(dev, PCI_COMMAND, cmd);
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE,
L1_CACHE_BYTES >> 2);
}
/*
* Propagate the flags to the PCI bridge.
*/
if (bus->self && bus->self->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
if (features & PCI_COMMAND_FAST_BACK)
bus->bridge_ctl |= PCI_BRIDGE_CTL_FAST_BACK;
if (features & PCI_COMMAND_PARITY)
bus->bridge_ctl |= PCI_BRIDGE_CTL_PARITY;
}
/*
* Report what we did for this bus
*/
printk(KERN_INFO "PCI: bus%d: Fast back to back transfers %sabled\n",
bus->number, (features & PCI_COMMAND_FAST_BACK) ? "en" : "dis");
}
/*
* Convert from Linux-centric to bus-centric addresses for bridge devices.
*/
void
pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region,
struct resource *res)
{
struct pci_sys_data *root = dev->sysdata;
unsigned long offset = 0;
if (res->flags & IORESOURCE_IO)
offset = root->io_offset;
if (res->flags & IORESOURCE_MEM)
offset = root->mem_offset;
region->start = res->start - offset;
region->end = res->end - offset;
}
void __devinit
pcibios_bus_to_resource(struct pci_dev *dev, struct resource *res,
struct pci_bus_region *region)
{
struct pci_sys_data *root = dev->sysdata;
unsigned long offset = 0;
if (res->flags & IORESOURCE_IO)
offset = root->io_offset;
if (res->flags & IORESOURCE_MEM)
offset = root->mem_offset;
res->start = region->start + offset;
res->end = region->end + offset;
}
#ifdef CONFIG_HOTPLUG
EXPORT_SYMBOL(pcibios_fixup_bus);
EXPORT_SYMBOL(pcibios_resource_to_bus);
EXPORT_SYMBOL(pcibios_bus_to_resource);
#endif
/**
* pcibios_enable_device - Enable I/O and memory.
* @dev: PCI device to be enabled
*/
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
u16 cmd, old_cmd;
int idx;
struct resource *r;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
old_cmd = cmd;
for (idx = 0; idx < 6; idx++) {
/* Only set up the requested stuff */
if (!(mask & (1 << idx)))
continue;
r = dev->resource + idx;
if (!r->start && r->end) {
printk(KERN_ERR "PCI: Device %s not available because"
" of resource collisions\n", pci_name(dev));
return -EINVAL;
}
if (r->flags & IORESOURCE_IO)
cmd |= PCI_COMMAND_IO;
if (r->flags & IORESOURCE_MEM)
cmd |= PCI_COMMAND_MEMORY;
}
/*
* Bridges (eg, cardbus bridges) need to be fully enabled
*/
if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE)
cmd |= PCI_COMMAND_IO | PCI_COMMAND_MEMORY;
if (cmd != old_cmd) {
printk("PCI: enabling device %s (%04x -> %04x)\n",
pci_name(dev), old_cmd, cmd);
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
return 0;
}
struct pci_ops ubi32_pci_ops = {
.read = ubi32_pci_read_config,
.write = ubi32_pci_write_config,
};
static struct pci_bus *ubi32_pci_scan_bus(int nr, struct pci_sys_data *sys)
{
return pci_scan_bus(sys->busnr, &ubi32_pci_ops, sys);
}
#define UBI32_PCI_MEM_BASE PCI_DEV_REG_BASE
#define UBI32_PCI_MEM_LEN 0x80000000
#define UBI32_PCI_IO_BASE 0x0
#define UBI32_PCI_IO_END 0x0
static struct resource ubi32_pci_mem = {
.name = "PCI memory space",
.start = UBI32_PCI_MEM_BASE,
.end = UBI32_PCI_MEM_BASE + UBI32_PCI_MEM_LEN - 1,
.flags = IORESOURCE_MEM,
};
static struct resource ubi32_pci_io = {
.name = "PCI IO space",
.start = UBI32_PCI_IO_BASE,
.end = UBI32_PCI_IO_END,
.flags = IORESOURCE_IO,
};
static int __init ubi32_pci_setup(int nr, struct pci_sys_data *sys)
{
if (nr > 0)
return 0;
request_resource(&iomem_resource, &ubi32_pci_mem);
request_resource(&ioport_resource, &ubi32_pci_io);
sys->resource[0] = &ubi32_pci_io;
sys->resource[1] = &ubi32_pci_mem;
sys->resource[2] = NULL;
return 1;
}
static void __init ubi32_pci_preinit(void)
{
}
static int __init ubi32_pci_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
return pci_node->dn.recvirq;
}
struct hw_pci ubi32_pci __initdata = {
.nr_controllers = 1,
.preinit = ubi32_pci_preinit,
.setup = ubi32_pci_setup,
.scan = ubi32_pci_scan_bus,
.map_irq = ubi32_pci_map_irq,
};
static int __init ubi32_pci_init(void)
{
pci_node = (struct pci_devnode *)devtree_find_node("pci");
if (pci_node == NULL) {
printk(KERN_WARNING "PCI init failed\n");
return -ENOSYS;
}
pci_common_init(&ubi32_pci);
return 0;
}
subsys_initcall(ubi32_pci_init);
/*
* workaround for dual PCI card interrupt
*/
#define PCI_COMMON_INT_BIT (1 << 19)
void ubi32_pci_int_wr(void)
{
volatile unsigned int pci_int_line;
pci_int_line = UBICOM32_IO_PORT(RB)->gpio_in;
if (!(pci_int_line & PCI_COMMON_INT_BIT))
{
ubicom32_set_interrupt(pci_node->dn.recvirq);
}
}
EXPORT_SYMBOL(ubi32_pci_int_wr);