This repository is a mirror of https://git.openwrt.org/openwrt/openwrt.git It is for reference only and is not active for check-ins or for reporting issues. We will continue to accept Pull Requests here. They will be merged via staging trees then into openwrt.git. All issues should be reported at: https://bugs.openwrt.org
 
 
 
 
 
 
Go to file
Piotr Dymacz 9bcf98ed85 ath79: add support for ALFA Network R36A
ALFA Network R36A is a successor of the previous model, the R36 (Ralink
RT3050F based). New version is based on Qualcomm/Atheros QCA9531 v2, FCC
ID: 2AB879531.

Support for this device was first introduced in af8f0629df (ar71xx
target). When updating from previous release (and/or ar71xx target),
user should only adjust the WAN LED trigger type (netdev in ar71xx,
switch port in ath79).

Specifications:

- Qualcomm/Atheros QCA9531 v2
- 650/400/200 MHz (CPU/DDR/AHB)
- 128 MB (R36AH/-U2) or 64 MB (R36A) of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 2x 10/100 Mbps Ethernet
- Passive PoE input support (12~36 V) in RJ45 near DC jack
- 2T2R 2.4 GHz Wi-Fi with Qorvo RFFM8228P FEM
- 2x IPEX/U.FL connectors on PCB
- 1x USB 2.0 Type-A
- 1x USB 2.0 mini Type-B in R36AH-U2 version
- USB power is controlled by GPIO
- 6/7x LED (5/6 of them are driven by GPIO)
- 2x button (reset, wifi/wps)
- external h/w watchdog (EM6324QYSP5B, enabled by default)
- DC jack with lock, for main power input (12 V)
- UART (4-pin, 2.54 mm pitch) header on PCB

Optional/additional features in R36A series (R36A was the first model):
- for R36AH:    USB 2.0 hub*
- for R36AH-U2: USB 2.0 hub*, 1x USB 2.0 mini Type-B, one more LED

*) there are at least three different USB 2.0 hub in R36AH/-U2 variants:
- Terminus-Tech FE 1.1
- Genesys Logic GL852G
- Genesys Logic GL850G (used in latests revision)

Flash instruction:

You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:

1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
   device, wait for first blink of all LEDs (indicates network setup),
   then keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
.github build: Update README & github help 2018-07-08 09:41:53 +01:00
config config: add KERNEL_LSM symbol 2020-09-03 14:14:33 +01:00
include target.mk: enable iwinfo by default with any wpad variant 2020-09-28 01:28:37 +02:00
package uboot-envtools: ath79: add support for Samsung WAM250 2020-09-28 01:28:37 +02:00
scripts build: define PWM_SUPPORT arch feature flag 2020-09-25 19:32:33 +02:00
target ath79: add support for ALFA Network R36A 2020-09-28 01:28:37 +02:00
toolchain toolchain: Update GCC 10 to version 10.2.0 2020-08-31 22:11:23 +02:00
tools tools/libressl: update to 3.2.1 2020-09-18 20:08:51 +02:00
.gitattributes add .gitattributes to prevent the git autocrlf option from messing with CRLF/LF in files 2012-05-08 13:30:49 +00:00
.gitignore build: improve ccache support 2020-07-11 15:19:53 +02:00
BSDmakefile add missing copyright header 2007-02-26 01:05:09 +00:00
Config.in merge: base: update base-files and basic config 2017-12-08 19:41:18 +01:00
LICENSE LICENSE: use updated GNU copy 2020-08-02 15:54:43 +02:00
Makefile build: improve ccache support 2020-07-11 15:19:53 +02:00
README.md README: port to 21st century 2020-08-02 15:44:40 +02:00
feeds.conf.default feeds: add freifunk feed 2020-06-24 14:58:17 +02:00
logo.svg README: port to 21st century 2020-08-02 15:44:40 +02:00
rules.mk build: fix path to libfakeroot on macOS 2020-09-01 17:01:56 +02:00

README.md

OpenWrt logo

OpenWrt Project is a Linux operating system targeting embedded devices. Instead of trying to create a single, static firmware, OpenWrt provides a fully writable filesystem with package management. This frees you from the application selection and configuration provided by the vendor and allows you to customize the device through the use of packages to suit any application. For developers, OpenWrt is the framework to build an application without having to build a complete firmware around it; for users this means the ability for full customization, to use the device in ways never envisioned.

Sunshine!

Development

To build your own firmware you need a GNU/Linux, BSD or MacOSX system (case sensitive filesystem required). Cygwin is unsupported because of the lack of a case sensitive file system.

Requirements

You need the following tools to compile OpenWrt, the package names vary between distributions. A complete list with distribution specific packages is found in the Build System Setup documentation.

gcc binutils bzip2 flex python3 perl make find grep diff unzip gawk getopt
subversion libz-dev libc-dev

Quickstart

  1. Run ./scripts/feeds update -a to obtain all the latest package definitions defined in feeds.conf / feeds.conf.default

  2. Run ./scripts/feeds install -a to install symlinks for all obtained packages into package/feeds/

  3. Run make menuconfig to select your preferred configuration for the toolchain, target system & firmware packages.

  4. Run make to build your firmware. This will download all sources, build the cross-compile toolchain and then cross-compile the GNU/Linux kernel & all chosen applications for your target system.

The main repository uses multiple sub-repositories to manage packages of different categories. All packages are installed via the OpenWrt package manager called opkg. If you're looking to develop the web interface or port packages to OpenWrt, please find the fitting repository below.

Support Information

For a list of supported devices see the OpenWrt Hardware Database

Documentation

Support Community

  • Forum: For usage, projects, discussions and hardware advise.
  • Support Chat: Channel #openwrt on freenode.net.

Developer Community

License

OpenWrt is licensed under GPL-2.0