openwrt/target/linux/ar71xx/files/drivers/mtd/nand/rb4xx_nand.c

509 lines
12 KiB
C

/*
* NAND flash driver for the MikroTik RouterBoard 4xx series
*
* Copyright (C) 2008 Gabor Juhos <juhosg@openwrt.org>
* Copyright (C) 2008 Imre Kaloz <kaloz@openwrt.org>
*
* This file was based on the driver for Linux 2.6.22 published by
* MikroTik for their RouterBoard 4xx series devices.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <asm/mach-ar71xx/ar71xx.h>
#define DRV_NAME "rb4xx-nand"
#define DRV_VERSION "0.1.10"
#define DRV_DESC "NAND flash driver for RouterBoard 4xx series"
#define USE_FAST_READ 1
#define USE_FAST_WRITE 1
#undef RB4XX_NAND_DEBUG
#ifdef RB4XX_NAND_DEBUG
#define DBG(fmt, arg...) printk(KERN_DEBUG DRV_NAME ": " fmt, ## arg)
#else
#define DBG(fmt, arg...) do {} while (0)
#endif
#define RB4XX_NAND_GPIO_RDY 5
#define RB4XX_FLASH_HZ 33333334
#define RB4XX_NAND_HZ 33333334
#define SPI_CTRL_FASTEST 0x40
#define SPI_CTRL_SAFE 0x43 /* 25 MHz for AHB 200 MHz */
#define SBIT_IOC_BASE SPI_IOC_CS1
#define SBIT_IOC_DO_SHIFT 0
#define SBIT_IOC_DO (1u << SBIT_IOC_DO_SHIFT)
#define SBIT_IOC_DO2_SHIFT 18
#define SBIT_IOC_DO2 (1u << SBIT_IOC_DO2_SHIFT)
#define CPLD_CMD_WRITE_MULT 0x08 /* send cmd, n x send data, read data */
#define CPLD_CMD_WRITE_CFG 0x09 /* send cmd, n x send cfg */
#define CPLD_CMD_READ_MULT 0x0a /* send cmd, send idle, n x read data */
#define CPLD_CMD_READ_FAST 0x0b /* send cmd, 4 x idle, n x read data */
#define CFG_BIT_nCE 0x80
#define CFG_BIT_CLE 0x40
#define CFG_BIT_ALE 0x20
#define CFG_BIT_FAN 0x10
#define CFG_BIT_nLED4 0x08
#define CFG_BIT_nLED3 0x04
#define CFG_BIT_nLED2 0x02
#define CFG_BIT_nLED1 0x01
#define CFG_BIT_nLEDS \
(CFG_BIT_nLED1 | CFG_BIT_nLED2 | CFG_BIT_nLED3 | CFG_BIT_nLED4)
struct rb4xx_nand_info {
struct nand_chip chip;
struct mtd_info mtd;
};
/*
* We need to use the OLD Yaffs-1 OOB layout, otherwise the RB bootloader
* will not be able to find the kernel that we load.
*/
static struct nand_ecclayout rb4xx_nand_ecclayout = {
.eccbytes = 6,
.eccpos = { 8, 9, 10, 13, 14, 15 },
.oobavail = 9,
.oobfree = { { 0, 4 }, { 6, 2 }, { 11, 2 }, { 4, 1 } }
};
static struct mtd_partition rb4xx_nand_partitions[] = {
{
.name = "booter",
.offset = 0,
.size = (256 * 1024),
.mask_flags = MTD_WRITEABLE,
},
{
.name = "kernel",
.offset = (256 * 1024),
.size = (4 * 1024 * 1024) - (256 * 1024),
},
{
.name = "rootfs",
.offset = MTDPART_OFS_NXTBLK,
.size = MTDPART_SIZ_FULL,
},
};
#if USE_FAST_READ
#define SPI_NDATA_BASE 0x00800000
static unsigned spi_ctrl_fread = SPI_CTRL_SAFE;
static unsigned spi_ctrl_flash = SPI_CTRL_SAFE;
extern unsigned mips_hpt_frequency;
#endif
static inline unsigned rb4xx_spi_rreg(unsigned r)
{
return __raw_readl((void * __iomem)(KSEG1ADDR(AR71XX_SPI_BASE) + r));
}
static inline void rb4xx_spi_wreg(unsigned r, unsigned v)
{
__raw_writel(v, (void * __iomem)(KSEG1ADDR(AR71XX_SPI_BASE) + r));
}
static inline void do_spi_clk(int bit)
{
unsigned bval = SBIT_IOC_BASE | (bit & 1);
rb4xx_spi_wreg(SPI_REG_IOC, bval);
rb4xx_spi_wreg(SPI_REG_IOC, bval | SPI_IOC_CLK);
}
static void do_spi_byte(uint8_t byte)
{
do_spi_clk(byte >> 7);
do_spi_clk(byte >> 6);
do_spi_clk(byte >> 5);
do_spi_clk(byte >> 4);
do_spi_clk(byte >> 3);
do_spi_clk(byte >> 2);
do_spi_clk(byte >> 1);
do_spi_clk(byte);
DBG("spi_byte sent 0x%02x got 0x%x\n",
byte, rb4xx_spi_rreg(SPI_REG_RDS));
}
#if USE_FAST_WRITE
static inline void do_spi_clk_fast(int bit1, int bit2)
{
unsigned bval = (SBIT_IOC_BASE |
((bit1 << SBIT_IOC_DO_SHIFT) & SBIT_IOC_DO) |
((bit2 << SBIT_IOC_DO2_SHIFT) & SBIT_IOC_DO2));
rb4xx_spi_wreg(SPI_REG_IOC, bval);
rb4xx_spi_wreg(SPI_REG_IOC, bval | SPI_IOC_CLK);
}
static inline void do_spi_byte_fast(uint8_t byte)
{
do_spi_clk_fast(byte >> 7, byte >> 6);
do_spi_clk_fast(byte >> 5, byte >> 4);
do_spi_clk_fast(byte >> 3, byte >> 2);
do_spi_clk_fast(byte >> 1, byte >> 0);
DBG("spi_byte_fast sent 0x%02x got 0x%x\n",
byte, rb4xx_spi_rreg(SPI_REG_RDS));
}
#else
static inline void do_spi_byte_fast(uint8_t byte)
{
do_spi_byte(byte);
}
#endif /* USE_FAST_WRITE */
static int do_spi_cmd(unsigned cmd, unsigned sendCnt, const uint8_t *sendData,
unsigned recvCnt, uint8_t *recvData,
const uint8_t *verifyData, int fastWrite)
{
unsigned i;
DBG("SPI cmd 0x%x send %u recv %u\n", cmd, sendCnt, recvCnt);
rb4xx_spi_wreg(SPI_REG_FS, SPI_FS_GPIO);
rb4xx_spi_wreg(SPI_REG_CTRL, SPI_CTRL_FASTEST);
do_spi_byte(cmd);
#if 0
if (cmd == CPLD_CMD_READ_FAST) {
do_spi_byte(0x80);
do_spi_byte(0);
do_spi_byte(0);
}
#endif
for (i = 0; i < sendCnt; ++i) {
if (fastWrite)
do_spi_byte_fast(sendData[i]);
else
do_spi_byte(sendData[i]);
}
for (i = 0; i < recvCnt; ++i) {
if (fastWrite)
do_spi_byte_fast(0);
else
do_spi_byte(0);
if (recvData) {
recvData[i] = rb4xx_spi_rreg(SPI_REG_RDS) & 0xff;
} else if (verifyData) {
if (verifyData[i] != (rb4xx_spi_rreg(SPI_REG_RDS)
& 0xff))
break;
}
}
rb4xx_spi_wreg(SPI_REG_IOC, SBIT_IOC_BASE | SPI_IOC_CS0);
rb4xx_spi_wreg(SPI_REG_CTRL, spi_ctrl_flash);
rb4xx_spi_wreg(SPI_REG_FS, 0);
return i == recvCnt;
}
static int got_write = 1;
static void rb4xx_nand_write_data(const uint8_t *byte, unsigned cnt)
{
do_spi_cmd(CPLD_CMD_WRITE_MULT, cnt, byte, 1, NULL, NULL, 1);
got_write = 1;
}
static void rb4xx_nand_write_byte(uint8_t byte)
{
rb4xx_nand_write_data(&byte, 1);
}
#if USE_FAST_READ
static uint8_t *rb4xx_nand_read_getaddr(unsigned cnt)
{
static unsigned nboffset = 0x100000;
unsigned addr;
if (got_write) {
nboffset = (nboffset + 31) & ~31;
if (nboffset >= 0x100000) /* 1MB */
nboffset = 0;
got_write = 0;
rb4xx_spi_wreg(SPI_REG_FS, SPI_FS_GPIO);
rb4xx_spi_wreg(SPI_REG_CTRL, spi_ctrl_fread);
rb4xx_spi_wreg(SPI_REG_FS, 0);
}
addr = KSEG1ADDR(AR71XX_SPI_BASE + SPI_NDATA_BASE) + nboffset;
DBG("rb4xx_nand_read_getaddr 0x%x cnt 0x%x\n", addr, cnt);
nboffset += cnt;
return (uint8_t *)addr;
}
static void rb4xx_nand_read_data(uint8_t *buf, unsigned cnt)
{
unsigned size32 = cnt & ~31;
unsigned remain = cnt & 31;
if (size32) {
uint8_t *addr = rb4xx_nand_read_getaddr(size32);
memcpy(buf, (void *)addr, size32);
}
if (remain) {
do_spi_cmd(CPLD_CMD_READ_MULT, 1, buf, remain,
buf + size32, NULL, 0);
}
}
static int rb4xx_nand_verify_data(const uint8_t *buf, unsigned cnt)
{
unsigned size32 = cnt & ~31;
unsigned remain = cnt & 31;
if (size32) {
uint8_t *addr = rb4xx_nand_read_getaddr(size32);
if (memcmp(buf, (void *)addr, size32) != 0)
return 0;
}
if (remain) {
return do_spi_cmd(CPLD_CMD_READ_MULT, 1, buf, remain,
NULL, buf + size32, 0);
}
return 1;
}
#else /* USE_FAST_READ */
static void rb4xx_nand_read_data(uint8_t *buf, unsigned cnt)
{
do_spi_cmd(CPLD_CMD_READ_MULT, 1, buf, cnt, buf, NULL, 0);
}
static int rb4xx_nand_verify_data(const uint8_t *buf, unsigned cnt)
{
return do_spi_cmd(CPLD_CMD_READ_MULT, 1, buf, cnt, NULL, buf, 0);
}
#endif /* USE_FAST_READ */
static void rb4xx_nand_write_cfg(uint8_t byte)
{
do_spi_cmd(CPLD_CMD_WRITE_CFG, 1, &byte, 0, NULL, NULL, 0);
got_write = 1;
}
static int rb4xx_nand_dev_ready(struct mtd_info *mtd)
{
return gpio_get_value(RB4XX_NAND_GPIO_RDY);
}
static void rb4xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
if (ctrl & NAND_CTRL_CHANGE) {
uint8_t cfg = CFG_BIT_nLEDS;
cfg |= (ctrl & NAND_CLE) ? CFG_BIT_CLE : 0;
cfg |= (ctrl & NAND_ALE) ? CFG_BIT_ALE : 0;
cfg |= (ctrl & NAND_NCE) ? 0 : CFG_BIT_nCE;
rb4xx_nand_write_cfg(cfg);
}
if (cmd != NAND_CMD_NONE)
rb4xx_nand_write_byte(cmd);
}
static uint8_t rb4xx_nand_read_byte(struct mtd_info *mtd)
{
uint8_t byte = 0;
rb4xx_nand_read_data(&byte, 1);
return byte;
}
static void rb4xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
int len)
{
rb4xx_nand_write_data(buf, len);
}
static void rb4xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf,
int len)
{
rb4xx_nand_read_data(buf, len);
}
static int rb4xx_nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf,
int len)
{
if (!rb4xx_nand_verify_data(buf, len))
return -EFAULT;
return 0;
}
static unsigned get_spi_ctrl(unsigned hz_max, const char *name)
{
unsigned div;
div = (ar71xx_ahb_freq - 1) / (2 * hz_max);
/*
* CPU has a bug at (div == 0) - first bit read is random
*/
if (div == 0)
++div;
if (name) {
unsigned ahb_khz = (ar71xx_ahb_freq + 500) / 1000;
unsigned div_real = 2 * (div + 1);
printk(KERN_INFO "%s SPI clock %u kHz (AHB %u kHz / %u)\n",
name,
ahb_khz / div_real,
ahb_khz, div_real);
}
return SPI_CTRL_FASTEST + div;
}
static int __init rb4xx_nand_probe(struct platform_device *pdev)
{
struct rb4xx_nand_info *info;
int ret;
printk(KERN_INFO DRV_DESC " version " DRV_VERSION "\n");
ret = gpio_request(RB4XX_NAND_GPIO_RDY, "NAND RDY");
if (ret) {
printk(KERN_ERR "rb4xx-nand: gpio request failed\n");
return ret;
}
ret = gpio_direction_input(RB4XX_NAND_GPIO_RDY);
if (ret) {
printk(KERN_ERR "rb4xx-nand: unable to set input mode "
"on gpio%d\n", RB4XX_NAND_GPIO_RDY);
goto err_free_gpio;
}
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
printk(KERN_ERR "rb4xx-nand: no memory for private data\n");
ret = -ENOMEM;
goto err_free_gpio;
}
#if USE_FAST_READ
spi_ctrl_fread = get_spi_ctrl(RB4XX_NAND_HZ, "NAND");
#endif
spi_ctrl_flash = get_spi_ctrl(RB4XX_FLASH_HZ, "FLASH");
rb4xx_nand_write_cfg(CFG_BIT_nLEDS | CFG_BIT_nCE);
info->chip.priv = &info;
info->mtd.priv = &info->chip;
info->mtd.owner = THIS_MODULE;
info->chip.cmd_ctrl = rb4xx_nand_cmd_ctrl;
info->chip.dev_ready = rb4xx_nand_dev_ready;
info->chip.read_byte = rb4xx_nand_read_byte;
info->chip.write_buf = rb4xx_nand_write_buf;
info->chip.read_buf = rb4xx_nand_read_buf;
info->chip.verify_buf = rb4xx_nand_verify_buf;
info->chip.chip_delay = 25;
info->chip.ecc.mode = NAND_ECC_SOFT;
info->chip.options |= NAND_NO_AUTOINCR;
platform_set_drvdata(pdev, info);
ret = nand_scan_ident(&info->mtd, 1);
if (ret) {
ret = -ENXIO;
goto err_free_info;
}
if (info->mtd.writesize == 512)
info->chip.ecc.layout = &rb4xx_nand_ecclayout;
ret = nand_scan_tail(&info->mtd);
if (ret) {
return -ENXIO;
goto err_set_drvdata;
}
#ifdef CONFIG_MTD_PARTITIONS
ret = add_mtd_partitions(&info->mtd, rb4xx_nand_partitions,
ARRAY_SIZE(rb4xx_nand_partitions));
#else
ret = add_mtd_device(&info->mtd);
#endif
if (ret)
goto err_release_nand;
return 0;
err_release_nand:
nand_release(&info->mtd);
err_set_drvdata:
platform_set_drvdata(pdev, NULL);
err_free_info:
kfree(info);
err_free_gpio:
gpio_free(RB4XX_NAND_GPIO_RDY);
return ret;
}
static int __devexit rb4xx_nand_remove(struct platform_device *pdev)
{
struct rb4xx_nand_info *info = platform_get_drvdata(pdev);
nand_release(&info->mtd);
platform_set_drvdata(pdev, NULL);
kfree(info);
return 0;
}
static struct platform_driver rb4xx_nand_driver = {
.probe = rb4xx_nand_probe,
.remove = __devexit_p(rb4xx_nand_remove),
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init rb4xx_nand_init(void)
{
return platform_driver_register(&rb4xx_nand_driver);
}
static void __exit rb4xx_nand_exit(void)
{
platform_driver_unregister(&rb4xx_nand_driver);
}
module_init(rb4xx_nand_init);
module_exit(rb4xx_nand_exit);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_AUTHOR("Imre Kaloz <kaloz@openwrt.org>");
MODULE_LICENSE("GPL v2");