mirror of https://github.com/hak5/openwrt.git
6449 lines
165 KiB
Diff
6449 lines
165 KiB
Diff
This patch adds support for bfs v230, modified for diff size reduction
|
|
|
|
--- a/Documentation/sysctl/kernel.txt
|
|
+++ b/Documentation/sysctl/kernel.txt
|
|
@@ -27,6 +27,7 @@ show up in /proc/sys/kernel:
|
|
- domainname
|
|
- hostname
|
|
- hotplug
|
|
+- iso_cpu
|
|
- java-appletviewer [ binfmt_java, obsolete ]
|
|
- java-interpreter [ binfmt_java, obsolete ]
|
|
- kstack_depth_to_print [ X86 only ]
|
|
@@ -49,6 +50,7 @@ show up in /proc/sys/kernel:
|
|
- randomize_va_space
|
|
- real-root-dev ==> Documentation/initrd.txt
|
|
- reboot-cmd [ SPARC only ]
|
|
+- rr_interval
|
|
- rtsig-max
|
|
- rtsig-nr
|
|
- sem
|
|
@@ -171,6 +173,16 @@ Default value is "/sbin/hotplug".
|
|
|
|
==============================================================
|
|
|
|
+iso_cpu: (BFS only)
|
|
+
|
|
+This sets the percentage cpu that the unprivileged SCHED_ISO tasks can
|
|
+run effectively at realtime priority, averaged over a rolling five
|
|
+seconds over the -whole- system, meaning all cpus.
|
|
+
|
|
+Set to 70 (percent) by default.
|
|
+
|
|
+==============================================================
|
|
+
|
|
l2cr: (PPC only)
|
|
|
|
This flag controls the L2 cache of G3 processor boards. If
|
|
@@ -333,6 +345,19 @@ rebooting. ???
|
|
|
|
==============================================================
|
|
|
|
+rr_interval: (BFS only)
|
|
+
|
|
+This is the smallest duration that any cpu process scheduling unit
|
|
+will run for. Increasing this value can increase throughput of cpu
|
|
+bound tasks substantially but at the expense of increased latencies
|
|
+overall. This value is in milliseconds and the default value chosen
|
|
+depends on the number of cpus available at scheduler initialisation
|
|
+with a minimum of 6.
|
|
+
|
|
+Valid values are from 1-5000.
|
|
+
|
|
+==============================================================
|
|
+
|
|
rtsig-max & rtsig-nr:
|
|
|
|
The file rtsig-max can be used to tune the maximum number
|
|
--- a/include/linux/init_task.h
|
|
+++ b/include/linux/init_task.h
|
|
@@ -116,9 +116,10 @@ extern struct cred init_cred;
|
|
.usage = ATOMIC_INIT(2), \
|
|
.flags = PF_KTHREAD, \
|
|
.lock_depth = -1, \
|
|
- .prio = MAX_PRIO-20, \
|
|
+ .prio = NORMAL_PRIO, \
|
|
.static_prio = MAX_PRIO-20, \
|
|
- .normal_prio = MAX_PRIO-20, \
|
|
+ .normal_prio = NORMAL_PRIO, \
|
|
+ .deadline = 0, \
|
|
.policy = SCHED_NORMAL, \
|
|
.cpus_allowed = CPU_MASK_ALL, \
|
|
.mm = NULL, \
|
|
--- a/include/linux/sched.h
|
|
+++ b/include/linux/sched.h
|
|
@@ -36,9 +36,12 @@
|
|
#define SCHED_FIFO 1
|
|
#define SCHED_RR 2
|
|
#define SCHED_BATCH 3
|
|
-/* SCHED_ISO: reserved but not implemented yet */
|
|
+#define SCHED_ISO 4
|
|
#define SCHED_IDLE 5
|
|
|
|
+#define SCHED_MAX (SCHED_IDLE)
|
|
+#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX)
|
|
+
|
|
#ifdef __KERNEL__
|
|
|
|
struct sched_param {
|
|
@@ -1090,10 +1093,13 @@ struct sched_entity {
|
|
struct load_weight load; /* for load-balancing */
|
|
struct rb_node run_node;
|
|
struct list_head group_node;
|
|
+#ifdef CONFIG_SCHED_CFS
|
|
unsigned int on_rq;
|
|
|
|
u64 exec_start;
|
|
+#endif
|
|
u64 sum_exec_runtime;
|
|
+#ifdef CONFIG_SCHED_CFS
|
|
u64 vruntime;
|
|
u64 prev_sum_exec_runtime;
|
|
|
|
@@ -1145,6 +1151,7 @@ struct sched_entity {
|
|
/* rq "owned" by this entity/group: */
|
|
struct cfs_rq *my_q;
|
|
#endif
|
|
+#endif
|
|
};
|
|
|
|
struct sched_rt_entity {
|
|
@@ -1172,17 +1179,19 @@ struct task_struct {
|
|
|
|
int lock_depth; /* BKL lock depth */
|
|
|
|
-#ifdef CONFIG_SMP
|
|
-#ifdef __ARCH_WANT_UNLOCKED_CTXSW
|
|
int oncpu;
|
|
-#endif
|
|
-#endif
|
|
-
|
|
int prio, static_prio, normal_prio;
|
|
unsigned int rt_priority;
|
|
const struct sched_class *sched_class;
|
|
struct sched_entity se;
|
|
struct sched_rt_entity rt;
|
|
+ unsigned long deadline;
|
|
+#ifdef CONFIG_SCHED_BFS
|
|
+ int load_weight; /* for niceness load balancing purposes */
|
|
+ int first_time_slice;
|
|
+ unsigned long long timestamp, last_ran;
|
|
+ unsigned long utime_pc, stime_pc;
|
|
+#endif
|
|
|
|
#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
/* list of struct preempt_notifier: */
|
|
@@ -1205,6 +1214,9 @@ struct task_struct {
|
|
|
|
unsigned int policy;
|
|
cpumask_t cpus_allowed;
|
|
+#ifdef CONFIG_HOTPLUG_CPU
|
|
+ cpumask_t unplugged_mask;
|
|
+#endif
|
|
|
|
#ifdef CONFIG_PREEMPT_RCU
|
|
int rcu_read_lock_nesting;
|
|
@@ -1497,11 +1509,19 @@ struct task_struct {
|
|
* priority to a value higher than any user task. Note:
|
|
* MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
|
|
*/
|
|
-
|
|
+#define PRIO_RANGE (40)
|
|
#define MAX_USER_RT_PRIO 100
|
|
#define MAX_RT_PRIO MAX_USER_RT_PRIO
|
|
-
|
|
+#ifdef CONFIG_SCHED_BFS
|
|
+#define MAX_PRIO (MAX_RT_PRIO + PRIO_RANGE)
|
|
+#define ISO_PRIO (MAX_RT_PRIO)
|
|
+#define NORMAL_PRIO (MAX_RT_PRIO + 1)
|
|
+#define IDLE_PRIO (MAX_RT_PRIO + 2)
|
|
+#define PRIO_LIMIT ((IDLE_PRIO) + 1)
|
|
+#else
|
|
#define MAX_PRIO (MAX_RT_PRIO + 40)
|
|
+#define NORMAL_PRIO (MAX_RT_PRIO - 20)
|
|
+#endif
|
|
#define DEFAULT_PRIO (MAX_RT_PRIO + 20)
|
|
|
|
static inline int rt_prio(int prio)
|
|
@@ -1785,7 +1805,7 @@ task_sched_runtime(struct task_struct *t
|
|
extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
|
|
|
|
/* sched_exec is called by processes performing an exec */
|
|
-#ifdef CONFIG_SMP
|
|
+#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_CFS)
|
|
extern void sched_exec(void);
|
|
#else
|
|
#define sched_exec() {}
|
|
--- a/init/Kconfig
|
|
+++ b/init/Kconfig
|
|
@@ -451,9 +451,22 @@ config LOG_BUF_SHIFT
|
|
config HAVE_UNSTABLE_SCHED_CLOCK
|
|
bool
|
|
|
|
+choice
|
|
+ prompt "Scheduler"
|
|
+ default SCHED_CFS
|
|
+
|
|
+ config SCHED_CFS
|
|
+ bool "CFS"
|
|
+
|
|
+ config SCHED_BFS
|
|
+ bool "BFS"
|
|
+
|
|
+endchoice
|
|
+
|
|
config GROUP_SCHED
|
|
bool "Group CPU scheduler"
|
|
depends on EXPERIMENTAL
|
|
+ depends on SCHED_CFS
|
|
default n
|
|
help
|
|
This feature lets CPU scheduler recognize task groups and control CPU
|
|
@@ -504,6 +517,7 @@ endchoice
|
|
|
|
menuconfig CGROUPS
|
|
boolean "Control Group support"
|
|
+ depends on SCHED_CFS
|
|
help
|
|
This option adds support for grouping sets of processes together, for
|
|
use with process control subsystems such as Cpusets, CFS, memory
|
|
--- a/kernel/Makefile
|
|
+++ b/kernel/Makefile
|
|
@@ -2,7 +2,7 @@
|
|
# Makefile for the linux kernel.
|
|
#
|
|
|
|
-obj-y = sched.o fork.o exec_domain.o panic.o printk.o \
|
|
+obj-y = $(if $(CONFIG_SCHED_CFS),sched.o,sched_bfs.o) fork.o exec_domain.o panic.o printk.o \
|
|
cpu.o exit.o itimer.o time.o softirq.o resource.o \
|
|
sysctl.o capability.o ptrace.o timer.o user.o \
|
|
signal.o sys.o kmod.o workqueue.o pid.o \
|
|
@@ -108,6 +108,7 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER
|
|
# I turn this off for IA-64 only. Andreas Schwab says it's also needed on m68k
|
|
# to get a correct value for the wait-channel (WCHAN in ps). --davidm
|
|
CFLAGS_sched.o := $(PROFILING) -fno-omit-frame-pointer
|
|
+CFLAGS_sched_bfs.o := $(PROFILING) -fno-omit-frame-pointer
|
|
endif
|
|
|
|
$(obj)/configs.o: $(obj)/config_data.h
|
|
--- a/kernel/kthread.c
|
|
+++ b/kernel/kthread.c
|
|
@@ -16,7 +16,11 @@
|
|
#include <linux/mutex.h>
|
|
#include <trace/events/sched.h>
|
|
|
|
+#ifdef CONFIG_SCHED_BFS
|
|
+#define KTHREAD_NICE_LEVEL (0)
|
|
+#else
|
|
#define KTHREAD_NICE_LEVEL (-5)
|
|
+#endif
|
|
|
|
static DEFINE_SPINLOCK(kthread_create_lock);
|
|
static LIST_HEAD(kthread_create_list);
|
|
--- /dev/null
|
|
+++ b/kernel/sched_bfs.c
|
|
@@ -0,0 +1,6105 @@
|
|
+/*
|
|
+ * kernel/sched_bfs.c, was sched.c
|
|
+ *
|
|
+ * Kernel scheduler and related syscalls
|
|
+ *
|
|
+ * Copyright (C) 1991-2002 Linus Torvalds
|
|
+ *
|
|
+ * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
|
|
+ * make semaphores SMP safe
|
|
+ * 1998-11-19 Implemented schedule_timeout() and related stuff
|
|
+ * by Andrea Arcangeli
|
|
+ * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
|
|
+ * hybrid priority-list and round-robin design with
|
|
+ * an array-switch method of distributing timeslices
|
|
+ * and per-CPU runqueues. Cleanups and useful suggestions
|
|
+ * by Davide Libenzi, preemptible kernel bits by Robert Love.
|
|
+ * 2003-09-03 Interactivity tuning by Con Kolivas.
|
|
+ * 2004-04-02 Scheduler domains code by Nick Piggin
|
|
+ * 2007-04-15 Work begun on replacing all interactivity tuning with a
|
|
+ * fair scheduling design by Con Kolivas.
|
|
+ * 2007-05-05 Load balancing (smp-nice) and other improvements
|
|
+ * by Peter Williams
|
|
+ * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
|
|
+ * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
|
|
+ * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
|
|
+ * Thomas Gleixner, Mike Kravetz
|
|
+ * now Brainfuck deadline scheduling policy by Con Kolivas deletes
|
|
+ * a whole lot of those previous things.
|
|
+ */
|
|
+
|
|
+#include <linux/mm.h>
|
|
+#include <linux/module.h>
|
|
+#include <linux/nmi.h>
|
|
+#include <linux/init.h>
|
|
+#include <asm/uaccess.h>
|
|
+#include <linux/highmem.h>
|
|
+#include <linux/smp_lock.h>
|
|
+#include <asm/mmu_context.h>
|
|
+#include <linux/interrupt.h>
|
|
+#include <linux/capability.h>
|
|
+#include <linux/completion.h>
|
|
+#include <linux/kernel_stat.h>
|
|
+#include <linux/debug_locks.h>
|
|
+#include <linux/perf_counter.h>
|
|
+#include <linux/security.h>
|
|
+#include <linux/notifier.h>
|
|
+#include <linux/profile.h>
|
|
+#include <linux/freezer.h>
|
|
+#include <linux/vmalloc.h>
|
|
+#include <linux/blkdev.h>
|
|
+#include <linux/delay.h>
|
|
+#include <linux/smp.h>
|
|
+#include <linux/threads.h>
|
|
+#include <linux/timer.h>
|
|
+#include <linux/rcupdate.h>
|
|
+#include <linux/cpu.h>
|
|
+#include <linux/cpuset.h>
|
|
+#include <linux/cpumask.h>
|
|
+#include <linux/percpu.h>
|
|
+#include <linux/kthread.h>
|
|
+#include <linux/proc_fs.h>
|
|
+#include <linux/seq_file.h>
|
|
+#include <linux/syscalls.h>
|
|
+#include <linux/times.h>
|
|
+#include <linux/tsacct_kern.h>
|
|
+#include <linux/kprobes.h>
|
|
+#include <linux/delayacct.h>
|
|
+#include <linux/reciprocal_div.h>
|
|
+#include <linux/log2.h>
|
|
+#include <linux/bootmem.h>
|
|
+#include <linux/ftrace.h>
|
|
+
|
|
+#include <asm/tlb.h>
|
|
+#include <asm/unistd.h>
|
|
+
|
|
+#define CREATE_TRACE_POINTS
|
|
+#include <trace/events/sched.h>
|
|
+
|
|
+#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
|
|
+#define rt_task(p) rt_prio((p)->prio)
|
|
+#define rt_queue(rq) rt_prio((rq)->rq_prio)
|
|
+#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
|
|
+#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \
|
|
+ (policy) == SCHED_RR)
|
|
+#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
|
|
+#define idleprio_task(p) unlikely((p)->policy == SCHED_IDLE)
|
|
+#define iso_task(p) unlikely((p)->policy == SCHED_ISO)
|
|
+#define iso_queue(rq) unlikely((rq)->rq_policy == SCHED_ISO)
|
|
+#define ISO_PERIOD ((5 * HZ * num_online_cpus()) + 1)
|
|
+
|
|
+/*
|
|
+ * Convert user-nice values [ -20 ... 0 ... 19 ]
|
|
+ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
|
|
+ * and back.
|
|
+ */
|
|
+#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
|
|
+#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
|
|
+#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
|
|
+
|
|
+/*
|
|
+ * 'User priority' is the nice value converted to something we
|
|
+ * can work with better when scaling various scheduler parameters,
|
|
+ * it's a [ 0 ... 39 ] range.
|
|
+ */
|
|
+#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
|
|
+#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
|
|
+#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
|
|
+#define SCHED_PRIO(p) ((p)+MAX_RT_PRIO)
|
|
+
|
|
+/* Some helpers for converting to/from various scales.*/
|
|
+#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
|
|
+#define MS_TO_NS(TIME) ((TIME) * 1000000)
|
|
+#define MS_TO_US(TIME) ((TIME) * 1000)
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+/*
|
|
+ * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
|
|
+ * Since cpu_power is a 'constant', we can use a reciprocal divide.
|
|
+ */
|
|
+static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
|
|
+{
|
|
+ return reciprocal_divide(load, sg->reciprocal_cpu_power);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Each time a sched group cpu_power is changed,
|
|
+ * we must compute its reciprocal value
|
|
+ */
|
|
+static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
|
|
+{
|
|
+ sg->__cpu_power += val;
|
|
+ sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+ * This is the time all tasks within the same priority round robin.
|
|
+ * Value is in ms and set to a minimum of 6ms. Scales with number of cpus.
|
|
+ * Tunable via /proc interface.
|
|
+ */
|
|
+int rr_interval __read_mostly = 6;
|
|
+
|
|
+/*
|
|
+ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks
|
|
+ * are allowed to run five seconds as real time tasks. This is the total over
|
|
+ * all online cpus.
|
|
+ */
|
|
+int sched_iso_cpu __read_mostly = 70;
|
|
+
|
|
+int prio_ratios[PRIO_RANGE] __read_mostly;
|
|
+
|
|
+static inline unsigned long timeslice(void)
|
|
+{
|
|
+ return MS_TO_US(rr_interval);
|
|
+}
|
|
+
|
|
+struct global_rq {
|
|
+ spinlock_t lock;
|
|
+ unsigned long nr_running;
|
|
+ unsigned long nr_uninterruptible;
|
|
+ unsigned long long nr_switches;
|
|
+ struct list_head queue[PRIO_LIMIT];
|
|
+ DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1);
|
|
+ unsigned long iso_ticks;
|
|
+ unsigned short iso_refractory;
|
|
+#ifdef CONFIG_SMP
|
|
+ unsigned long qnr; /* queued not running */
|
|
+ cpumask_t cpu_idle_map;
|
|
+#endif
|
|
+};
|
|
+
|
|
+static struct global_rq grq;
|
|
+
|
|
+/*
|
|
+ * This is the main, per-CPU runqueue data structure.
|
|
+ * All this is protected by the global_rq lock.
|
|
+ */
|
|
+struct rq {
|
|
+#ifdef CONFIG_SMP
|
|
+#ifdef CONFIG_NO_HZ
|
|
+ unsigned char in_nohz_recently;
|
|
+#endif
|
|
+#endif
|
|
+
|
|
+ struct task_struct *curr, *idle;
|
|
+ struct mm_struct *prev_mm;
|
|
+ struct list_head queue; /* Place to store currently running task */
|
|
+
|
|
+ /* Stored data about rq->curr to work outside grq lock */
|
|
+ unsigned long rq_deadline;
|
|
+ unsigned int rq_policy;
|
|
+ int rq_time_slice;
|
|
+ int rq_prio;
|
|
+
|
|
+ /* Accurate timekeeping data */
|
|
+ u64 timekeep_clock;
|
|
+ unsigned long user_pc, nice_pc, irq_pc, softirq_pc, system_pc,
|
|
+ iowait_pc, idle_pc;
|
|
+ atomic_t nr_iowait;
|
|
+
|
|
+ int cpu; /* cpu of this runqueue */
|
|
+ int online;
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+ struct root_domain *rd;
|
|
+ struct sched_domain *sd;
|
|
+
|
|
+ struct list_head migration_queue;
|
|
+#endif
|
|
+
|
|
+ u64 clock;
|
|
+#ifdef CONFIG_SCHEDSTATS
|
|
+
|
|
+ /* latency stats */
|
|
+ struct sched_info rq_sched_info;
|
|
+ unsigned long long rq_cpu_time;
|
|
+ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
|
|
+
|
|
+ /* sys_sched_yield() stats */
|
|
+ unsigned int yld_count;
|
|
+
|
|
+ /* schedule() stats */
|
|
+ unsigned int sched_switch;
|
|
+ unsigned int sched_count;
|
|
+ unsigned int sched_goidle;
|
|
+
|
|
+ /* try_to_wake_up() stats */
|
|
+ unsigned int ttwu_count;
|
|
+ unsigned int ttwu_local;
|
|
+
|
|
+ /* BKL stats */
|
|
+ unsigned int bkl_count;
|
|
+#endif
|
|
+};
|
|
+
|
|
+static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
|
|
+static DEFINE_MUTEX(sched_hotcpu_mutex);
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+
|
|
+/*
|
|
+ * We add the notion of a root-domain which will be used to define per-domain
|
|
+ * variables. Each exclusive cpuset essentially defines an island domain by
|
|
+ * fully partitioning the member cpus from any other cpuset. Whenever a new
|
|
+ * exclusive cpuset is created, we also create and attach a new root-domain
|
|
+ * object.
|
|
+ *
|
|
+ */
|
|
+struct root_domain {
|
|
+ atomic_t refcount;
|
|
+ cpumask_var_t span;
|
|
+ cpumask_var_t online;
|
|
+
|
|
+ /*
|
|
+ * The "RT overload" flag: it gets set if a CPU has more than
|
|
+ * one runnable RT task.
|
|
+ */
|
|
+ cpumask_var_t rto_mask;
|
|
+ atomic_t rto_count;
|
|
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
|
|
+ /*
|
|
+ * Preferred wake up cpu nominated by sched_mc balance that will be
|
|
+ * used when most cpus are idle in the system indicating overall very
|
|
+ * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
|
|
+ */
|
|
+ unsigned int sched_mc_preferred_wakeup_cpu;
|
|
+#endif
|
|
+};
|
|
+
|
|
+/*
|
|
+ * By default the system creates a single root-domain with all cpus as
|
|
+ * members (mimicking the global state we have today).
|
|
+ */
|
|
+static struct root_domain def_root_domain;
|
|
+
|
|
+#endif
|
|
+
|
|
+static inline int cpu_of(struct rq *rq)
|
|
+{
|
|
+#ifdef CONFIG_SMP
|
|
+ return rq->cpu;
|
|
+#else
|
|
+ return 0;
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
|
|
+ * See detach_destroy_domains: synchronize_sched for details.
|
|
+ *
|
|
+ * The domain tree of any CPU may only be accessed from within
|
|
+ * preempt-disabled sections.
|
|
+ */
|
|
+#define for_each_domain(cpu, __sd) \
|
|
+ for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
|
|
+
|
|
+#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
|
|
+#define this_rq() (&__get_cpu_var(runqueues))
|
|
+#define task_rq(p) cpu_rq(task_cpu(p))
|
|
+#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
|
|
+
|
|
+#include "sched_stats.h"
|
|
+
|
|
+#ifndef prepare_arch_switch
|
|
+# define prepare_arch_switch(next) do { } while (0)
|
|
+#endif
|
|
+#ifndef finish_arch_switch
|
|
+# define finish_arch_switch(prev) do { } while (0)
|
|
+#endif
|
|
+
|
|
+inline void update_rq_clock(struct rq *rq)
|
|
+{
|
|
+ rq->clock = sched_clock_cpu(cpu_of(rq));
|
|
+}
|
|
+
|
|
+static inline int task_running(struct task_struct *p)
|
|
+{
|
|
+ return (!!p->oncpu);
|
|
+}
|
|
+
|
|
+static inline void grq_lock(void)
|
|
+ __acquires(grq.lock)
|
|
+{
|
|
+ smp_mb();
|
|
+ spin_lock(&grq.lock);
|
|
+}
|
|
+
|
|
+static inline void grq_unlock(void)
|
|
+ __releases(grq.lock)
|
|
+{
|
|
+ spin_unlock(&grq.lock);
|
|
+}
|
|
+
|
|
+static inline void grq_lock_irq(void)
|
|
+ __acquires(grq.lock)
|
|
+{
|
|
+ smp_mb();
|
|
+ spin_lock_irq(&grq.lock);
|
|
+}
|
|
+
|
|
+static inline void time_lock_grq(struct rq *rq)
|
|
+ __acquires(grq.lock)
|
|
+{
|
|
+ grq_lock();
|
|
+ update_rq_clock(rq);
|
|
+}
|
|
+
|
|
+static inline void grq_unlock_irq(void)
|
|
+ __releases(grq.lock)
|
|
+{
|
|
+ spin_unlock_irq(&grq.lock);
|
|
+}
|
|
+
|
|
+static inline void grq_lock_irqsave(unsigned long *flags)
|
|
+ __acquires(grq.lock)
|
|
+{
|
|
+ smp_mb();
|
|
+ spin_lock_irqsave(&grq.lock, *flags);
|
|
+}
|
|
+
|
|
+static inline void grq_unlock_irqrestore(unsigned long *flags)
|
|
+ __releases(grq.lock)
|
|
+{
|
|
+ spin_unlock_irqrestore(&grq.lock, *flags);
|
|
+}
|
|
+
|
|
+static inline struct rq
|
|
+*task_grq_lock(struct task_struct *p, unsigned long *flags)
|
|
+ __acquires(grq.lock)
|
|
+{
|
|
+ grq_lock_irqsave(flags);
|
|
+ return task_rq(p);
|
|
+}
|
|
+
|
|
+static inline struct rq
|
|
+*time_task_grq_lock(struct task_struct *p, unsigned long *flags)
|
|
+ __acquires(grq.lock)
|
|
+{
|
|
+ struct rq *rq = task_grq_lock(p, flags);
|
|
+ update_rq_clock(rq);
|
|
+ return rq;
|
|
+}
|
|
+
|
|
+static inline void task_grq_unlock(unsigned long *flags)
|
|
+ __releases(grq.lock)
|
|
+{
|
|
+ grq_unlock_irqrestore(flags);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * runqueue_is_locked
|
|
+ *
|
|
+ * Returns true if the global runqueue is locked.
|
|
+ * This interface allows printk to be called with the runqueue lock
|
|
+ * held and know whether or not it is OK to wake up the klogd.
|
|
+ */
|
|
+int runqueue_is_locked(void)
|
|
+{
|
|
+ return spin_is_locked(&grq.lock);
|
|
+}
|
|
+
|
|
+void task_rq_unlock_wait(struct task_struct *p)
|
|
+ __releases(grq.lock)
|
|
+{
|
|
+ smp_mb(); /* spin-unlock-wait is not a full memory barrier */
|
|
+ spin_unlock_wait(&grq.lock);
|
|
+}
|
|
+
|
|
+static inline void time_grq_lock(struct rq *rq, unsigned long *flags)
|
|
+ __acquires(grq.lock)
|
|
+{
|
|
+ spin_lock_irqsave(&grq.lock, *flags);
|
|
+ update_rq_clock(rq);
|
|
+}
|
|
+
|
|
+static inline struct rq *__task_grq_lock(struct task_struct *p)
|
|
+ __acquires(grq.lock)
|
|
+{
|
|
+ grq_lock();
|
|
+ return task_rq(p);
|
|
+}
|
|
+
|
|
+static inline void __task_grq_unlock(void)
|
|
+ __releases(grq.lock)
|
|
+{
|
|
+ grq_unlock();
|
|
+}
|
|
+
|
|
+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
|
|
+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
|
|
+{
|
|
+}
|
|
+
|
|
+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
|
|
+{
|
|
+#ifdef CONFIG_DEBUG_SPINLOCK
|
|
+ /* this is a valid case when another task releases the spinlock */
|
|
+ grq.lock.owner = current;
|
|
+#endif
|
|
+ /*
|
|
+ * If we are tracking spinlock dependencies then we have to
|
|
+ * fix up the runqueue lock - which gets 'carried over' from
|
|
+ * prev into current:
|
|
+ */
|
|
+ spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_);
|
|
+
|
|
+ grq_unlock_irq();
|
|
+}
|
|
+
|
|
+#else /* __ARCH_WANT_UNLOCKED_CTXSW */
|
|
+
|
|
+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
|
|
+{
|
|
+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
|
|
+ grq_unlock_irq();
|
|
+#else
|
|
+ grq_unlock();
|
|
+#endif
|
|
+}
|
|
+
|
|
+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
|
|
+{
|
|
+ smp_wmb();
|
|
+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
|
|
+ local_irq_enable();
|
|
+#endif
|
|
+}
|
|
+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
|
|
+
|
|
+/*
|
|
+ * A task that is queued will be on the grq run list.
|
|
+ * A task that is not running or queued will not be on the grq run list.
|
|
+ * A task that is currently running will have ->oncpu set and be queued
|
|
+ * temporarily in its own rq queue.
|
|
+ * A task that is running and no longer queued will be seen only on
|
|
+ * context switch exit.
|
|
+ */
|
|
+
|
|
+static inline int task_queued(struct task_struct *p)
|
|
+{
|
|
+ return (!list_empty(&p->rt.run_list));
|
|
+}
|
|
+
|
|
+static inline int task_queued_only(struct task_struct *p)
|
|
+{
|
|
+ return (!list_empty(&p->rt.run_list) && !task_running(p));
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Removing from the global runqueue. Enter with grq locked.
|
|
+ */
|
|
+static void dequeue_task(struct task_struct *p)
|
|
+{
|
|
+ list_del_init(&p->rt.run_list);
|
|
+ if (list_empty(grq.queue + p->prio))
|
|
+ __clear_bit(p->prio, grq.prio_bitmap);
|
|
+}
|
|
+
|
|
+static inline void reset_first_time_slice(struct task_struct *p)
|
|
+{
|
|
+ if (unlikely(p->first_time_slice))
|
|
+ p->first_time_slice = 0;
|
|
+}
|
|
+
|
|
+static int idleprio_suitable(struct task_struct *p)
|
|
+{
|
|
+ return (!freezing(p) && !signal_pending(p) &&
|
|
+ !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING)));
|
|
+}
|
|
+
|
|
+static int isoprio_suitable(void)
|
|
+{
|
|
+ return !grq.iso_refractory;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Adding to the global runqueue. Enter with grq locked.
|
|
+ */
|
|
+static void enqueue_task(struct task_struct *p)
|
|
+{
|
|
+ if (!rt_task(p)) {
|
|
+ /* Check it hasn't gotten rt from PI */
|
|
+ if ((idleprio_task(p) && idleprio_suitable(p)) ||
|
|
+ (iso_task(p) && isoprio_suitable()))
|
|
+ p->prio = p->normal_prio;
|
|
+ else
|
|
+ p->prio = NORMAL_PRIO;
|
|
+ }
|
|
+ __set_bit(p->prio, grq.prio_bitmap);
|
|
+ list_add_tail(&p->rt.run_list, grq.queue + p->prio);
|
|
+ sched_info_queued(p);
|
|
+}
|
|
+
|
|
+/* Only idle task does this as a real time task*/
|
|
+static inline void enqueue_task_head(struct task_struct *p)
|
|
+{
|
|
+ __set_bit(p->prio, grq.prio_bitmap);
|
|
+ list_add(&p->rt.run_list, grq.queue + p->prio);
|
|
+ sched_info_queued(p);
|
|
+}
|
|
+
|
|
+static inline void requeue_task(struct task_struct *p)
|
|
+{
|
|
+ sched_info_queued(p);
|
|
+}
|
|
+
|
|
+static inline int pratio(struct task_struct *p)
|
|
+{
|
|
+ return prio_ratios[TASK_USER_PRIO(p)];
|
|
+}
|
|
+
|
|
+/*
|
|
+ * task_timeslice - all tasks of all priorities get the exact same timeslice
|
|
+ * length. CPU distribution is handled by giving different deadlines to
|
|
+ * tasks of different priorities.
|
|
+ */
|
|
+static inline int task_timeslice(struct task_struct *p)
|
|
+{
|
|
+ return (rr_interval * pratio(p) / 100);
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+static inline void inc_qnr(void)
|
|
+{
|
|
+ grq.qnr++;
|
|
+}
|
|
+
|
|
+static inline void dec_qnr(void)
|
|
+{
|
|
+ grq.qnr--;
|
|
+}
|
|
+
|
|
+static inline int queued_notrunning(void)
|
|
+{
|
|
+ return grq.qnr;
|
|
+}
|
|
+#else
|
|
+static inline void inc_qnr(void)
|
|
+{
|
|
+}
|
|
+
|
|
+static inline void dec_qnr(void)
|
|
+{
|
|
+}
|
|
+
|
|
+static inline int queued_notrunning(void)
|
|
+{
|
|
+ return grq.nr_running;
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+ * activate_idle_task - move idle task to the _front_ of runqueue.
|
|
+ */
|
|
+static inline void activate_idle_task(struct task_struct *p)
|
|
+{
|
|
+ enqueue_task_head(p);
|
|
+ grq.nr_running++;
|
|
+ inc_qnr();
|
|
+}
|
|
+
|
|
+static inline int normal_prio(struct task_struct *p)
|
|
+{
|
|
+ if (has_rt_policy(p))
|
|
+ return MAX_RT_PRIO - 1 - p->rt_priority;
|
|
+ if (idleprio_task(p))
|
|
+ return IDLE_PRIO;
|
|
+ if (iso_task(p))
|
|
+ return ISO_PRIO;
|
|
+ return NORMAL_PRIO;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Calculate the current priority, i.e. the priority
|
|
+ * taken into account by the scheduler. This value might
|
|
+ * be boosted by RT tasks as it will be RT if the task got
|
|
+ * RT-boosted. If not then it returns p->normal_prio.
|
|
+ */
|
|
+static int effective_prio(struct task_struct *p)
|
|
+{
|
|
+ p->normal_prio = normal_prio(p);
|
|
+ /*
|
|
+ * If we are RT tasks or we were boosted to RT priority,
|
|
+ * keep the priority unchanged. Otherwise, update priority
|
|
+ * to the normal priority:
|
|
+ */
|
|
+ if (!rt_prio(p->prio))
|
|
+ return p->normal_prio;
|
|
+ return p->prio;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * activate_task - move a task to the runqueue. Enter with grq locked. The rq
|
|
+ * doesn't really matter but gives us the local clock.
|
|
+ */
|
|
+static void activate_task(struct task_struct *p, struct rq *rq)
|
|
+{
|
|
+ u64 now = rq->clock;
|
|
+
|
|
+ /*
|
|
+ * Sleep time is in units of nanosecs, so shift by 20 to get a
|
|
+ * milliseconds-range estimation of the amount of time that the task
|
|
+ * spent sleeping:
|
|
+ */
|
|
+ if (unlikely(prof_on == SLEEP_PROFILING)) {
|
|
+ if (p->state == TASK_UNINTERRUPTIBLE)
|
|
+ profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
|
|
+ (now - p->timestamp) >> 20);
|
|
+ }
|
|
+
|
|
+ p->prio = effective_prio(p);
|
|
+ p->timestamp = now;
|
|
+ if (task_contributes_to_load(p))
|
|
+ grq.nr_uninterruptible--;
|
|
+ enqueue_task(p);
|
|
+ grq.nr_running++;
|
|
+ inc_qnr();
|
|
+}
|
|
+
|
|
+/*
|
|
+ * deactivate_task - If it's running, it's not on the grq and we can just
|
|
+ * decrement the nr_running.
|
|
+ */
|
|
+static inline void deactivate_task(struct task_struct *p)
|
|
+{
|
|
+ if (task_contributes_to_load(p))
|
|
+ grq.nr_uninterruptible++;
|
|
+ grq.nr_running--;
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+void set_task_cpu(struct task_struct *p, unsigned int cpu)
|
|
+{
|
|
+ trace_sched_migrate_task(p, cpu);
|
|
+ /*
|
|
+ * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be
|
|
+ * successfuly executed on another CPU. We must ensure that updates of
|
|
+ * per-task data have been completed by this moment.
|
|
+ */
|
|
+ smp_wmb();
|
|
+ task_thread_info(p)->cpu = cpu;
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+ * Move a task off the global queue and take it to a cpu for it will
|
|
+ * become the running task.
|
|
+ */
|
|
+static inline void take_task(struct rq *rq, struct task_struct *p)
|
|
+{
|
|
+ set_task_cpu(p, rq->cpu);
|
|
+ dequeue_task(p);
|
|
+ list_add(&p->rt.run_list, &rq->queue);
|
|
+ dec_qnr();
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Returns a descheduling task to the grq runqueue unless it is being
|
|
+ * deactivated.
|
|
+ */
|
|
+static inline void return_task(struct task_struct *p, int deactivate)
|
|
+{
|
|
+ list_del_init(&p->rt.run_list);
|
|
+ if (deactivate)
|
|
+ deactivate_task(p);
|
|
+ else {
|
|
+ inc_qnr();
|
|
+ enqueue_task(p);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * resched_task - mark a task 'to be rescheduled now'.
|
|
+ *
|
|
+ * On UP this means the setting of the need_resched flag, on SMP it
|
|
+ * might also involve a cross-CPU call to trigger the scheduler on
|
|
+ * the target CPU.
|
|
+ */
|
|
+#ifdef CONFIG_SMP
|
|
+
|
|
+#ifndef tsk_is_polling
|
|
+#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
|
|
+#endif
|
|
+
|
|
+static void resched_task(struct task_struct *p)
|
|
+{
|
|
+ int cpu;
|
|
+
|
|
+ assert_spin_locked(&grq.lock);
|
|
+
|
|
+ if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
|
|
+ return;
|
|
+
|
|
+ set_tsk_thread_flag(p, TIF_NEED_RESCHED);
|
|
+
|
|
+ cpu = task_cpu(p);
|
|
+ if (cpu == smp_processor_id())
|
|
+ return;
|
|
+
|
|
+ /* NEED_RESCHED must be visible before we test polling */
|
|
+ smp_mb();
|
|
+ if (!tsk_is_polling(p))
|
|
+ smp_send_reschedule(cpu);
|
|
+}
|
|
+
|
|
+#else
|
|
+static inline void resched_task(struct task_struct *p)
|
|
+{
|
|
+ assert_spin_locked(&grq.lock);
|
|
+ set_tsk_need_resched(p);
|
|
+}
|
|
+#endif
|
|
+
|
|
+/**
|
|
+ * task_curr - is this task currently executing on a CPU?
|
|
+ * @p: the task in question.
|
|
+ */
|
|
+inline int task_curr(const struct task_struct *p)
|
|
+{
|
|
+ return cpu_curr(task_cpu(p)) == p;
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+struct migration_req {
|
|
+ struct list_head list;
|
|
+
|
|
+ struct task_struct *task;
|
|
+ int dest_cpu;
|
|
+
|
|
+ struct completion done;
|
|
+};
|
|
+
|
|
+/*
|
|
+ * wait_task_context_switch - wait for a thread to complete at least one
|
|
+ * context switch.
|
|
+ *
|
|
+ * @p must not be current.
|
|
+ */
|
|
+void wait_task_context_switch(struct task_struct *p)
|
|
+{
|
|
+ unsigned long nvcsw, nivcsw, flags;
|
|
+ int running;
|
|
+ struct rq *rq;
|
|
+
|
|
+ nvcsw = p->nvcsw;
|
|
+ nivcsw = p->nivcsw;
|
|
+ for (;;) {
|
|
+ /*
|
|
+ * The runqueue is assigned before the actual context
|
|
+ * switch. We need to take the runqueue lock.
|
|
+ *
|
|
+ * We could check initially without the lock but it is
|
|
+ * very likely that we need to take the lock in every
|
|
+ * iteration.
|
|
+ */
|
|
+ rq = task_grq_lock(p, &flags);
|
|
+ running = task_running(p);
|
|
+ task_grq_unlock(&flags);
|
|
+
|
|
+ if (likely(!running))
|
|
+ break;
|
|
+ /*
|
|
+ * The switch count is incremented before the actual
|
|
+ * context switch. We thus wait for two switches to be
|
|
+ * sure at least one completed.
|
|
+ */
|
|
+ if ((p->nvcsw - nvcsw) > 1)
|
|
+ break;
|
|
+ if ((p->nivcsw - nivcsw) > 1)
|
|
+ break;
|
|
+
|
|
+ cpu_relax();
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * wait_task_inactive - wait for a thread to unschedule.
|
|
+ *
|
|
+ * If @match_state is nonzero, it's the @p->state value just checked and
|
|
+ * not expected to change. If it changes, i.e. @p might have woken up,
|
|
+ * then return zero. When we succeed in waiting for @p to be off its CPU,
|
|
+ * we return a positive number (its total switch count). If a second call
|
|
+ * a short while later returns the same number, the caller can be sure that
|
|
+ * @p has remained unscheduled the whole time.
|
|
+ *
|
|
+ * The caller must ensure that the task *will* unschedule sometime soon,
|
|
+ * else this function might spin for a *long* time. This function can't
|
|
+ * be called with interrupts off, or it may introduce deadlock with
|
|
+ * smp_call_function() if an IPI is sent by the same process we are
|
|
+ * waiting to become inactive.
|
|
+ */
|
|
+unsigned long wait_task_inactive(struct task_struct *p, long match_state)
|
|
+{
|
|
+ unsigned long flags;
|
|
+ int running, on_rq;
|
|
+ unsigned long ncsw;
|
|
+ struct rq *rq;
|
|
+
|
|
+ for (;;) {
|
|
+ /*
|
|
+ * We do the initial early heuristics without holding
|
|
+ * any task-queue locks at all. We'll only try to get
|
|
+ * the runqueue lock when things look like they will
|
|
+ * work out!
|
|
+ */
|
|
+ rq = task_rq(p);
|
|
+
|
|
+ /*
|
|
+ * If the task is actively running on another CPU
|
|
+ * still, just relax and busy-wait without holding
|
|
+ * any locks.
|
|
+ *
|
|
+ * NOTE! Since we don't hold any locks, it's not
|
|
+ * even sure that "rq" stays as the right runqueue!
|
|
+ * But we don't care, since this will
|
|
+ * return false if the runqueue has changed and p
|
|
+ * is actually now running somewhere else!
|
|
+ */
|
|
+ while (task_running(p) && p == rq->curr) {
|
|
+ if (match_state && unlikely(p->state != match_state))
|
|
+ return 0;
|
|
+ cpu_relax();
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Ok, time to look more closely! We need the grq
|
|
+ * lock now, to be *sure*. If we're wrong, we'll
|
|
+ * just go back and repeat.
|
|
+ */
|
|
+ rq = task_grq_lock(p, &flags);
|
|
+ trace_sched_wait_task(rq, p);
|
|
+ running = task_running(p);
|
|
+ on_rq = task_queued(p);
|
|
+ ncsw = 0;
|
|
+ if (!match_state || p->state == match_state)
|
|
+ ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
|
|
+ task_grq_unlock(&flags);
|
|
+
|
|
+ /*
|
|
+ * If it changed from the expected state, bail out now.
|
|
+ */
|
|
+ if (unlikely(!ncsw))
|
|
+ break;
|
|
+
|
|
+ /*
|
|
+ * Was it really running after all now that we
|
|
+ * checked with the proper locks actually held?
|
|
+ *
|
|
+ * Oops. Go back and try again..
|
|
+ */
|
|
+ if (unlikely(running)) {
|
|
+ cpu_relax();
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * It's not enough that it's not actively running,
|
|
+ * it must be off the runqueue _entirely_, and not
|
|
+ * preempted!
|
|
+ *
|
|
+ * So if it was still runnable (but just not actively
|
|
+ * running right now), it's preempted, and we should
|
|
+ * yield - it could be a while.
|
|
+ */
|
|
+ if (unlikely(on_rq)) {
|
|
+ schedule_timeout_uninterruptible(1);
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Ahh, all good. It wasn't running, and it wasn't
|
|
+ * runnable, which means that it will never become
|
|
+ * running in the future either. We're all done!
|
|
+ */
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ return ncsw;
|
|
+}
|
|
+
|
|
+/***
|
|
+ * kick_process - kick a running thread to enter/exit the kernel
|
|
+ * @p: the to-be-kicked thread
|
|
+ *
|
|
+ * Cause a process which is running on another CPU to enter
|
|
+ * kernel-mode, without any delay. (to get signals handled.)
|
|
+ *
|
|
+ * NOTE: this function doesnt have to take the runqueue lock,
|
|
+ * because all it wants to ensure is that the remote task enters
|
|
+ * the kernel. If the IPI races and the task has been migrated
|
|
+ * to another CPU then no harm is done and the purpose has been
|
|
+ * achieved as well.
|
|
+ */
|
|
+void kick_process(struct task_struct *p)
|
|
+{
|
|
+ int cpu;
|
|
+
|
|
+ preempt_disable();
|
|
+ cpu = task_cpu(p);
|
|
+ if ((cpu != smp_processor_id()) && task_curr(p))
|
|
+ smp_send_reschedule(cpu);
|
|
+ preempt_enable();
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(kick_process);
|
|
+#endif
|
|
+
|
|
+#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT)
|
|
+
|
|
+/*
|
|
+ * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the
|
|
+ * basis of earlier deadlines. SCHED_BATCH and SCHED_IDLE don't preempt,
|
|
+ * they cooperatively multitask.
|
|
+ */
|
|
+static inline int task_preempts_curr(struct task_struct *p, struct rq *rq)
|
|
+{
|
|
+ int preempts = 0;
|
|
+
|
|
+ if (p->prio < rq->rq_prio)
|
|
+ preempts = 1;
|
|
+ else if (p->policy == SCHED_NORMAL && (p->prio == rq->rq_prio &&
|
|
+ time_before(p->deadline, rq->rq_deadline)))
|
|
+ preempts = 1;
|
|
+ return preempts;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Wake up *any* suitable cpu to schedule this task.
|
|
+ */
|
|
+static void try_preempt(struct task_struct *p)
|
|
+{
|
|
+ struct rq *highest_prio_rq, *this_rq;
|
|
+ unsigned long latest_deadline, cpu;
|
|
+ int highest_prio;
|
|
+ cpumask_t tmp;
|
|
+
|
|
+ /* Try the task's previous rq first and as a fallback */
|
|
+ this_rq = task_rq(p);
|
|
+
|
|
+ if (cpu_isset(this_rq->cpu, p->cpus_allowed)) {
|
|
+ highest_prio_rq = this_rq;
|
|
+ /* If this_rq is idle, use that. */
|
|
+ if (rq_idle(this_rq))
|
|
+ goto found_rq;
|
|
+ } else
|
|
+ highest_prio_rq = cpu_rq(any_online_cpu(p->cpus_allowed));
|
|
+ latest_deadline = this_rq->rq_deadline;
|
|
+ highest_prio = this_rq->rq_prio;
|
|
+
|
|
+ cpus_and(tmp, cpu_online_map, p->cpus_allowed);
|
|
+
|
|
+ for_each_cpu_mask(cpu, tmp) {
|
|
+ struct rq *rq;
|
|
+ int rq_prio;
|
|
+
|
|
+ rq = cpu_rq(cpu);
|
|
+
|
|
+ if (rq_idle(rq)) {
|
|
+ /* found an idle rq, use that one */
|
|
+ highest_prio_rq = rq;
|
|
+ goto found_rq;
|
|
+ }
|
|
+
|
|
+ rq_prio = rq->rq_prio;
|
|
+ if (rq_prio > highest_prio ||
|
|
+ (rq_prio == highest_prio &&
|
|
+ time_after(rq->rq_deadline, latest_deadline))) {
|
|
+ highest_prio = rq_prio;
|
|
+ latest_deadline = rq->rq_deadline;
|
|
+ highest_prio_rq = rq;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (!task_preempts_curr(p, highest_prio_rq))
|
|
+ return;
|
|
+found_rq:
|
|
+ resched_task(highest_prio_rq->curr);
|
|
+ return;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * task_oncpu_function_call - call a function on the cpu on which a task runs
|
|
+ * @p: the task to evaluate
|
|
+ * @func: the function to be called
|
|
+ * @info: the function call argument
|
|
+ *
|
|
+ * Calls the function @func when the task is currently running. This might
|
|
+ * be on the current CPU, which just calls the function directly
|
|
+ */
|
|
+void task_oncpu_function_call(struct task_struct *p,
|
|
+ void (*func) (void *info), void *info)
|
|
+{
|
|
+ int cpu;
|
|
+
|
|
+ preempt_disable();
|
|
+ cpu = task_cpu(p);
|
|
+ if (task_curr(p))
|
|
+ smp_call_function_single(cpu, func, info, 1);
|
|
+ preempt_enable();
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+static int suitable_idle_cpus(struct task_struct *p)
|
|
+{
|
|
+ return (cpus_intersects(p->cpus_allowed, grq.cpu_idle_map));
|
|
+}
|
|
+#else
|
|
+static int suitable_idle_cpus(struct task_struct *p)
|
|
+{
|
|
+ return 0;
|
|
+}
|
|
+#endif
|
|
+
|
|
+/***
|
|
+ * try_to_wake_up - wake up a thread
|
|
+ * @p: the to-be-woken-up thread
|
|
+ * @state: the mask of task states that can be woken
|
|
+ * @sync: do a synchronous wakeup?
|
|
+ *
|
|
+ * Put it on the run-queue if it's not already there. The "current"
|
|
+ * thread is always on the run-queue (except when the actual
|
|
+ * re-schedule is in progress), and as such you're allowed to do
|
|
+ * the simpler "current->state = TASK_RUNNING" to mark yourself
|
|
+ * runnable without the overhead of this.
|
|
+ *
|
|
+ * returns failure only if the task is already active.
|
|
+ */
|
|
+static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
|
|
+{
|
|
+ unsigned long flags;
|
|
+ int success = 0;
|
|
+ long old_state;
|
|
+ struct rq *rq;
|
|
+
|
|
+ rq = time_task_grq_lock(p, &flags);
|
|
+ old_state = p->state;
|
|
+ if (!(old_state & state))
|
|
+ goto out_unlock;
|
|
+
|
|
+ /*
|
|
+ * Note this catches tasks that are running and queued, but returns
|
|
+ * false during the context switch when they're running and no
|
|
+ * longer queued.
|
|
+ */
|
|
+ if (task_queued(p))
|
|
+ goto out_running;
|
|
+
|
|
+ activate_task(p, rq);
|
|
+ /*
|
|
+ * Sync wakeups (i.e. those types of wakeups where the waker
|
|
+ * has indicated that it will leave the CPU in short order)
|
|
+ * don't trigger a preemption if there are no idle cpus,
|
|
+ * instead waiting for current to deschedule.
|
|
+ */
|
|
+ if (!sync || (sync && suitable_idle_cpus(p)))
|
|
+ try_preempt(p);
|
|
+ success = 1;
|
|
+
|
|
+out_running:
|
|
+ trace_sched_wakeup(rq, p, success);
|
|
+ p->state = TASK_RUNNING;
|
|
+out_unlock:
|
|
+ task_grq_unlock(&flags);
|
|
+ return success;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * wake_up_process - Wake up a specific process
|
|
+ * @p: The process to be woken up.
|
|
+ *
|
|
+ * Attempt to wake up the nominated process and move it to the set of runnable
|
|
+ * processes. Returns 1 if the process was woken up, 0 if it was already
|
|
+ * running.
|
|
+ *
|
|
+ * It may be assumed that this function implies a write memory barrier before
|
|
+ * changing the task state if and only if any tasks are woken up.
|
|
+ */
|
|
+int wake_up_process(struct task_struct *p)
|
|
+{
|
|
+ return try_to_wake_up(p, TASK_ALL, 0);
|
|
+}
|
|
+EXPORT_SYMBOL(wake_up_process);
|
|
+
|
|
+int wake_up_state(struct task_struct *p, unsigned int state)
|
|
+{
|
|
+ return try_to_wake_up(p, state, 0);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Perform scheduler related setup for a newly forked process p.
|
|
+ * p is forked by current.
|
|
+ */
|
|
+void sched_fork(struct task_struct *p, int clone_flags)
|
|
+{
|
|
+ int cpu = get_cpu();
|
|
+ struct rq *rq;
|
|
+
|
|
+#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
+ INIT_HLIST_HEAD(&p->preempt_notifiers);
|
|
+#endif
|
|
+ /*
|
|
+ * We mark the process as running here, but have not actually
|
|
+ * inserted it onto the runqueue yet. This guarantees that
|
|
+ * nobody will actually run it, and a signal or other external
|
|
+ * event cannot wake it up and insert it on the runqueue either.
|
|
+ */
|
|
+ p->state = TASK_RUNNING;
|
|
+ set_task_cpu(p, cpu);
|
|
+
|
|
+ /* Should be reset in fork.c but done here for ease of bfs patching */
|
|
+ p->se.sum_exec_runtime = p->stime_pc = p->utime_pc = 0;
|
|
+
|
|
+ /*
|
|
+ * Make sure we do not leak PI boosting priority to the child:
|
|
+ */
|
|
+ p->prio = current->normal_prio;
|
|
+
|
|
+ INIT_LIST_HEAD(&p->rt.run_list);
|
|
+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
|
|
+ if (unlikely(sched_info_on()))
|
|
+ memset(&p->sched_info, 0, sizeof(p->sched_info));
|
|
+#endif
|
|
+
|
|
+ p->oncpu = 0;
|
|
+
|
|
+#ifdef CONFIG_PREEMPT
|
|
+ /* Want to start with kernel preemption disabled. */
|
|
+ task_thread_info(p)->preempt_count = 1;
|
|
+#endif
|
|
+ if (unlikely(p->policy == SCHED_FIFO))
|
|
+ goto out;
|
|
+ /*
|
|
+ * Share the timeslice between parent and child, thus the
|
|
+ * total amount of pending timeslices in the system doesn't change,
|
|
+ * resulting in more scheduling fairness. If it's negative, it won't
|
|
+ * matter since that's the same as being 0. current's time_slice is
|
|
+ * actually in rq_time_slice when it's running.
|
|
+ */
|
|
+ local_irq_disable();
|
|
+ rq = task_rq(current);
|
|
+ if (likely(rq->rq_time_slice > 0)) {
|
|
+ rq->rq_time_slice /= 2;
|
|
+ /*
|
|
+ * The remainder of the first timeslice might be recovered by
|
|
+ * the parent if the child exits early enough.
|
|
+ */
|
|
+ p->first_time_slice = 1;
|
|
+ }
|
|
+ p->rt.time_slice = rq->rq_time_slice;
|
|
+ local_irq_enable();
|
|
+out:
|
|
+ put_cpu();
|
|
+}
|
|
+
|
|
+/*
|
|
+ * wake_up_new_task - wake up a newly created task for the first time.
|
|
+ *
|
|
+ * This function will do some initial scheduler statistics housekeeping
|
|
+ * that must be done for every newly created context, then puts the task
|
|
+ * on the runqueue and wakes it.
|
|
+ */
|
|
+void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
|
|
+{
|
|
+ struct task_struct *parent;
|
|
+ unsigned long flags;
|
|
+ struct rq *rq;
|
|
+
|
|
+ rq = time_task_grq_lock(p, &flags); ;
|
|
+ parent = p->parent;
|
|
+ BUG_ON(p->state != TASK_RUNNING);
|
|
+ set_task_cpu(p, task_cpu(parent));
|
|
+
|
|
+ activate_task(p, rq);
|
|
+ trace_sched_wakeup_new(rq, p, 1);
|
|
+ if (!(clone_flags & CLONE_VM) && rq->curr == parent &&
|
|
+ !suitable_idle_cpus(p)) {
|
|
+ /*
|
|
+ * The VM isn't cloned, so we're in a good position to
|
|
+ * do child-runs-first in anticipation of an exec. This
|
|
+ * usually avoids a lot of COW overhead.
|
|
+ */
|
|
+ resched_task(parent);
|
|
+ } else
|
|
+ try_preempt(p);
|
|
+ task_grq_unlock(&flags);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Potentially available exiting-child timeslices are
|
|
+ * retrieved here - this way the parent does not get
|
|
+ * penalized for creating too many threads.
|
|
+ *
|
|
+ * (this cannot be used to 'generate' timeslices
|
|
+ * artificially, because any timeslice recovered here
|
|
+ * was given away by the parent in the first place.)
|
|
+ */
|
|
+void sched_exit(struct task_struct *p)
|
|
+{
|
|
+ struct task_struct *parent;
|
|
+ unsigned long flags;
|
|
+ struct rq *rq;
|
|
+
|
|
+ if (p->first_time_slice) {
|
|
+ parent = p->parent;
|
|
+ rq = task_grq_lock(parent, &flags);
|
|
+ parent->rt.time_slice += p->rt.time_slice;
|
|
+ if (unlikely(parent->rt.time_slice > timeslice()))
|
|
+ parent->rt.time_slice = timeslice();
|
|
+ task_grq_unlock(&flags);
|
|
+ }
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
+
|
|
+/**
|
|
+ * preempt_notifier_register - tell me when current is being preempted & rescheduled
|
|
+ * @notifier: notifier struct to register
|
|
+ */
|
|
+void preempt_notifier_register(struct preempt_notifier *notifier)
|
|
+{
|
|
+ hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(preempt_notifier_register);
|
|
+
|
|
+/**
|
|
+ * preempt_notifier_unregister - no longer interested in preemption notifications
|
|
+ * @notifier: notifier struct to unregister
|
|
+ *
|
|
+ * This is safe to call from within a preemption notifier.
|
|
+ */
|
|
+void preempt_notifier_unregister(struct preempt_notifier *notifier)
|
|
+{
|
|
+ hlist_del(¬ifier->link);
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
|
|
+
|
|
+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
|
|
+{
|
|
+ struct preempt_notifier *notifier;
|
|
+ struct hlist_node *node;
|
|
+
|
|
+ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
|
|
+ notifier->ops->sched_in(notifier, raw_smp_processor_id());
|
|
+}
|
|
+
|
|
+static void
|
|
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
|
|
+ struct task_struct *next)
|
|
+{
|
|
+ struct preempt_notifier *notifier;
|
|
+ struct hlist_node *node;
|
|
+
|
|
+ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
|
|
+ notifier->ops->sched_out(notifier, next);
|
|
+}
|
|
+
|
|
+#else /* !CONFIG_PREEMPT_NOTIFIERS */
|
|
+
|
|
+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
|
|
+{
|
|
+}
|
|
+
|
|
+static void
|
|
+fire_sched_out_preempt_notifiers(struct task_struct *curr,
|
|
+ struct task_struct *next)
|
|
+{
|
|
+}
|
|
+
|
|
+#endif /* CONFIG_PREEMPT_NOTIFIERS */
|
|
+
|
|
+/**
|
|
+ * prepare_task_switch - prepare to switch tasks
|
|
+ * @rq: the runqueue preparing to switch
|
|
+ * @next: the task we are going to switch to.
|
|
+ *
|
|
+ * This is called with the rq lock held and interrupts off. It must
|
|
+ * be paired with a subsequent finish_task_switch after the context
|
|
+ * switch.
|
|
+ *
|
|
+ * prepare_task_switch sets up locking and calls architecture specific
|
|
+ * hooks.
|
|
+ */
|
|
+static inline void
|
|
+prepare_task_switch(struct rq *rq, struct task_struct *prev,
|
|
+ struct task_struct *next)
|
|
+{
|
|
+ fire_sched_out_preempt_notifiers(prev, next);
|
|
+ prepare_lock_switch(rq, next);
|
|
+ prepare_arch_switch(next);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * finish_task_switch - clean up after a task-switch
|
|
+ * @rq: runqueue associated with task-switch
|
|
+ * @prev: the thread we just switched away from.
|
|
+ *
|
|
+ * finish_task_switch must be called after the context switch, paired
|
|
+ * with a prepare_task_switch call before the context switch.
|
|
+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
|
|
+ * and do any other architecture-specific cleanup actions.
|
|
+ *
|
|
+ * Note that we may have delayed dropping an mm in context_switch(). If
|
|
+ * so, we finish that here outside of the runqueue lock. (Doing it
|
|
+ * with the lock held can cause deadlocks; see schedule() for
|
|
+ * details.)
|
|
+ */
|
|
+static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
|
|
+ __releases(grq.lock)
|
|
+{
|
|
+ struct mm_struct *mm = rq->prev_mm;
|
|
+ long prev_state;
|
|
+
|
|
+ rq->prev_mm = NULL;
|
|
+
|
|
+ /*
|
|
+ * A task struct has one reference for the use as "current".
|
|
+ * If a task dies, then it sets TASK_DEAD in tsk->state and calls
|
|
+ * schedule one last time. The schedule call will never return, and
|
|
+ * the scheduled task must drop that reference.
|
|
+ * The test for TASK_DEAD must occur while the runqueue locks are
|
|
+ * still held, otherwise prev could be scheduled on another cpu, die
|
|
+ * there before we look at prev->state, and then the reference would
|
|
+ * be dropped twice.
|
|
+ * Manfred Spraul <manfred@colorfullife.com>
|
|
+ */
|
|
+ prev_state = prev->state;
|
|
+ finish_arch_switch(prev);
|
|
+ perf_counter_task_sched_in(current, cpu_of(rq));
|
|
+ finish_lock_switch(rq, prev);
|
|
+
|
|
+ fire_sched_in_preempt_notifiers(current);
|
|
+ if (mm)
|
|
+ mmdrop(mm);
|
|
+ if (unlikely(prev_state == TASK_DEAD)) {
|
|
+ /*
|
|
+ * Remove function-return probe instances associated with this
|
|
+ * task and put them back on the free list.
|
|
+ */
|
|
+ kprobe_flush_task(prev);
|
|
+ put_task_struct(prev);
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * schedule_tail - first thing a freshly forked thread must call.
|
|
+ * @prev: the thread we just switched away from.
|
|
+ */
|
|
+asmlinkage void schedule_tail(struct task_struct *prev)
|
|
+ __releases(grq.lock)
|
|
+{
|
|
+ struct rq *rq = this_rq();
|
|
+
|
|
+ finish_task_switch(rq, prev);
|
|
+#ifdef __ARCH_WANT_UNLOCKED_CTXSW
|
|
+ /* In this case, finish_task_switch does not reenable preemption */
|
|
+ preempt_enable();
|
|
+#endif
|
|
+ if (current->set_child_tid)
|
|
+ put_user(current->pid, current->set_child_tid);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * context_switch - switch to the new MM and the new
|
|
+ * thread's register state.
|
|
+ */
|
|
+static inline void
|
|
+context_switch(struct rq *rq, struct task_struct *prev,
|
|
+ struct task_struct *next)
|
|
+{
|
|
+ struct mm_struct *mm, *oldmm;
|
|
+
|
|
+ prepare_task_switch(rq, prev, next);
|
|
+ trace_sched_switch(rq, prev, next);
|
|
+ mm = next->mm;
|
|
+ oldmm = prev->active_mm;
|
|
+ /*
|
|
+ * For paravirt, this is coupled with an exit in switch_to to
|
|
+ * combine the page table reload and the switch backend into
|
|
+ * one hypercall.
|
|
+ */
|
|
+ arch_start_context_switch(prev);
|
|
+
|
|
+ if (unlikely(!mm)) {
|
|
+ next->active_mm = oldmm;
|
|
+ atomic_inc(&oldmm->mm_count);
|
|
+ enter_lazy_tlb(oldmm, next);
|
|
+ } else
|
|
+ switch_mm(oldmm, mm, next);
|
|
+
|
|
+ if (unlikely(!prev->mm)) {
|
|
+ prev->active_mm = NULL;
|
|
+ rq->prev_mm = oldmm;
|
|
+ }
|
|
+ /*
|
|
+ * Since the runqueue lock will be released by the next
|
|
+ * task (which is an invalid locking op but in the case
|
|
+ * of the scheduler it's an obvious special-case), so we
|
|
+ * do an early lockdep release here:
|
|
+ */
|
|
+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
|
|
+ spin_release(&grq.lock.dep_map, 1, _THIS_IP_);
|
|
+#endif
|
|
+
|
|
+ /* Here we just switch the register state and the stack. */
|
|
+ switch_to(prev, next, prev);
|
|
+
|
|
+ barrier();
|
|
+ /*
|
|
+ * this_rq must be evaluated again because prev may have moved
|
|
+ * CPUs since it called schedule(), thus the 'rq' on its stack
|
|
+ * frame will be invalid.
|
|
+ */
|
|
+ finish_task_switch(this_rq(), prev);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * nr_running, nr_uninterruptible and nr_context_switches:
|
|
+ *
|
|
+ * externally visible scheduler statistics: current number of runnable
|
|
+ * threads, current number of uninterruptible-sleeping threads, total
|
|
+ * number of context switches performed since bootup. All are measured
|
|
+ * without grabbing the grq lock but the occasional inaccurate result
|
|
+ * doesn't matter so long as it's positive.
|
|
+ */
|
|
+unsigned long nr_running(void)
|
|
+{
|
|
+ long nr = grq.nr_running;
|
|
+
|
|
+ if (unlikely(nr < 0))
|
|
+ nr = 0;
|
|
+ return (unsigned long)nr;
|
|
+}
|
|
+
|
|
+unsigned long nr_uninterruptible(void)
|
|
+{
|
|
+ unsigned long nu = grq.nr_uninterruptible;
|
|
+
|
|
+ if (unlikely(nu < 0))
|
|
+ nu = 0;
|
|
+ return nu;
|
|
+}
|
|
+
|
|
+unsigned long long nr_context_switches(void)
|
|
+{
|
|
+ long long ns = grq.nr_switches;
|
|
+
|
|
+ /* This is of course impossible */
|
|
+ if (unlikely(ns < 0))
|
|
+ ns = 1;
|
|
+ return (long long)ns;
|
|
+}
|
|
+
|
|
+unsigned long nr_iowait(void)
|
|
+{
|
|
+ unsigned long i, sum = 0;
|
|
+
|
|
+ for_each_possible_cpu(i)
|
|
+ sum += atomic_read(&cpu_rq(i)->nr_iowait);
|
|
+
|
|
+ return sum;
|
|
+}
|
|
+
|
|
+unsigned long nr_active(void)
|
|
+{
|
|
+ return nr_running() + nr_uninterruptible();
|
|
+}
|
|
+
|
|
+/* Variables and functions for calc_load */
|
|
+static unsigned long calc_load_update;
|
|
+unsigned long avenrun[3];
|
|
+EXPORT_SYMBOL(avenrun);
|
|
+
|
|
+/**
|
|
+ * get_avenrun - get the load average array
|
|
+ * @loads: pointer to dest load array
|
|
+ * @offset: offset to add
|
|
+ * @shift: shift count to shift the result left
|
|
+ *
|
|
+ * These values are estimates at best, so no need for locking.
|
|
+ */
|
|
+void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
|
|
+{
|
|
+ loads[0] = (avenrun[0] + offset) << shift;
|
|
+ loads[1] = (avenrun[1] + offset) << shift;
|
|
+ loads[2] = (avenrun[2] + offset) << shift;
|
|
+}
|
|
+
|
|
+static unsigned long
|
|
+calc_load(unsigned long load, unsigned long exp, unsigned long active)
|
|
+{
|
|
+ load *= exp;
|
|
+ load += active * (FIXED_1 - exp);
|
|
+ return load >> FSHIFT;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * calc_load - update the avenrun load estimates every LOAD_FREQ seconds.
|
|
+ */
|
|
+void calc_global_load(void)
|
|
+{
|
|
+ long active;
|
|
+
|
|
+ if (time_before(jiffies, calc_load_update))
|
|
+ return;
|
|
+ active = nr_active() * FIXED_1;
|
|
+
|
|
+ avenrun[0] = calc_load(avenrun[0], EXP_1, active);
|
|
+ avenrun[1] = calc_load(avenrun[1], EXP_5, active);
|
|
+ avenrun[2] = calc_load(avenrun[2], EXP_15, active);
|
|
+
|
|
+ calc_load_update = jiffies + LOAD_FREQ;
|
|
+}
|
|
+
|
|
+DEFINE_PER_CPU(struct kernel_stat, kstat);
|
|
+
|
|
+EXPORT_PER_CPU_SYMBOL(kstat);
|
|
+
|
|
+/*
|
|
+ * On each tick, see what percentage of that tick was attributed to each
|
|
+ * component and add the percentage to the _pc values. Once a _pc value has
|
|
+ * accumulated one tick's worth, account for that. This means the total
|
|
+ * percentage of load components will always be 100 per tick.
|
|
+ */
|
|
+static void pc_idle_time(struct rq *rq, unsigned long pc)
|
|
+{
|
|
+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
|
|
+ cputime64_t tmp = cputime_to_cputime64(jiffies_to_cputime(1));
|
|
+
|
|
+ if (atomic_read(&rq->nr_iowait) > 0) {
|
|
+ rq->iowait_pc += pc;
|
|
+ if (rq->iowait_pc >= 100) {
|
|
+ rq->iowait_pc %= 100;
|
|
+ cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
|
|
+ }
|
|
+ } else {
|
|
+ rq->idle_pc += pc;
|
|
+ if (rq->idle_pc >= 100) {
|
|
+ rq->idle_pc %= 100;
|
|
+ cpustat->idle = cputime64_add(cpustat->idle, tmp);
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+static void
|
|
+pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset,
|
|
+ unsigned long pc, unsigned long ns)
|
|
+{
|
|
+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
|
|
+ cputime_t one_jiffy = jiffies_to_cputime(1);
|
|
+ cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
|
|
+ cputime64_t tmp = cputime_to_cputime64(one_jiffy);
|
|
+
|
|
+ p->stime_pc += pc;
|
|
+ if (p->stime_pc >= 100) {
|
|
+ p->stime_pc -= 100;
|
|
+ p->stime = cputime_add(p->stime, one_jiffy);
|
|
+ p->stimescaled = cputime_add(p->stimescaled, one_jiffy_scaled);
|
|
+ account_group_system_time(p, one_jiffy);
|
|
+ acct_update_integrals(p);
|
|
+ }
|
|
+ p->se.sum_exec_runtime += ns;
|
|
+
|
|
+ if (hardirq_count() - hardirq_offset)
|
|
+ rq->irq_pc += pc;
|
|
+ else if (softirq_count()) {
|
|
+ rq->softirq_pc += pc;
|
|
+ if (rq->softirq_pc >= 100) {
|
|
+ rq->softirq_pc %= 100;
|
|
+ cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
|
|
+ }
|
|
+ } else {
|
|
+ rq->system_pc += pc;
|
|
+ if (rq->system_pc >= 100) {
|
|
+ rq->system_pc %= 100;
|
|
+ cpustat->system = cputime64_add(cpustat->system, tmp);
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+static void pc_user_time(struct rq *rq, struct task_struct *p,
|
|
+ unsigned long pc, unsigned long ns)
|
|
+{
|
|
+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
|
|
+ cputime_t one_jiffy = jiffies_to_cputime(1);
|
|
+ cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
|
|
+ cputime64_t tmp = cputime_to_cputime64(one_jiffy);
|
|
+
|
|
+ p->utime_pc += pc;
|
|
+ if (p->utime_pc >= 100) {
|
|
+ p->utime_pc -= 100;
|
|
+ p->utime = cputime_add(p->utime, one_jiffy);
|
|
+ p->utimescaled = cputime_add(p->utimescaled, one_jiffy_scaled);
|
|
+ account_group_user_time(p, one_jiffy);
|
|
+ acct_update_integrals(p);
|
|
+ }
|
|
+ p->se.sum_exec_runtime += ns;
|
|
+
|
|
+ if (TASK_NICE(p) > 0 || idleprio_task(p)) {
|
|
+ rq->nice_pc += pc;
|
|
+ if (rq->nice_pc >= 100) {
|
|
+ rq->nice_pc %= 100;
|
|
+ cpustat->nice = cputime64_add(cpustat->nice, tmp);
|
|
+ }
|
|
+ } else {
|
|
+ rq->user_pc += pc;
|
|
+ if (rq->user_pc >= 100) {
|
|
+ rq->user_pc %= 100;
|
|
+ cpustat->user = cputime64_add(cpustat->user, tmp);
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/* Convert nanoseconds to percentage of one tick. */
|
|
+#define NS_TO_PC(NS) (NS * 100 / JIFFIES_TO_NS(1))
|
|
+
|
|
+/*
|
|
+ * This is called on clock ticks and on context switches.
|
|
+ * Bank in p->se.sum_exec_runtime the ns elapsed since the last tick or switch.
|
|
+ * CPU scheduler quota accounting is also performed here in microseconds.
|
|
+ * The value returned from sched_clock() occasionally gives bogus values so
|
|
+ * some sanity checking is required. Time is supposed to be banked all the
|
|
+ * time so default to half a tick to make up for when sched_clock reverts
|
|
+ * to just returning jiffies, and for hardware that can't do tsc.
|
|
+ */
|
|
+static void
|
|
+update_cpu_clock(struct rq *rq, struct task_struct *p, int tick)
|
|
+{
|
|
+ long time_diff = rq->clock - p->last_ran;
|
|
+ long account_ns = rq->clock - rq->timekeep_clock;
|
|
+ struct task_struct *idle = rq->idle;
|
|
+ unsigned long account_pc;
|
|
+
|
|
+ /*
|
|
+ * There should be less than or equal to one jiffy worth, and not
|
|
+ * negative/overflow. time_diff is only used for internal scheduler
|
|
+ * time_slice accounting.
|
|
+ */
|
|
+ if (time_diff <= 0)
|
|
+ time_diff = JIFFIES_TO_NS(1) / 2;
|
|
+ else if (time_diff > JIFFIES_TO_NS(1))
|
|
+ time_diff = JIFFIES_TO_NS(1);
|
|
+
|
|
+ if (unlikely(account_ns < 0))
|
|
+ account_ns = 0;
|
|
+
|
|
+ account_pc = NS_TO_PC(account_ns);
|
|
+
|
|
+ if (tick) {
|
|
+ int user_tick = user_mode(get_irq_regs());
|
|
+
|
|
+ /* Accurate tick timekeeping */
|
|
+ if (user_tick)
|
|
+ pc_user_time(rq, p, account_pc, account_ns);
|
|
+ else if (p != idle || (irq_count() != HARDIRQ_OFFSET))
|
|
+ pc_system_time(rq, p, HARDIRQ_OFFSET,
|
|
+ account_pc, account_ns);
|
|
+ else
|
|
+ pc_idle_time(rq, account_pc);
|
|
+ } else {
|
|
+ /* Accurate subtick timekeeping */
|
|
+ if (p == idle)
|
|
+ pc_idle_time(rq, account_pc);
|
|
+ else
|
|
+ pc_user_time(rq, p, account_pc, account_ns);
|
|
+ }
|
|
+
|
|
+ /* time_slice accounting is done in usecs to avoid overflow on 32bit */
|
|
+ if (rq->rq_policy != SCHED_FIFO && p != idle)
|
|
+ rq->rq_time_slice -= time_diff / 1000;
|
|
+ p->last_ran = rq->timekeep_clock = rq->clock;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Return any ns on the sched_clock that have not yet been accounted in
|
|
+ * @p in case that task is currently running.
|
|
+ *
|
|
+ * Called with task_grq_lock() held on @rq.
|
|
+ */
|
|
+static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
|
|
+{
|
|
+ u64 ns = 0;
|
|
+
|
|
+ if (p == rq->curr) {
|
|
+ update_rq_clock(rq);
|
|
+ ns = rq->clock - p->last_ran;
|
|
+ if ((s64)ns < 0)
|
|
+ ns = 0;
|
|
+ }
|
|
+
|
|
+ return ns;
|
|
+}
|
|
+
|
|
+unsigned long long task_delta_exec(struct task_struct *p)
|
|
+{
|
|
+ unsigned long flags;
|
|
+ struct rq *rq;
|
|
+ u64 ns = 0;
|
|
+
|
|
+ rq = task_grq_lock(p, &flags);
|
|
+ ns = do_task_delta_exec(p, rq);
|
|
+ task_grq_unlock(&flags);
|
|
+
|
|
+ return ns;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Return accounted runtime for the task.
|
|
+ * In case the task is currently running, return the runtime plus current's
|
|
+ * pending runtime that have not been accounted yet.
|
|
+ */
|
|
+unsigned long long task_sched_runtime(struct task_struct *p)
|
|
+{
|
|
+ unsigned long flags;
|
|
+ struct rq *rq;
|
|
+ u64 ns = 0;
|
|
+
|
|
+ rq = task_grq_lock(p, &flags);
|
|
+ ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
|
|
+ task_grq_unlock(&flags);
|
|
+
|
|
+ return ns;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Return sum_exec_runtime for the thread group.
|
|
+ * In case the task is currently running, return the sum plus current's
|
|
+ * pending runtime that have not been accounted yet.
|
|
+ *
|
|
+ * Note that the thread group might have other running tasks as well,
|
|
+ * so the return value not includes other pending runtime that other
|
|
+ * running tasks might have.
|
|
+ */
|
|
+unsigned long long thread_group_sched_runtime(struct task_struct *p)
|
|
+{
|
|
+ struct task_cputime totals;
|
|
+ unsigned long flags;
|
|
+ struct rq *rq;
|
|
+ u64 ns;
|
|
+
|
|
+ rq = task_grq_lock(p, &flags);
|
|
+ thread_group_cputime(p, &totals);
|
|
+ ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
|
|
+ task_grq_unlock(&flags);
|
|
+
|
|
+ return ns;
|
|
+}
|
|
+
|
|
+/* Compatibility crap for removal */
|
|
+void account_user_time(struct task_struct *p, cputime_t cputime,
|
|
+ cputime_t cputime_scaled)
|
|
+{
|
|
+}
|
|
+
|
|
+void account_idle_time(cputime_t cputime)
|
|
+{
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Account guest cpu time to a process.
|
|
+ * @p: the process that the cpu time gets accounted to
|
|
+ * @cputime: the cpu time spent in virtual machine since the last update
|
|
+ * @cputime_scaled: cputime scaled by cpu frequency
|
|
+ */
|
|
+static void account_guest_time(struct task_struct *p, cputime_t cputime,
|
|
+ cputime_t cputime_scaled)
|
|
+{
|
|
+ cputime64_t tmp;
|
|
+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
|
|
+
|
|
+ tmp = cputime_to_cputime64(cputime);
|
|
+
|
|
+ /* Add guest time to process. */
|
|
+ p->utime = cputime_add(p->utime, cputime);
|
|
+ p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
|
|
+ account_group_user_time(p, cputime);
|
|
+ p->gtime = cputime_add(p->gtime, cputime);
|
|
+
|
|
+ /* Add guest time to cpustat. */
|
|
+ cpustat->user = cputime64_add(cpustat->user, tmp);
|
|
+ cpustat->guest = cputime64_add(cpustat->guest, tmp);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Account system cpu time to a process.
|
|
+ * @p: the process that the cpu time gets accounted to
|
|
+ * @hardirq_offset: the offset to subtract from hardirq_count()
|
|
+ * @cputime: the cpu time spent in kernel space since the last update
|
|
+ * @cputime_scaled: cputime scaled by cpu frequency
|
|
+ * This is for guest only now.
|
|
+ */
|
|
+void account_system_time(struct task_struct *p, int hardirq_offset,
|
|
+ cputime_t cputime, cputime_t cputime_scaled)
|
|
+{
|
|
+
|
|
+ if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
|
|
+ account_guest_time(p, cputime, cputime_scaled);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Account for involuntary wait time.
|
|
+ * @steal: the cpu time spent in involuntary wait
|
|
+ */
|
|
+void account_steal_time(cputime_t cputime)
|
|
+{
|
|
+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
|
|
+ cputime64_t cputime64 = cputime_to_cputime64(cputime);
|
|
+
|
|
+ cpustat->steal = cputime64_add(cpustat->steal, cputime64);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Account for idle time.
|
|
+ * @cputime: the cpu time spent in idle wait
|
|
+ */
|
|
+static void account_idle_times(cputime_t cputime)
|
|
+{
|
|
+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
|
|
+ cputime64_t cputime64 = cputime_to_cputime64(cputime);
|
|
+ struct rq *rq = this_rq();
|
|
+
|
|
+ if (atomic_read(&rq->nr_iowait) > 0)
|
|
+ cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
|
|
+ else
|
|
+ cpustat->idle = cputime64_add(cpustat->idle, cputime64);
|
|
+}
|
|
+
|
|
+#ifndef CONFIG_VIRT_CPU_ACCOUNTING
|
|
+
|
|
+void account_process_tick(struct task_struct *p, int user_tick)
|
|
+{
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Account multiple ticks of steal time.
|
|
+ * @p: the process from which the cpu time has been stolen
|
|
+ * @ticks: number of stolen ticks
|
|
+ */
|
|
+void account_steal_ticks(unsigned long ticks)
|
|
+{
|
|
+ account_steal_time(jiffies_to_cputime(ticks));
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Account multiple ticks of idle time.
|
|
+ * @ticks: number of stolen ticks
|
|
+ */
|
|
+void account_idle_ticks(unsigned long ticks)
|
|
+{
|
|
+ account_idle_times(jiffies_to_cputime(ticks));
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+ * Functions to test for when SCHED_ISO tasks have used their allocated
|
|
+ * quota as real time scheduling and convert them back to SCHED_NORMAL.
|
|
+ * Where possible, the data is tested lockless, to avoid grabbing grq_lock
|
|
+ * because the occasional inaccurate result won't matter. However the
|
|
+ * data is only ever modified under lock.
|
|
+ */
|
|
+static void set_iso_refractory(void)
|
|
+{
|
|
+ grq_lock();
|
|
+ grq.iso_refractory = 1;
|
|
+ grq_unlock();
|
|
+}
|
|
+
|
|
+static void clear_iso_refractory(void)
|
|
+{
|
|
+ grq_lock();
|
|
+ grq.iso_refractory = 0;
|
|
+ grq_unlock();
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Test if SCHED_ISO tasks have run longer than their alloted period as RT
|
|
+ * tasks and set the refractory flag if necessary. There is 10% hysteresis
|
|
+ * for unsetting the flag.
|
|
+ */
|
|
+static unsigned int test_ret_isorefractory(struct rq *rq)
|
|
+{
|
|
+ if (likely(!grq.iso_refractory)) {
|
|
+ if (grq.iso_ticks / ISO_PERIOD > sched_iso_cpu)
|
|
+ set_iso_refractory();
|
|
+ } else {
|
|
+ if (grq.iso_ticks / ISO_PERIOD < (sched_iso_cpu * 90 / 100))
|
|
+ clear_iso_refractory();
|
|
+ }
|
|
+ return grq.iso_refractory;
|
|
+}
|
|
+
|
|
+static void iso_tick(void)
|
|
+{
|
|
+ grq_lock();
|
|
+ grq.iso_ticks += 100;
|
|
+ grq_unlock();
|
|
+}
|
|
+
|
|
+/* No SCHED_ISO task was running so decrease rq->iso_ticks */
|
|
+static inline void no_iso_tick(void)
|
|
+{
|
|
+ if (grq.iso_ticks) {
|
|
+ grq_lock();
|
|
+ grq.iso_ticks = grq.iso_ticks * (ISO_PERIOD - 1) / ISO_PERIOD;
|
|
+ grq_unlock();
|
|
+ }
|
|
+}
|
|
+
|
|
+static int rq_running_iso(struct rq *rq)
|
|
+{
|
|
+ return rq->rq_prio == ISO_PRIO;
|
|
+}
|
|
+
|
|
+/* This manages tasks that have run out of timeslice during a scheduler_tick */
|
|
+static void task_running_tick(struct rq *rq)
|
|
+{
|
|
+ struct task_struct *p;
|
|
+
|
|
+ /*
|
|
+ * If a SCHED_ISO task is running we increment the iso_ticks. In
|
|
+ * order to prevent SCHED_ISO tasks from causing starvation in the
|
|
+ * presence of true RT tasks we account those as iso_ticks as well.
|
|
+ */
|
|
+ if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) {
|
|
+ if (grq.iso_ticks <= (ISO_PERIOD * 100) - 100)
|
|
+ iso_tick();
|
|
+ } else
|
|
+ no_iso_tick();
|
|
+
|
|
+ if (iso_queue(rq)) {
|
|
+ if (unlikely(test_ret_isorefractory(rq))) {
|
|
+ if (rq_running_iso(rq)) {
|
|
+ /*
|
|
+ * SCHED_ISO task is running as RT and limit
|
|
+ * has been hit. Force it to reschedule as
|
|
+ * SCHED_NORMAL by zeroing its time_slice
|
|
+ */
|
|
+ rq->rq_time_slice = 0;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* SCHED_FIFO tasks never run out of timeslice. */
|
|
+ if (rq_idle(rq) || rq->rq_time_slice > 0 || rq->rq_policy == SCHED_FIFO)
|
|
+ return;
|
|
+
|
|
+ /* p->rt.time_slice <= 0. We only modify task_struct under grq lock */
|
|
+ grq_lock();
|
|
+ p = rq->curr;
|
|
+ if (likely(task_running(p))) {
|
|
+ requeue_task(p);
|
|
+ set_tsk_need_resched(p);
|
|
+ }
|
|
+ grq_unlock();
|
|
+}
|
|
+
|
|
+void wake_up_idle_cpu(int cpu);
|
|
+
|
|
+/*
|
|
+ * This function gets called by the timer code, with HZ frequency.
|
|
+ * We call it with interrupts disabled. The data modified is all
|
|
+ * local to struct rq so we don't need to grab grq lock.
|
|
+ */
|
|
+void scheduler_tick(void)
|
|
+{
|
|
+ int cpu = smp_processor_id();
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
+
|
|
+ sched_clock_tick();
|
|
+ update_rq_clock(rq);
|
|
+ update_cpu_clock(rq, rq->curr, 1);
|
|
+ if (!rq_idle(rq))
|
|
+ task_running_tick(rq);
|
|
+ else {
|
|
+ no_iso_tick();
|
|
+ if (unlikely(queued_notrunning()))
|
|
+ set_tsk_need_resched(rq->idle);
|
|
+ }
|
|
+}
|
|
+
|
|
+notrace unsigned long get_parent_ip(unsigned long addr)
|
|
+{
|
|
+ if (in_lock_functions(addr)) {
|
|
+ addr = CALLER_ADDR2;
|
|
+ if (in_lock_functions(addr))
|
|
+ addr = CALLER_ADDR3;
|
|
+ }
|
|
+ return addr;
|
|
+}
|
|
+
|
|
+#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
|
|
+ defined(CONFIG_PREEMPT_TRACER))
|
|
+void __kprobes add_preempt_count(int val)
|
|
+{
|
|
+#ifdef CONFIG_DEBUG_PREEMPT
|
|
+ /*
|
|
+ * Underflow?
|
|
+ */
|
|
+ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
|
|
+ return;
|
|
+#endif
|
|
+ preempt_count() += val;
|
|
+#ifdef CONFIG_DEBUG_PREEMPT
|
|
+ /*
|
|
+ * Spinlock count overflowing soon?
|
|
+ */
|
|
+ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
|
|
+ PREEMPT_MASK - 10);
|
|
+#endif
|
|
+ if (preempt_count() == val)
|
|
+ trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
|
|
+}
|
|
+EXPORT_SYMBOL(add_preempt_count);
|
|
+
|
|
+void __kprobes sub_preempt_count(int val)
|
|
+{
|
|
+#ifdef CONFIG_DEBUG_PREEMPT
|
|
+ /*
|
|
+ * Underflow?
|
|
+ */
|
|
+ if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
|
|
+ return;
|
|
+ /*
|
|
+ * Is the spinlock portion underflowing?
|
|
+ */
|
|
+ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
|
|
+ !(preempt_count() & PREEMPT_MASK)))
|
|
+ return;
|
|
+#endif
|
|
+
|
|
+ if (preempt_count() == val)
|
|
+ trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
|
|
+ preempt_count() -= val;
|
|
+}
|
|
+EXPORT_SYMBOL(sub_preempt_count);
|
|
+#endif
|
|
+
|
|
+/*
|
|
+ * Deadline is "now" in jiffies + (offset by priority). Setting the deadline
|
|
+ * is the key to everything. It distributes cpu fairly amongst tasks of the
|
|
+ * same nice value, it proportions cpu according to nice level, it means the
|
|
+ * task that last woke up the longest ago has the earliest deadline, thus
|
|
+ * ensuring that interactive tasks get low latency on wake up.
|
|
+ */
|
|
+static inline int prio_deadline_diff(struct task_struct *p)
|
|
+{
|
|
+ return (pratio(p) * rr_interval * HZ / 1000 / 100) ? : 1;
|
|
+}
|
|
+
|
|
+static inline int longest_deadline(void)
|
|
+{
|
|
+ return (prio_ratios[39] * rr_interval * HZ / 1000 / 100);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * SCHED_IDLE tasks still have a deadline set, but offset by to nice +19.
|
|
+ * This allows nice levels to work between IDLEPRIO tasks and gives a
|
|
+ * deadline longer than nice +19 for when they're scheduled as SCHED_NORMAL
|
|
+ * tasks.
|
|
+ */
|
|
+static inline void time_slice_expired(struct task_struct *p)
|
|
+{
|
|
+ reset_first_time_slice(p);
|
|
+ p->rt.time_slice = timeslice();
|
|
+ p->deadline = jiffies + prio_deadline_diff(p);
|
|
+ if (idleprio_task(p))
|
|
+ p->deadline += longest_deadline();
|
|
+}
|
|
+
|
|
+static inline void check_deadline(struct task_struct *p)
|
|
+{
|
|
+ if (p->rt.time_slice <= 0)
|
|
+ time_slice_expired(p);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * O(n) lookup of all tasks in the global runqueue. The real brainfuck
|
|
+ * of lock contention and O(n). It's not really O(n) as only the queued,
|
|
+ * but not running tasks are scanned, and is O(n) queued in the worst case
|
|
+ * scenario only because the right task can be found before scanning all of
|
|
+ * them.
|
|
+ * Tasks are selected in this order:
|
|
+ * Real time tasks are selected purely by their static priority and in the
|
|
+ * order they were queued, so the lowest value idx, and the first queued task
|
|
+ * of that priority value is chosen.
|
|
+ * If no real time tasks are found, the SCHED_ISO priority is checked, and
|
|
+ * all SCHED_ISO tasks have the same priority value, so they're selected by
|
|
+ * the earliest deadline value.
|
|
+ * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the
|
|
+ * earliest deadline.
|
|
+ * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are
|
|
+ * selected by the earliest deadline.
|
|
+ */
|
|
+static inline struct
|
|
+task_struct *earliest_deadline_task(struct rq *rq, struct task_struct *idle)
|
|
+{
|
|
+ unsigned long dl, earliest_deadline = 0; /* Initialise to silence compiler */
|
|
+ struct task_struct *p, *edt;
|
|
+ unsigned int cpu = rq->cpu;
|
|
+ struct list_head *queue;
|
|
+ int idx = 0;
|
|
+
|
|
+ edt = idle;
|
|
+retry:
|
|
+ idx = find_next_bit(grq.prio_bitmap, PRIO_LIMIT, idx);
|
|
+ if (idx >= PRIO_LIMIT)
|
|
+ goto out;
|
|
+ queue = &grq.queue[idx];
|
|
+ list_for_each_entry(p, queue, rt.run_list) {
|
|
+ /* Make sure cpu affinity is ok */
|
|
+ if (!cpu_isset(cpu, p->cpus_allowed))
|
|
+ continue;
|
|
+ if (idx < MAX_RT_PRIO) {
|
|
+ /* We found an rt task */
|
|
+ edt = p;
|
|
+ goto out_take;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * No rt task, select the earliest deadline task now.
|
|
+ * On the 1st run the 2nd condition is never used, so
|
|
+ * there is no need to initialise earliest_deadline
|
|
+ * before. Normalise all old deadlines to now.
|
|
+ */
|
|
+ if (time_before(p->deadline, jiffies))
|
|
+ dl = jiffies;
|
|
+ else
|
|
+ dl = p->deadline;
|
|
+
|
|
+ if (edt == idle ||
|
|
+ time_before(dl, earliest_deadline)) {
|
|
+ earliest_deadline = dl;
|
|
+ edt = p;
|
|
+ }
|
|
+ }
|
|
+ if (edt == idle) {
|
|
+ if (++idx < PRIO_LIMIT)
|
|
+ goto retry;
|
|
+ goto out;
|
|
+ }
|
|
+out_take:
|
|
+ take_task(rq, edt);
|
|
+out:
|
|
+ return edt;
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+static inline void set_cpuidle_map(unsigned long cpu)
|
|
+{
|
|
+ cpu_set(cpu, grq.cpu_idle_map);
|
|
+}
|
|
+
|
|
+static inline void clear_cpuidle_map(unsigned long cpu)
|
|
+{
|
|
+ cpu_clear(cpu, grq.cpu_idle_map);
|
|
+}
|
|
+
|
|
+#else /* CONFIG_SMP */
|
|
+static inline void set_cpuidle_map(unsigned long cpu)
|
|
+{
|
|
+}
|
|
+
|
|
+static inline void clear_cpuidle_map(unsigned long cpu)
|
|
+{
|
|
+}
|
|
+#endif /* !CONFIG_SMP */
|
|
+
|
|
+/*
|
|
+ * Print scheduling while atomic bug:
|
|
+ */
|
|
+static noinline void __schedule_bug(struct task_struct *prev)
|
|
+{
|
|
+ struct pt_regs *regs = get_irq_regs();
|
|
+
|
|
+ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
|
|
+ prev->comm, prev->pid, preempt_count());
|
|
+
|
|
+ debug_show_held_locks(prev);
|
|
+ print_modules();
|
|
+ if (irqs_disabled())
|
|
+ print_irqtrace_events(prev);
|
|
+
|
|
+ if (regs)
|
|
+ show_regs(regs);
|
|
+ else
|
|
+ dump_stack();
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Various schedule()-time debugging checks and statistics:
|
|
+ */
|
|
+static inline void schedule_debug(struct task_struct *prev)
|
|
+{
|
|
+ /*
|
|
+ * Test if we are atomic. Since do_exit() needs to call into
|
|
+ * schedule() atomically, we ignore that path for now.
|
|
+ * Otherwise, whine if we are scheduling when we should not be.
|
|
+ */
|
|
+ if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
|
|
+ __schedule_bug(prev);
|
|
+
|
|
+ profile_hit(SCHED_PROFILING, __builtin_return_address(0));
|
|
+
|
|
+ schedstat_inc(this_rq(), sched_count);
|
|
+#ifdef CONFIG_SCHEDSTATS
|
|
+ if (unlikely(prev->lock_depth >= 0)) {
|
|
+ schedstat_inc(this_rq(), bkl_count);
|
|
+ schedstat_inc(prev, sched_info.bkl_count);
|
|
+ }
|
|
+#endif
|
|
+}
|
|
+
|
|
+/*
|
|
+ * schedule() is the main scheduler function.
|
|
+ */
|
|
+asmlinkage void __sched __schedule(void)
|
|
+{
|
|
+ struct task_struct *prev, *next, *idle;
|
|
+ int deactivate = 0, cpu;
|
|
+ long *switch_count;
|
|
+ struct rq *rq;
|
|
+ u64 now;
|
|
+
|
|
+ cpu = smp_processor_id();
|
|
+ rq = this_rq();
|
|
+ rcu_qsctr_inc(cpu);
|
|
+ prev = rq->curr;
|
|
+ switch_count = &prev->nivcsw;
|
|
+
|
|
+ release_kernel_lock(prev);
|
|
+need_resched_nonpreemptible:
|
|
+
|
|
+ schedule_debug(prev);
|
|
+ idle = rq->idle;
|
|
+ /*
|
|
+ * The idle thread is not allowed to schedule!
|
|
+ * Remove this check after it has been exercised a bit.
|
|
+ */
|
|
+ if (unlikely(prev == idle) && prev->state != TASK_RUNNING) {
|
|
+ printk(KERN_ERR "bad: scheduling from the idle thread!\n");
|
|
+ dump_stack();
|
|
+ }
|
|
+
|
|
+ grq_lock_irq();
|
|
+ update_rq_clock(rq);
|
|
+ now = rq->clock;
|
|
+ update_cpu_clock(rq, prev, 0);
|
|
+
|
|
+ clear_tsk_need_resched(prev);
|
|
+
|
|
+ if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
|
|
+ if (unlikely(signal_pending_state(prev->state, prev)))
|
|
+ prev->state = TASK_RUNNING;
|
|
+ else
|
|
+ deactivate = 1;
|
|
+ switch_count = &prev->nvcsw;
|
|
+ }
|
|
+
|
|
+ if (prev != idle) {
|
|
+ /* Update all the information stored on struct rq */
|
|
+ prev->rt.time_slice = rq->rq_time_slice;
|
|
+ prev->deadline = rq->rq_deadline;
|
|
+ check_deadline(prev);
|
|
+ return_task(prev, deactivate);
|
|
+ }
|
|
+
|
|
+ if (likely(queued_notrunning())) {
|
|
+ next = earliest_deadline_task(rq, idle);
|
|
+ } else {
|
|
+ next = idle;
|
|
+ schedstat_inc(rq, sched_goidle);
|
|
+ }
|
|
+
|
|
+ if (next == rq->idle)
|
|
+ set_cpuidle_map(cpu);
|
|
+ else
|
|
+ clear_cpuidle_map(cpu);
|
|
+
|
|
+ prefetch(next);
|
|
+ prefetch_stack(next);
|
|
+
|
|
+ prev->timestamp = prev->last_ran = now;
|
|
+
|
|
+ if (likely(prev != next)) {
|
|
+ rq->rq_time_slice = next->rt.time_slice;
|
|
+ rq->rq_deadline = next->deadline;
|
|
+ rq->rq_prio = next->prio;
|
|
+
|
|
+ sched_info_switch(prev, next);
|
|
+ grq.nr_switches++;
|
|
+ next->oncpu = 1;
|
|
+ prev->oncpu = 0;
|
|
+ rq->curr = next;
|
|
+ ++*switch_count;
|
|
+
|
|
+ context_switch(rq, prev, next); /* unlocks the rq */
|
|
+ /*
|
|
+ * the context switch might have flipped the stack from under
|
|
+ * us, hence refresh the local variables.
|
|
+ */
|
|
+ cpu = smp_processor_id();
|
|
+ rq = cpu_rq(cpu);
|
|
+ } else
|
|
+ grq_unlock_irq();
|
|
+
|
|
+ if (unlikely(reacquire_kernel_lock(current) < 0))
|
|
+ goto need_resched_nonpreemptible;
|
|
+}
|
|
+
|
|
+asmlinkage void __sched schedule(void)
|
|
+{
|
|
+need_resched:
|
|
+ preempt_disable();
|
|
+ __schedule();
|
|
+ preempt_enable_no_resched();
|
|
+ if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
|
|
+ goto need_resched;
|
|
+}
|
|
+EXPORT_SYMBOL(schedule);
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
|
|
+{
|
|
+ return 0;
|
|
+}
|
|
+#endif
|
|
+
|
|
+#ifdef CONFIG_PREEMPT
|
|
+/*
|
|
+ * this is the entry point to schedule() from in-kernel preemption
|
|
+ * off of preempt_enable. Kernel preemptions off return from interrupt
|
|
+ * occur there and call schedule directly.
|
|
+ */
|
|
+asmlinkage void __sched preempt_schedule(void)
|
|
+{
|
|
+ struct thread_info *ti = current_thread_info();
|
|
+
|
|
+ /*
|
|
+ * If there is a non-zero preempt_count or interrupts are disabled,
|
|
+ * we do not want to preempt the current task. Just return..
|
|
+ */
|
|
+ if (likely(ti->preempt_count || irqs_disabled()))
|
|
+ return;
|
|
+
|
|
+ do {
|
|
+ add_preempt_count(PREEMPT_ACTIVE);
|
|
+ schedule();
|
|
+ sub_preempt_count(PREEMPT_ACTIVE);
|
|
+
|
|
+ /*
|
|
+ * Check again in case we missed a preemption opportunity
|
|
+ * between schedule and now.
|
|
+ */
|
|
+ barrier();
|
|
+ } while (need_resched());
|
|
+}
|
|
+EXPORT_SYMBOL(preempt_schedule);
|
|
+
|
|
+/*
|
|
+ * this is the entry point to schedule() from kernel preemption
|
|
+ * off of irq context.
|
|
+ * Note, that this is called and return with irqs disabled. This will
|
|
+ * protect us against recursive calling from irq.
|
|
+ */
|
|
+asmlinkage void __sched preempt_schedule_irq(void)
|
|
+{
|
|
+ struct thread_info *ti = current_thread_info();
|
|
+
|
|
+ /* Catch callers which need to be fixed */
|
|
+ BUG_ON(ti->preempt_count || !irqs_disabled());
|
|
+
|
|
+ do {
|
|
+ add_preempt_count(PREEMPT_ACTIVE);
|
|
+ local_irq_enable();
|
|
+ schedule();
|
|
+ local_irq_disable();
|
|
+ sub_preempt_count(PREEMPT_ACTIVE);
|
|
+
|
|
+ /*
|
|
+ * Check again in case we missed a preemption opportunity
|
|
+ * between schedule and now.
|
|
+ */
|
|
+ barrier();
|
|
+ } while (need_resched());
|
|
+}
|
|
+
|
|
+#endif /* CONFIG_PREEMPT */
|
|
+
|
|
+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
|
|
+ void *key)
|
|
+{
|
|
+ return try_to_wake_up(curr->private, mode, sync);
|
|
+}
|
|
+EXPORT_SYMBOL(default_wake_function);
|
|
+
|
|
+/*
|
|
+ * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
|
|
+ * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
|
|
+ * number) then we wake all the non-exclusive tasks and one exclusive task.
|
|
+ *
|
|
+ * There are circumstances in which we can try to wake a task which has already
|
|
+ * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
|
|
+ * zero in this (rare) case, and we handle it by continuing to scan the queue.
|
|
+ */
|
|
+void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
|
|
+ int nr_exclusive, int sync, void *key)
|
|
+{
|
|
+ struct list_head *tmp, *next;
|
|
+
|
|
+ list_for_each_safe(tmp, next, &q->task_list) {
|
|
+ wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
|
|
+ unsigned flags = curr->flags;
|
|
+
|
|
+ if (curr->func(curr, mode, sync, key) &&
|
|
+ (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
|
|
+ break;
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * __wake_up - wake up threads blocked on a waitqueue.
|
|
+ * @q: the waitqueue
|
|
+ * @mode: which threads
|
|
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
|
|
+ * @key: is directly passed to the wakeup function
|
|
+ *
|
|
+ * It may be assumed that this function implies a write memory barrier before
|
|
+ * changing the task state if and only if any tasks are woken up.
|
|
+ */
|
|
+void __wake_up(wait_queue_head_t *q, unsigned int mode,
|
|
+ int nr_exclusive, void *key)
|
|
+{
|
|
+ unsigned long flags;
|
|
+
|
|
+ spin_lock_irqsave(&q->lock, flags);
|
|
+ __wake_up_common(q, mode, nr_exclusive, 0, key);
|
|
+ spin_unlock_irqrestore(&q->lock, flags);
|
|
+}
|
|
+EXPORT_SYMBOL(__wake_up);
|
|
+
|
|
+/*
|
|
+ * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
|
|
+ */
|
|
+void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
|
|
+{
|
|
+ __wake_up_common(q, mode, 1, 0, NULL);
|
|
+}
|
|
+
|
|
+void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
|
|
+{
|
|
+ __wake_up_common(q, mode, 1, 0, key);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * __wake_up_sync_key - wake up threads blocked on a waitqueue.
|
|
+ * @q: the waitqueue
|
|
+ * @mode: which threads
|
|
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
|
|
+ * @key: opaque value to be passed to wakeup targets
|
|
+ *
|
|
+ * The sync wakeup differs that the waker knows that it will schedule
|
|
+ * away soon, so while the target thread will be woken up, it will not
|
|
+ * be migrated to another CPU - ie. the two threads are 'synchronized'
|
|
+ * with each other. This can prevent needless bouncing between CPUs.
|
|
+ *
|
|
+ * On UP it can prevent extra preemption.
|
|
+ *
|
|
+ * It may be assumed that this function implies a write memory barrier before
|
|
+ * changing the task state if and only if any tasks are woken up.
|
|
+ */
|
|
+void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
|
|
+ int nr_exclusive, void *key)
|
|
+{
|
|
+ unsigned long flags;
|
|
+ int sync = 1;
|
|
+
|
|
+ if (unlikely(!q))
|
|
+ return;
|
|
+
|
|
+ if (unlikely(!nr_exclusive))
|
|
+ sync = 0;
|
|
+
|
|
+ spin_lock_irqsave(&q->lock, flags);
|
|
+ __wake_up_common(q, mode, nr_exclusive, sync, key);
|
|
+ spin_unlock_irqrestore(&q->lock, flags);
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(__wake_up_sync_key);
|
|
+
|
|
+/**
|
|
+ * __wake_up_sync - wake up threads blocked on a waitqueue.
|
|
+ * @q: the waitqueue
|
|
+ * @mode: which threads
|
|
+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
|
|
+ *
|
|
+ * The sync wakeup differs that the waker knows that it will schedule
|
|
+ * away soon, so while the target thread will be woken up, it will not
|
|
+ * be migrated to another CPU - ie. the two threads are 'synchronized'
|
|
+ * with each other. This can prevent needless bouncing between CPUs.
|
|
+ *
|
|
+ * On UP it can prevent extra preemption.
|
|
+ */
|
|
+void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
|
|
+{
|
|
+ unsigned long flags;
|
|
+ int sync = 1;
|
|
+
|
|
+ if (unlikely(!q))
|
|
+ return;
|
|
+
|
|
+ if (unlikely(!nr_exclusive))
|
|
+ sync = 0;
|
|
+
|
|
+ spin_lock_irqsave(&q->lock, flags);
|
|
+ __wake_up_common(q, mode, nr_exclusive, sync, NULL);
|
|
+ spin_unlock_irqrestore(&q->lock, flags);
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
|
|
+
|
|
+/**
|
|
+ * complete: - signals a single thread waiting on this completion
|
|
+ * @x: holds the state of this particular completion
|
|
+ *
|
|
+ * This will wake up a single thread waiting on this completion. Threads will be
|
|
+ * awakened in the same order in which they were queued.
|
|
+ *
|
|
+ * See also complete_all(), wait_for_completion() and related routines.
|
|
+ *
|
|
+ * It may be assumed that this function implies a write memory barrier before
|
|
+ * changing the task state if and only if any tasks are woken up.
|
|
+ */
|
|
+void complete(struct completion *x)
|
|
+{
|
|
+ unsigned long flags;
|
|
+
|
|
+ spin_lock_irqsave(&x->wait.lock, flags);
|
|
+ x->done++;
|
|
+ __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
|
|
+ spin_unlock_irqrestore(&x->wait.lock, flags);
|
|
+}
|
|
+EXPORT_SYMBOL(complete);
|
|
+
|
|
+/**
|
|
+ * complete_all: - signals all threads waiting on this completion
|
|
+ * @x: holds the state of this particular completion
|
|
+ *
|
|
+ * This will wake up all threads waiting on this particular completion event.
|
|
+ *
|
|
+ * It may be assumed that this function implies a write memory barrier before
|
|
+ * changing the task state if and only if any tasks are woken up.
|
|
+ */
|
|
+void complete_all(struct completion *x)
|
|
+{
|
|
+ unsigned long flags;
|
|
+
|
|
+ spin_lock_irqsave(&x->wait.lock, flags);
|
|
+ x->done += UINT_MAX/2;
|
|
+ __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
|
|
+ spin_unlock_irqrestore(&x->wait.lock, flags);
|
|
+}
|
|
+EXPORT_SYMBOL(complete_all);
|
|
+
|
|
+static inline long __sched
|
|
+do_wait_for_common(struct completion *x, long timeout, int state)
|
|
+{
|
|
+ if (!x->done) {
|
|
+ DECLARE_WAITQUEUE(wait, current);
|
|
+
|
|
+ wait.flags |= WQ_FLAG_EXCLUSIVE;
|
|
+ __add_wait_queue_tail(&x->wait, &wait);
|
|
+ do {
|
|
+ if (signal_pending_state(state, current)) {
|
|
+ timeout = -ERESTARTSYS;
|
|
+ break;
|
|
+ }
|
|
+ __set_current_state(state);
|
|
+ spin_unlock_irq(&x->wait.lock);
|
|
+ timeout = schedule_timeout(timeout);
|
|
+ spin_lock_irq(&x->wait.lock);
|
|
+ } while (!x->done && timeout);
|
|
+ __remove_wait_queue(&x->wait, &wait);
|
|
+ if (!x->done)
|
|
+ return timeout;
|
|
+ }
|
|
+ x->done--;
|
|
+ return timeout ?: 1;
|
|
+}
|
|
+
|
|
+static long __sched
|
|
+wait_for_common(struct completion *x, long timeout, int state)
|
|
+{
|
|
+ might_sleep();
|
|
+
|
|
+ spin_lock_irq(&x->wait.lock);
|
|
+ timeout = do_wait_for_common(x, timeout, state);
|
|
+ spin_unlock_irq(&x->wait.lock);
|
|
+ return timeout;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * wait_for_completion: - waits for completion of a task
|
|
+ * @x: holds the state of this particular completion
|
|
+ *
|
|
+ * This waits to be signaled for completion of a specific task. It is NOT
|
|
+ * interruptible and there is no timeout.
|
|
+ *
|
|
+ * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
|
|
+ * and interrupt capability. Also see complete().
|
|
+ */
|
|
+void __sched wait_for_completion(struct completion *x)
|
|
+{
|
|
+ wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
|
|
+}
|
|
+EXPORT_SYMBOL(wait_for_completion);
|
|
+
|
|
+/**
|
|
+ * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
|
|
+ * @x: holds the state of this particular completion
|
|
+ * @timeout: timeout value in jiffies
|
|
+ *
|
|
+ * This waits for either a completion of a specific task to be signaled or for a
|
|
+ * specified timeout to expire. The timeout is in jiffies. It is not
|
|
+ * interruptible.
|
|
+ */
|
|
+unsigned long __sched
|
|
+wait_for_completion_timeout(struct completion *x, unsigned long timeout)
|
|
+{
|
|
+ return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
|
|
+}
|
|
+EXPORT_SYMBOL(wait_for_completion_timeout);
|
|
+
|
|
+/**
|
|
+ * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
|
|
+ * @x: holds the state of this particular completion
|
|
+ *
|
|
+ * This waits for completion of a specific task to be signaled. It is
|
|
+ * interruptible.
|
|
+ */
|
|
+int __sched wait_for_completion_interruptible(struct completion *x)
|
|
+{
|
|
+ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
|
|
+ if (t == -ERESTARTSYS)
|
|
+ return t;
|
|
+ return 0;
|
|
+}
|
|
+EXPORT_SYMBOL(wait_for_completion_interruptible);
|
|
+
|
|
+/**
|
|
+ * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
|
|
+ * @x: holds the state of this particular completion
|
|
+ * @timeout: timeout value in jiffies
|
|
+ *
|
|
+ * This waits for either a completion of a specific task to be signaled or for a
|
|
+ * specified timeout to expire. It is interruptible. The timeout is in jiffies.
|
|
+ */
|
|
+unsigned long __sched
|
|
+wait_for_completion_interruptible_timeout(struct completion *x,
|
|
+ unsigned long timeout)
|
|
+{
|
|
+ return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
|
|
+}
|
|
+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
|
|
+
|
|
+/**
|
|
+ * wait_for_completion_killable: - waits for completion of a task (killable)
|
|
+ * @x: holds the state of this particular completion
|
|
+ *
|
|
+ * This waits to be signaled for completion of a specific task. It can be
|
|
+ * interrupted by a kill signal.
|
|
+ */
|
|
+int __sched wait_for_completion_killable(struct completion *x)
|
|
+{
|
|
+ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
|
|
+ if (t == -ERESTARTSYS)
|
|
+ return t;
|
|
+ return 0;
|
|
+}
|
|
+EXPORT_SYMBOL(wait_for_completion_killable);
|
|
+
|
|
+/**
|
|
+ * try_wait_for_completion - try to decrement a completion without blocking
|
|
+ * @x: completion structure
|
|
+ *
|
|
+ * Returns: 0 if a decrement cannot be done without blocking
|
|
+ * 1 if a decrement succeeded.
|
|
+ *
|
|
+ * If a completion is being used as a counting completion,
|
|
+ * attempt to decrement the counter without blocking. This
|
|
+ * enables us to avoid waiting if the resource the completion
|
|
+ * is protecting is not available.
|
|
+ */
|
|
+bool try_wait_for_completion(struct completion *x)
|
|
+{
|
|
+ int ret = 1;
|
|
+
|
|
+ spin_lock_irq(&x->wait.lock);
|
|
+ if (!x->done)
|
|
+ ret = 0;
|
|
+ else
|
|
+ x->done--;
|
|
+ spin_unlock_irq(&x->wait.lock);
|
|
+ return ret;
|
|
+}
|
|
+EXPORT_SYMBOL(try_wait_for_completion);
|
|
+
|
|
+/**
|
|
+ * completion_done - Test to see if a completion has any waiters
|
|
+ * @x: completion structure
|
|
+ *
|
|
+ * Returns: 0 if there are waiters (wait_for_completion() in progress)
|
|
+ * 1 if there are no waiters.
|
|
+ *
|
|
+ */
|
|
+bool completion_done(struct completion *x)
|
|
+{
|
|
+ int ret = 1;
|
|
+
|
|
+ spin_lock_irq(&x->wait.lock);
|
|
+ if (!x->done)
|
|
+ ret = 0;
|
|
+ spin_unlock_irq(&x->wait.lock);
|
|
+ return ret;
|
|
+}
|
|
+EXPORT_SYMBOL(completion_done);
|
|
+
|
|
+static long __sched
|
|
+sleep_on_common(wait_queue_head_t *q, int state, long timeout)
|
|
+{
|
|
+ unsigned long flags;
|
|
+ wait_queue_t wait;
|
|
+
|
|
+ init_waitqueue_entry(&wait, current);
|
|
+
|
|
+ __set_current_state(state);
|
|
+
|
|
+ spin_lock_irqsave(&q->lock, flags);
|
|
+ __add_wait_queue(q, &wait);
|
|
+ spin_unlock(&q->lock);
|
|
+ timeout = schedule_timeout(timeout);
|
|
+ spin_lock_irq(&q->lock);
|
|
+ __remove_wait_queue(q, &wait);
|
|
+ spin_unlock_irqrestore(&q->lock, flags);
|
|
+
|
|
+ return timeout;
|
|
+}
|
|
+
|
|
+void __sched interruptible_sleep_on(wait_queue_head_t *q)
|
|
+{
|
|
+ sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
|
|
+}
|
|
+EXPORT_SYMBOL(interruptible_sleep_on);
|
|
+
|
|
+long __sched
|
|
+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
|
|
+{
|
|
+ return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
|
|
+}
|
|
+EXPORT_SYMBOL(interruptible_sleep_on_timeout);
|
|
+
|
|
+void __sched sleep_on(wait_queue_head_t *q)
|
|
+{
|
|
+ sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
|
|
+}
|
|
+EXPORT_SYMBOL(sleep_on);
|
|
+
|
|
+long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
|
|
+{
|
|
+ return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
|
|
+}
|
|
+EXPORT_SYMBOL(sleep_on_timeout);
|
|
+
|
|
+#ifdef CONFIG_RT_MUTEXES
|
|
+
|
|
+/*
|
|
+ * rt_mutex_setprio - set the current priority of a task
|
|
+ * @p: task
|
|
+ * @prio: prio value (kernel-internal form)
|
|
+ *
|
|
+ * This function changes the 'effective' priority of a task. It does
|
|
+ * not touch ->normal_prio like __setscheduler().
|
|
+ *
|
|
+ * Used by the rt_mutex code to implement priority inheritance logic.
|
|
+ */
|
|
+void rt_mutex_setprio(struct task_struct *p, int prio)
|
|
+{
|
|
+ unsigned long flags;
|
|
+ int queued, oldprio;
|
|
+ struct rq *rq;
|
|
+
|
|
+ BUG_ON(prio < 0 || prio > MAX_PRIO);
|
|
+
|
|
+ rq = time_task_grq_lock(p, &flags);
|
|
+
|
|
+ oldprio = p->prio;
|
|
+ queued = task_queued_only(p);
|
|
+ if (queued)
|
|
+ dequeue_task(p);
|
|
+ p->prio = prio;
|
|
+ if (task_running(p) && prio > oldprio)
|
|
+ resched_task(p);
|
|
+ if (queued) {
|
|
+ enqueue_task(p);
|
|
+ try_preempt(p);
|
|
+ }
|
|
+
|
|
+ task_grq_unlock(&flags);
|
|
+}
|
|
+
|
|
+#endif
|
|
+
|
|
+/*
|
|
+ * Adjust the deadline for when the priority is to change, before it's
|
|
+ * changed.
|
|
+ */
|
|
+static void adjust_deadline(struct task_struct *p, int new_prio)
|
|
+{
|
|
+ p->deadline += (prio_ratios[USER_PRIO(new_prio)] - pratio(p)) *
|
|
+ rr_interval * HZ / 1000 / 100;
|
|
+}
|
|
+
|
|
+void set_user_nice(struct task_struct *p, long nice)
|
|
+{
|
|
+ int queued, new_static;
|
|
+ unsigned long flags;
|
|
+ struct rq *rq;
|
|
+
|
|
+ if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
|
|
+ return;
|
|
+ new_static = NICE_TO_PRIO(nice);
|
|
+ /*
|
|
+ * We have to be careful, if called from sys_setpriority(),
|
|
+ * the task might be in the middle of scheduling on another CPU.
|
|
+ */
|
|
+ rq = time_task_grq_lock(p, &flags);
|
|
+ /*
|
|
+ * The RT priorities are set via sched_setscheduler(), but we still
|
|
+ * allow the 'normal' nice value to be set - but as expected
|
|
+ * it wont have any effect on scheduling until the task is
|
|
+ * not SCHED_NORMAL/SCHED_BATCH:
|
|
+ */
|
|
+ if (has_rt_policy(p)) {
|
|
+ p->static_prio = new_static;
|
|
+ goto out_unlock;
|
|
+ }
|
|
+ queued = task_queued_only(p);
|
|
+ /*
|
|
+ * If p is actually running, we don't need to do anything when
|
|
+ * changing the priority because the grq is unaffected.
|
|
+ */
|
|
+ if (queued)
|
|
+ dequeue_task(p);
|
|
+
|
|
+ adjust_deadline(p, new_static);
|
|
+ p->static_prio = new_static;
|
|
+ p->prio = effective_prio(p);
|
|
+
|
|
+ if (queued) {
|
|
+ enqueue_task(p);
|
|
+ try_preempt(p);
|
|
+ }
|
|
+
|
|
+ /* Just resched the task, schedule() will know what to do. */
|
|
+ if (task_running(p))
|
|
+ resched_task(p);
|
|
+out_unlock:
|
|
+ task_grq_unlock(&flags);
|
|
+}
|
|
+EXPORT_SYMBOL(set_user_nice);
|
|
+
|
|
+/*
|
|
+ * can_nice - check if a task can reduce its nice value
|
|
+ * @p: task
|
|
+ * @nice: nice value
|
|
+ */
|
|
+int can_nice(const struct task_struct *p, const int nice)
|
|
+{
|
|
+ /* convert nice value [19,-20] to rlimit style value [1,40] */
|
|
+ int nice_rlim = 20 - nice;
|
|
+
|
|
+ return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
|
|
+ capable(CAP_SYS_NICE));
|
|
+}
|
|
+
|
|
+#ifdef __ARCH_WANT_SYS_NICE
|
|
+
|
|
+/*
|
|
+ * sys_nice - change the priority of the current process.
|
|
+ * @increment: priority increment
|
|
+ *
|
|
+ * sys_setpriority is a more generic, but much slower function that
|
|
+ * does similar things.
|
|
+ */
|
|
+SYSCALL_DEFINE1(nice, int, increment)
|
|
+{
|
|
+ long nice, retval;
|
|
+
|
|
+ /*
|
|
+ * Setpriority might change our priority at the same moment.
|
|
+ * We don't have to worry. Conceptually one call occurs first
|
|
+ * and we have a single winner.
|
|
+ */
|
|
+ if (increment < -40)
|
|
+ increment = -40;
|
|
+ if (increment > 40)
|
|
+ increment = 40;
|
|
+
|
|
+ nice = TASK_NICE(current) + increment;
|
|
+ if (nice < -20)
|
|
+ nice = -20;
|
|
+ if (nice > 19)
|
|
+ nice = 19;
|
|
+
|
|
+ if (increment < 0 && !can_nice(current, nice))
|
|
+ return -EPERM;
|
|
+
|
|
+ retval = security_task_setnice(current, nice);
|
|
+ if (retval)
|
|
+ return retval;
|
|
+
|
|
+ set_user_nice(current, nice);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+#endif
|
|
+
|
|
+/**
|
|
+ * task_prio - return the priority value of a given task.
|
|
+ * @p: the task in question.
|
|
+ *
|
|
+ * This is the priority value as seen by users in /proc.
|
|
+ * RT tasks are offset by -100. Normal tasks are centered
|
|
+ * around 1, value goes from 0 (SCHED_ISO) up to 82 (nice +19
|
|
+ * SCHED_IDLE).
|
|
+ */
|
|
+int task_prio(const struct task_struct *p)
|
|
+{
|
|
+ int delta, prio = p->prio - MAX_RT_PRIO;
|
|
+
|
|
+ /* rt tasks and iso tasks */
|
|
+ if (prio <= 0)
|
|
+ goto out;
|
|
+
|
|
+ delta = (p->deadline - jiffies) * 40 / longest_deadline();
|
|
+ if (delta > 0 && delta <= 80)
|
|
+ prio += delta;
|
|
+out:
|
|
+ return prio;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * task_nice - return the nice value of a given task.
|
|
+ * @p: the task in question.
|
|
+ */
|
|
+int task_nice(const struct task_struct *p)
|
|
+{
|
|
+ return TASK_NICE(p);
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(task_nice);
|
|
+
|
|
+/**
|
|
+ * idle_cpu - is a given cpu idle currently?
|
|
+ * @cpu: the processor in question.
|
|
+ */
|
|
+int idle_cpu(int cpu)
|
|
+{
|
|
+ return cpu_curr(cpu) == cpu_rq(cpu)->idle;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * idle_task - return the idle task for a given cpu.
|
|
+ * @cpu: the processor in question.
|
|
+ */
|
|
+struct task_struct *idle_task(int cpu)
|
|
+{
|
|
+ return cpu_rq(cpu)->idle;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * find_process_by_pid - find a process with a matching PID value.
|
|
+ * @pid: the pid in question.
|
|
+ */
|
|
+static inline struct task_struct *find_process_by_pid(pid_t pid)
|
|
+{
|
|
+ return pid ? find_task_by_vpid(pid) : current;
|
|
+}
|
|
+
|
|
+/* Actually do priority change: must hold grq lock. */
|
|
+static void __setscheduler(struct task_struct *p, int policy, int prio)
|
|
+{
|
|
+ BUG_ON(task_queued_only(p));
|
|
+
|
|
+ p->policy = policy;
|
|
+ p->rt_priority = prio;
|
|
+ p->normal_prio = normal_prio(p);
|
|
+ /* we are holding p->pi_lock already */
|
|
+ p->prio = rt_mutex_getprio(p);
|
|
+ /*
|
|
+ * Reschedule if running. schedule() will know if it can continue
|
|
+ * running or not.
|
|
+ */
|
|
+ if (task_running(p))
|
|
+ resched_task(p);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * check the target process has a UID that matches the current process's
|
|
+ */
|
|
+static bool check_same_owner(struct task_struct *p)
|
|
+{
|
|
+ const struct cred *cred = current_cred(), *pcred;
|
|
+ bool match;
|
|
+
|
|
+ rcu_read_lock();
|
|
+ pcred = __task_cred(p);
|
|
+ match = (cred->euid == pcred->euid ||
|
|
+ cred->euid == pcred->uid);
|
|
+ rcu_read_unlock();
|
|
+ return match;
|
|
+}
|
|
+
|
|
+static int __sched_setscheduler(struct task_struct *p, int policy,
|
|
+ struct sched_param *param, bool user)
|
|
+{
|
|
+ struct sched_param zero_param = { .sched_priority = 0 };
|
|
+ int queued, retval, oldprio, oldpolicy = -1;
|
|
+ unsigned long flags, rlim_rtprio = 0;
|
|
+ struct rq *rq;
|
|
+
|
|
+ /* may grab non-irq protected spin_locks */
|
|
+ BUG_ON(in_interrupt());
|
|
+
|
|
+ if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) {
|
|
+ unsigned long lflags;
|
|
+
|
|
+ if (!lock_task_sighand(p, &lflags))
|
|
+ return -ESRCH;
|
|
+ rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
|
|
+ unlock_task_sighand(p, &lflags);
|
|
+ if (rlim_rtprio)
|
|
+ goto recheck;
|
|
+ /*
|
|
+ * If the caller requested an RT policy without having the
|
|
+ * necessary rights, we downgrade the policy to SCHED_ISO.
|
|
+ * We also set the parameter to zero to pass the checks.
|
|
+ */
|
|
+ policy = SCHED_ISO;
|
|
+ param = &zero_param;
|
|
+ }
|
|
+recheck:
|
|
+ /* double check policy once rq lock held */
|
|
+ if (policy < 0)
|
|
+ policy = oldpolicy = p->policy;
|
|
+ else if (!SCHED_RANGE(policy))
|
|
+ return -EINVAL;
|
|
+ /*
|
|
+ * Valid priorities for SCHED_FIFO and SCHED_RR are
|
|
+ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
|
|
+ * SCHED_BATCH is 0.
|
|
+ */
|
|
+ if (param->sched_priority < 0 ||
|
|
+ (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
|
|
+ (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
|
|
+ return -EINVAL;
|
|
+ if (is_rt_policy(policy) != (param->sched_priority != 0))
|
|
+ return -EINVAL;
|
|
+
|
|
+ /*
|
|
+ * Allow unprivileged RT tasks to decrease priority:
|
|
+ */
|
|
+ if (user && !capable(CAP_SYS_NICE)) {
|
|
+ if (is_rt_policy(policy)) {
|
|
+ /* can't set/change the rt policy */
|
|
+ if (policy != p->policy && !rlim_rtprio)
|
|
+ return -EPERM;
|
|
+
|
|
+ /* can't increase priority */
|
|
+ if (param->sched_priority > p->rt_priority &&
|
|
+ param->sched_priority > rlim_rtprio)
|
|
+ return -EPERM;
|
|
+ } else {
|
|
+ switch (p->policy) {
|
|
+ /*
|
|
+ * Can only downgrade policies but not back to
|
|
+ * SCHED_NORMAL
|
|
+ */
|
|
+ case SCHED_ISO:
|
|
+ if (policy == SCHED_ISO)
|
|
+ goto out;
|
|
+ if (policy == SCHED_NORMAL)
|
|
+ return -EPERM;
|
|
+ break;
|
|
+ case SCHED_BATCH:
|
|
+ if (policy == SCHED_BATCH)
|
|
+ goto out;
|
|
+ if (policy != SCHED_IDLE)
|
|
+ return -EPERM;
|
|
+ break;
|
|
+ case SCHED_IDLE:
|
|
+ if (policy == SCHED_IDLE)
|
|
+ goto out;
|
|
+ return -EPERM;
|
|
+ default:
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* can't change other user's priorities */
|
|
+ if (!check_same_owner(p))
|
|
+ return -EPERM;
|
|
+ }
|
|
+
|
|
+ retval = security_task_setscheduler(p, policy, param);
|
|
+ if (retval)
|
|
+ return retval;
|
|
+ /*
|
|
+ * make sure no PI-waiters arrive (or leave) while we are
|
|
+ * changing the priority of the task:
|
|
+ */
|
|
+ spin_lock_irqsave(&p->pi_lock, flags);
|
|
+ /*
|
|
+ * To be able to change p->policy safely, the apropriate
|
|
+ * runqueue lock must be held.
|
|
+ */
|
|
+ rq = __task_grq_lock(p);
|
|
+ /* recheck policy now with rq lock held */
|
|
+ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
|
|
+ __task_grq_unlock();
|
|
+ spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
+ policy = oldpolicy = -1;
|
|
+ goto recheck;
|
|
+ }
|
|
+ update_rq_clock(rq);
|
|
+ queued = task_queued_only(p);
|
|
+ if (queued)
|
|
+ dequeue_task(p);
|
|
+ oldprio = p->prio;
|
|
+ __setscheduler(p, policy, param->sched_priority);
|
|
+ if (queued) {
|
|
+ enqueue_task(p);
|
|
+ try_preempt(p);
|
|
+ }
|
|
+ __task_grq_unlock();
|
|
+ spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
+
|
|
+ rt_mutex_adjust_pi(p);
|
|
+out:
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
|
|
+ * @p: the task in question.
|
|
+ * @policy: new policy.
|
|
+ * @param: structure containing the new RT priority.
|
|
+ *
|
|
+ * NOTE that the task may be already dead.
|
|
+ */
|
|
+int sched_setscheduler(struct task_struct *p, int policy,
|
|
+ struct sched_param *param)
|
|
+{
|
|
+ return __sched_setscheduler(p, policy, param, true);
|
|
+}
|
|
+
|
|
+EXPORT_SYMBOL_GPL(sched_setscheduler);
|
|
+
|
|
+/**
|
|
+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
|
|
+ * @p: the task in question.
|
|
+ * @policy: new policy.
|
|
+ * @param: structure containing the new RT priority.
|
|
+ *
|
|
+ * Just like sched_setscheduler, only don't bother checking if the
|
|
+ * current context has permission. For example, this is needed in
|
|
+ * stop_machine(): we create temporary high priority worker threads,
|
|
+ * but our caller might not have that capability.
|
|
+ */
|
|
+int sched_setscheduler_nocheck(struct task_struct *p, int policy,
|
|
+ struct sched_param *param)
|
|
+{
|
|
+ return __sched_setscheduler(p, policy, param, false);
|
|
+}
|
|
+
|
|
+static int
|
|
+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
|
|
+{
|
|
+ struct sched_param lparam;
|
|
+ struct task_struct *p;
|
|
+ int retval;
|
|
+
|
|
+ if (!param || pid < 0)
|
|
+ return -EINVAL;
|
|
+ if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
|
|
+ return -EFAULT;
|
|
+
|
|
+ rcu_read_lock();
|
|
+ retval = -ESRCH;
|
|
+ p = find_process_by_pid(pid);
|
|
+ if (p != NULL)
|
|
+ retval = sched_setscheduler(p, policy, &lparam);
|
|
+ rcu_read_unlock();
|
|
+
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
|
|
+ * @pid: the pid in question.
|
|
+ * @policy: new policy.
|
|
+ * @param: structure containing the new RT priority.
|
|
+ */
|
|
+asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
|
|
+ struct sched_param __user *param)
|
|
+{
|
|
+ /* negative values for policy are not valid */
|
|
+ if (policy < 0)
|
|
+ return -EINVAL;
|
|
+
|
|
+ return do_sched_setscheduler(pid, policy, param);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sys_sched_setparam - set/change the RT priority of a thread
|
|
+ * @pid: the pid in question.
|
|
+ * @param: structure containing the new RT priority.
|
|
+ */
|
|
+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
|
|
+{
|
|
+ return do_sched_setscheduler(pid, -1, param);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
|
|
+ * @pid: the pid in question.
|
|
+ */
|
|
+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
|
|
+{
|
|
+ struct task_struct *p;
|
|
+ int retval = -EINVAL;
|
|
+
|
|
+ if (pid < 0)
|
|
+ goto out_nounlock;
|
|
+
|
|
+ retval = -ESRCH;
|
|
+ read_lock(&tasklist_lock);
|
|
+ p = find_process_by_pid(pid);
|
|
+ if (p) {
|
|
+ retval = security_task_getscheduler(p);
|
|
+ if (!retval)
|
|
+ retval = p->policy;
|
|
+ }
|
|
+ read_unlock(&tasklist_lock);
|
|
+
|
|
+out_nounlock:
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sys_sched_getscheduler - get the RT priority of a thread
|
|
+ * @pid: the pid in question.
|
|
+ * @param: structure containing the RT priority.
|
|
+ */
|
|
+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
|
|
+{
|
|
+ struct sched_param lp;
|
|
+ struct task_struct *p;
|
|
+ int retval = -EINVAL;
|
|
+
|
|
+ if (!param || pid < 0)
|
|
+ goto out_nounlock;
|
|
+
|
|
+ read_lock(&tasklist_lock);
|
|
+ p = find_process_by_pid(pid);
|
|
+ retval = -ESRCH;
|
|
+ if (!p)
|
|
+ goto out_unlock;
|
|
+
|
|
+ retval = security_task_getscheduler(p);
|
|
+ if (retval)
|
|
+ goto out_unlock;
|
|
+
|
|
+ lp.sched_priority = p->rt_priority;
|
|
+ read_unlock(&tasklist_lock);
|
|
+
|
|
+ /*
|
|
+ * This one might sleep, we cannot do it with a spinlock held ...
|
|
+ */
|
|
+ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
|
|
+
|
|
+out_nounlock:
|
|
+ return retval;
|
|
+
|
|
+out_unlock:
|
|
+ read_unlock(&tasklist_lock);
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
|
|
+{
|
|
+ cpumask_var_t cpus_allowed, new_mask;
|
|
+ struct task_struct *p;
|
|
+ int retval;
|
|
+
|
|
+ get_online_cpus();
|
|
+ read_lock(&tasklist_lock);
|
|
+
|
|
+ p = find_process_by_pid(pid);
|
|
+ if (!p) {
|
|
+ read_unlock(&tasklist_lock);
|
|
+ put_online_cpus();
|
|
+ return -ESRCH;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * It is not safe to call set_cpus_allowed with the
|
|
+ * tasklist_lock held. We will bump the task_struct's
|
|
+ * usage count and then drop tasklist_lock.
|
|
+ */
|
|
+ get_task_struct(p);
|
|
+ read_unlock(&tasklist_lock);
|
|
+
|
|
+ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
|
|
+ retval = -ENOMEM;
|
|
+ goto out_put_task;
|
|
+ }
|
|
+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
|
|
+ retval = -ENOMEM;
|
|
+ goto out_free_cpus_allowed;
|
|
+ }
|
|
+ retval = -EPERM;
|
|
+ if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
|
|
+ goto out_unlock;
|
|
+
|
|
+ retval = security_task_setscheduler(p, 0, NULL);
|
|
+ if (retval)
|
|
+ goto out_unlock;
|
|
+
|
|
+ cpuset_cpus_allowed(p, cpus_allowed);
|
|
+ cpumask_and(new_mask, in_mask, cpus_allowed);
|
|
+again:
|
|
+ retval = set_cpus_allowed_ptr(p, new_mask);
|
|
+
|
|
+ if (!retval) {
|
|
+ cpuset_cpus_allowed(p, cpus_allowed);
|
|
+ if (!cpumask_subset(new_mask, cpus_allowed)) {
|
|
+ /*
|
|
+ * We must have raced with a concurrent cpuset
|
|
+ * update. Just reset the cpus_allowed to the
|
|
+ * cpuset's cpus_allowed
|
|
+ */
|
|
+ cpumask_copy(new_mask, cpus_allowed);
|
|
+ goto again;
|
|
+ }
|
|
+ }
|
|
+out_unlock:
|
|
+ free_cpumask_var(new_mask);
|
|
+out_free_cpus_allowed:
|
|
+ free_cpumask_var(cpus_allowed);
|
|
+out_put_task:
|
|
+ put_task_struct(p);
|
|
+ put_online_cpus();
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
|
|
+ cpumask_t *new_mask)
|
|
+{
|
|
+ if (len < sizeof(cpumask_t)) {
|
|
+ memset(new_mask, 0, sizeof(cpumask_t));
|
|
+ } else if (len > sizeof(cpumask_t)) {
|
|
+ len = sizeof(cpumask_t);
|
|
+ }
|
|
+ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
|
|
+}
|
|
+
|
|
+
|
|
+/**
|
|
+ * sys_sched_setaffinity - set the cpu affinity of a process
|
|
+ * @pid: pid of the process
|
|
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
|
|
+ * @user_mask_ptr: user-space pointer to the new cpu mask
|
|
+ */
|
|
+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
|
|
+ unsigned long __user *, user_mask_ptr)
|
|
+{
|
|
+ cpumask_var_t new_mask;
|
|
+ int retval;
|
|
+
|
|
+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
|
|
+ return -ENOMEM;
|
|
+
|
|
+ retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
|
|
+ if (retval == 0)
|
|
+ retval = sched_setaffinity(pid, new_mask);
|
|
+ free_cpumask_var(new_mask);
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+long sched_getaffinity(pid_t pid, cpumask_t *mask)
|
|
+{
|
|
+ struct task_struct *p;
|
|
+ int retval;
|
|
+
|
|
+ mutex_lock(&sched_hotcpu_mutex);
|
|
+ read_lock(&tasklist_lock);
|
|
+
|
|
+ retval = -ESRCH;
|
|
+ p = find_process_by_pid(pid);
|
|
+ if (!p)
|
|
+ goto out_unlock;
|
|
+
|
|
+ retval = security_task_getscheduler(p);
|
|
+ if (retval)
|
|
+ goto out_unlock;
|
|
+
|
|
+ cpus_and(*mask, p->cpus_allowed, cpu_online_map);
|
|
+
|
|
+out_unlock:
|
|
+ read_unlock(&tasklist_lock);
|
|
+ mutex_unlock(&sched_hotcpu_mutex);
|
|
+ if (retval)
|
|
+ return retval;
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sys_sched_getaffinity - get the cpu affinity of a process
|
|
+ * @pid: pid of the process
|
|
+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
|
|
+ * @user_mask_ptr: user-space pointer to hold the current cpu mask
|
|
+ */
|
|
+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
|
|
+ unsigned long __user *, user_mask_ptr)
|
|
+{
|
|
+ int ret;
|
|
+ cpumask_var_t mask;
|
|
+
|
|
+ if (len < cpumask_size())
|
|
+ return -EINVAL;
|
|
+
|
|
+ if (!alloc_cpumask_var(&mask, GFP_KERNEL))
|
|
+ return -ENOMEM;
|
|
+
|
|
+ ret = sched_getaffinity(pid, mask);
|
|
+ if (ret == 0) {
|
|
+ if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
|
|
+ ret = -EFAULT;
|
|
+ else
|
|
+ ret = cpumask_size();
|
|
+ }
|
|
+ free_cpumask_var(mask);
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sys_sched_yield - yield the current processor to other threads.
|
|
+ *
|
|
+ * This function yields the current CPU to other tasks. It does this by
|
|
+ * refilling the timeslice, resetting the deadline and scheduling away.
|
|
+ */
|
|
+SYSCALL_DEFINE0(sched_yield)
|
|
+{
|
|
+ struct task_struct *p;
|
|
+
|
|
+ grq_lock_irq();
|
|
+ p = current;
|
|
+ schedstat_inc(this_rq(), yld_count);
|
|
+ update_rq_clock(task_rq(p));
|
|
+ time_slice_expired(p);
|
|
+ requeue_task(p);
|
|
+
|
|
+ /*
|
|
+ * Since we are going to call schedule() anyway, there's
|
|
+ * no need to preempt or enable interrupts:
|
|
+ */
|
|
+ __release(grq.lock);
|
|
+ spin_release(&grq.lock.dep_map, 1, _THIS_IP_);
|
|
+ _raw_spin_unlock(&grq.lock);
|
|
+ preempt_enable_no_resched();
|
|
+
|
|
+ schedule();
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static inline int should_resched(void)
|
|
+{
|
|
+ return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
|
|
+}
|
|
+
|
|
+static void __cond_resched(void)
|
|
+{
|
|
+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
|
|
+ __might_sleep(__FILE__, __LINE__);
|
|
+#endif
|
|
+ /*
|
|
+ * The BKS might be reacquired before we have dropped
|
|
+ * PREEMPT_ACTIVE, which could trigger a second
|
|
+ * cond_resched() call.
|
|
+ */
|
|
+ do {
|
|
+ add_preempt_count(PREEMPT_ACTIVE);
|
|
+ schedule();
|
|
+ sub_preempt_count(PREEMPT_ACTIVE);
|
|
+ } while (need_resched());
|
|
+}
|
|
+
|
|
+int __sched _cond_resched(void)
|
|
+{
|
|
+ if (should_resched()) {
|
|
+ __cond_resched();
|
|
+ return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+EXPORT_SYMBOL(_cond_resched);
|
|
+
|
|
+/*
|
|
+ * cond_resched_lock() - if a reschedule is pending, drop the given lock,
|
|
+ * call schedule, and on return reacquire the lock.
|
|
+ *
|
|
+ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
|
|
+ * operations here to prevent schedule() from being called twice (once via
|
|
+ * spin_unlock(), once by hand).
|
|
+ */
|
|
+int cond_resched_lock(spinlock_t *lock)
|
|
+{
|
|
+ int resched = should_resched();
|
|
+ int ret = 0;
|
|
+
|
|
+ if (spin_needbreak(lock) || resched) {
|
|
+ spin_unlock(lock);
|
|
+ if (resched)
|
|
+ __cond_resched();
|
|
+ else
|
|
+ cpu_relax();
|
|
+ ret = 1;
|
|
+ spin_lock(lock);
|
|
+ }
|
|
+ return ret;
|
|
+}
|
|
+EXPORT_SYMBOL(cond_resched_lock);
|
|
+
|
|
+int __sched cond_resched_softirq(void)
|
|
+{
|
|
+ BUG_ON(!in_softirq());
|
|
+
|
|
+ if (should_resched()) {
|
|
+ local_bh_enable();
|
|
+ __cond_resched();
|
|
+ local_bh_disable();
|
|
+ return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+EXPORT_SYMBOL(cond_resched_softirq);
|
|
+
|
|
+/**
|
|
+ * yield - yield the current processor to other threads.
|
|
+ *
|
|
+ * This is a shortcut for kernel-space yielding - it marks the
|
|
+ * thread runnable and calls sys_sched_yield().
|
|
+ */
|
|
+void __sched yield(void)
|
|
+{
|
|
+ set_current_state(TASK_RUNNING);
|
|
+ sys_sched_yield();
|
|
+}
|
|
+EXPORT_SYMBOL(yield);
|
|
+
|
|
+/*
|
|
+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so
|
|
+ * that process accounting knows that this is a task in IO wait state.
|
|
+ *
|
|
+ * But don't do that if it is a deliberate, throttling IO wait (this task
|
|
+ * has set its backing_dev_info: the queue against which it should throttle)
|
|
+ */
|
|
+void __sched io_schedule(void)
|
|
+{
|
|
+ struct rq *rq = &__raw_get_cpu_var(runqueues);
|
|
+
|
|
+ delayacct_blkio_start();
|
|
+ atomic_inc(&rq->nr_iowait);
|
|
+ schedule();
|
|
+ atomic_dec(&rq->nr_iowait);
|
|
+ delayacct_blkio_end();
|
|
+}
|
|
+EXPORT_SYMBOL(io_schedule);
|
|
+
|
|
+long __sched io_schedule_timeout(long timeout)
|
|
+{
|
|
+ struct rq *rq = &__raw_get_cpu_var(runqueues);
|
|
+ long ret;
|
|
+
|
|
+ delayacct_blkio_start();
|
|
+ atomic_inc(&rq->nr_iowait);
|
|
+ ret = schedule_timeout(timeout);
|
|
+ atomic_dec(&rq->nr_iowait);
|
|
+ delayacct_blkio_end();
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sys_sched_get_priority_max - return maximum RT priority.
|
|
+ * @policy: scheduling class.
|
|
+ *
|
|
+ * this syscall returns the maximum rt_priority that can be used
|
|
+ * by a given scheduling class.
|
|
+ */
|
|
+SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
|
|
+{
|
|
+ int ret = -EINVAL;
|
|
+
|
|
+ switch (policy) {
|
|
+ case SCHED_FIFO:
|
|
+ case SCHED_RR:
|
|
+ ret = MAX_USER_RT_PRIO-1;
|
|
+ break;
|
|
+ case SCHED_NORMAL:
|
|
+ case SCHED_BATCH:
|
|
+ case SCHED_ISO:
|
|
+ case SCHED_IDLE:
|
|
+ ret = 0;
|
|
+ break;
|
|
+ }
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sys_sched_get_priority_min - return minimum RT priority.
|
|
+ * @policy: scheduling class.
|
|
+ *
|
|
+ * this syscall returns the minimum rt_priority that can be used
|
|
+ * by a given scheduling class.
|
|
+ */
|
|
+SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
|
|
+{
|
|
+ int ret = -EINVAL;
|
|
+
|
|
+ switch (policy) {
|
|
+ case SCHED_FIFO:
|
|
+ case SCHED_RR:
|
|
+ ret = 1;
|
|
+ break;
|
|
+ case SCHED_NORMAL:
|
|
+ case SCHED_BATCH:
|
|
+ case SCHED_ISO:
|
|
+ case SCHED_IDLE:
|
|
+ ret = 0;
|
|
+ break;
|
|
+ }
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sys_sched_rr_get_interval - return the default timeslice of a process.
|
|
+ * @pid: pid of the process.
|
|
+ * @interval: userspace pointer to the timeslice value.
|
|
+ *
|
|
+ * this syscall writes the default timeslice value of a given process
|
|
+ * into the user-space timespec buffer. A value of '0' means infinity.
|
|
+ */
|
|
+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
|
|
+ struct timespec __user *, interval)
|
|
+{
|
|
+ struct task_struct *p;
|
|
+ int retval = -EINVAL;
|
|
+ struct timespec t;
|
|
+
|
|
+ if (pid < 0)
|
|
+ goto out_nounlock;
|
|
+
|
|
+ retval = -ESRCH;
|
|
+ read_lock(&tasklist_lock);
|
|
+ p = find_process_by_pid(pid);
|
|
+ if (!p)
|
|
+ goto out_unlock;
|
|
+
|
|
+ retval = security_task_getscheduler(p);
|
|
+ if (retval)
|
|
+ goto out_unlock;
|
|
+
|
|
+ t = ns_to_timespec(p->policy == SCHED_FIFO ? 0 :
|
|
+ MS_TO_NS(task_timeslice(p)));
|
|
+ read_unlock(&tasklist_lock);
|
|
+ retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
|
|
+out_nounlock:
|
|
+ return retval;
|
|
+out_unlock:
|
|
+ read_unlock(&tasklist_lock);
|
|
+ return retval;
|
|
+}
|
|
+
|
|
+static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
|
|
+
|
|
+void sched_show_task(struct task_struct *p)
|
|
+{
|
|
+ unsigned long free = 0;
|
|
+ unsigned state;
|
|
+
|
|
+ state = p->state ? __ffs(p->state) + 1 : 0;
|
|
+ printk(KERN_INFO "%-13.13s %c", p->comm,
|
|
+ state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
|
|
+#if BITS_PER_LONG == 32
|
|
+ if (state == TASK_RUNNING)
|
|
+ printk(KERN_CONT " running ");
|
|
+ else
|
|
+ printk(KERN_CONT " %08lx ", thread_saved_pc(p));
|
|
+#else
|
|
+ if (state == TASK_RUNNING)
|
|
+ printk(KERN_CONT " running task ");
|
|
+ else
|
|
+ printk(KERN_CONT " %016lx ", thread_saved_pc(p));
|
|
+#endif
|
|
+#ifdef CONFIG_DEBUG_STACK_USAGE
|
|
+ free = stack_not_used(p);
|
|
+#endif
|
|
+ printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
|
|
+ task_pid_nr(p), task_pid_nr(p->real_parent),
|
|
+ (unsigned long)task_thread_info(p)->flags);
|
|
+
|
|
+ show_stack(p, NULL);
|
|
+}
|
|
+
|
|
+void show_state_filter(unsigned long state_filter)
|
|
+{
|
|
+ struct task_struct *g, *p;
|
|
+
|
|
+#if BITS_PER_LONG == 32
|
|
+ printk(KERN_INFO
|
|
+ " task PC stack pid father\n");
|
|
+#else
|
|
+ printk(KERN_INFO
|
|
+ " task PC stack pid father\n");
|
|
+#endif
|
|
+ read_lock(&tasklist_lock);
|
|
+ do_each_thread(g, p) {
|
|
+ /*
|
|
+ * reset the NMI-timeout, listing all files on a slow
|
|
+ * console might take alot of time:
|
|
+ */
|
|
+ touch_nmi_watchdog();
|
|
+ if (!state_filter || (p->state & state_filter))
|
|
+ sched_show_task(p);
|
|
+ } while_each_thread(g, p);
|
|
+
|
|
+ touch_all_softlockup_watchdogs();
|
|
+
|
|
+ read_unlock(&tasklist_lock);
|
|
+ /*
|
|
+ * Only show locks if all tasks are dumped:
|
|
+ */
|
|
+ if (state_filter == -1)
|
|
+ debug_show_all_locks();
|
|
+}
|
|
+
|
|
+/**
|
|
+ * init_idle - set up an idle thread for a given CPU
|
|
+ * @idle: task in question
|
|
+ * @cpu: cpu the idle task belongs to
|
|
+ *
|
|
+ * NOTE: this function does not set the idle thread's NEED_RESCHED
|
|
+ * flag, to make booting more robust.
|
|
+ */
|
|
+void __cpuinit init_idle(struct task_struct *idle, int cpu)
|
|
+{
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
+ unsigned long flags;
|
|
+
|
|
+ time_grq_lock(rq, &flags);
|
|
+ idle->timestamp = idle->last_ran = rq->clock;
|
|
+ idle->state = TASK_RUNNING;
|
|
+ /* Setting prio to illegal value shouldn't matter when never queued */
|
|
+ idle->prio = rq->rq_prio = PRIO_LIMIT;
|
|
+ rq->rq_deadline = idle->deadline;
|
|
+ rq->rq_policy = idle->policy;
|
|
+ rq->rq_time_slice = idle->rt.time_slice;
|
|
+ idle->cpus_allowed = cpumask_of_cpu(cpu);
|
|
+ set_task_cpu(idle, cpu);
|
|
+ rq->curr = rq->idle = idle;
|
|
+ idle->oncpu = 1;
|
|
+ set_cpuidle_map(cpu);
|
|
+#ifdef CONFIG_HOTPLUG_CPU
|
|
+ idle->unplugged_mask = CPU_MASK_NONE;
|
|
+#endif
|
|
+ grq_unlock_irqrestore(&flags);
|
|
+
|
|
+ /* Set the preempt count _outside_ the spinlocks! */
|
|
+#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
|
|
+ task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
|
|
+#else
|
|
+ task_thread_info(idle)->preempt_count = 0;
|
|
+#endif
|
|
+ ftrace_graph_init_task(idle);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * In a system that switches off the HZ timer nohz_cpu_mask
|
|
+ * indicates which cpus entered this state. This is used
|
|
+ * in the rcu update to wait only for active cpus. For system
|
|
+ * which do not switch off the HZ timer nohz_cpu_mask should
|
|
+ * always be CPU_BITS_NONE.
|
|
+ */
|
|
+cpumask_var_t nohz_cpu_mask;
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+#ifdef CONFIG_NO_HZ
|
|
+static struct {
|
|
+ atomic_t load_balancer;
|
|
+ cpumask_var_t cpu_mask;
|
|
+ cpumask_var_t ilb_grp_nohz_mask;
|
|
+} nohz ____cacheline_aligned = {
|
|
+ .load_balancer = ATOMIC_INIT(-1),
|
|
+};
|
|
+
|
|
+int get_nohz_load_balancer(void)
|
|
+{
|
|
+ return atomic_read(&nohz.load_balancer);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * This routine will try to nominate the ilb (idle load balancing)
|
|
+ * owner among the cpus whose ticks are stopped. ilb owner will do the idle
|
|
+ * load balancing on behalf of all those cpus. If all the cpus in the system
|
|
+ * go into this tickless mode, then there will be no ilb owner (as there is
|
|
+ * no need for one) and all the cpus will sleep till the next wakeup event
|
|
+ * arrives...
|
|
+ *
|
|
+ * For the ilb owner, tick is not stopped. And this tick will be used
|
|
+ * for idle load balancing. ilb owner will still be part of
|
|
+ * nohz.cpu_mask..
|
|
+ *
|
|
+ * While stopping the tick, this cpu will become the ilb owner if there
|
|
+ * is no other owner. And will be the owner till that cpu becomes busy
|
|
+ * or if all cpus in the system stop their ticks at which point
|
|
+ * there is no need for ilb owner.
|
|
+ *
|
|
+ * When the ilb owner becomes busy, it nominates another owner, during the
|
|
+ * next busy scheduler_tick()
|
|
+ */
|
|
+int select_nohz_load_balancer(int stop_tick)
|
|
+{
|
|
+ int cpu = smp_processor_id();
|
|
+
|
|
+ if (stop_tick) {
|
|
+ cpu_rq(cpu)->in_nohz_recently = 1;
|
|
+
|
|
+ if (!cpu_active(cpu)) {
|
|
+ if (atomic_read(&nohz.load_balancer) != cpu)
|
|
+ return 0;
|
|
+
|
|
+ /*
|
|
+ * If we are going offline and still the leader,
|
|
+ * give up!
|
|
+ */
|
|
+ if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
|
|
+ BUG();
|
|
+
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ cpumask_set_cpu(cpu, nohz.cpu_mask);
|
|
+
|
|
+ /* time for ilb owner also to sleep */
|
|
+ if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
|
|
+ if (atomic_read(&nohz.load_balancer) == cpu)
|
|
+ atomic_set(&nohz.load_balancer, -1);
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ if (atomic_read(&nohz.load_balancer) == -1) {
|
|
+ /* make me the ilb owner */
|
|
+ if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
|
|
+ return 1;
|
|
+ } else if (atomic_read(&nohz.load_balancer) == cpu)
|
|
+ return 1;
|
|
+ } else {
|
|
+ if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
|
|
+ return 0;
|
|
+
|
|
+ cpumask_clear_cpu(cpu, nohz.cpu_mask);
|
|
+
|
|
+ if (atomic_read(&nohz.load_balancer) == cpu)
|
|
+ if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
|
|
+ BUG();
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * When add_timer_on() enqueues a timer into the timer wheel of an
|
|
+ * idle CPU then this timer might expire before the next timer event
|
|
+ * which is scheduled to wake up that CPU. In case of a completely
|
|
+ * idle system the next event might even be infinite time into the
|
|
+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
|
|
+ * leaves the inner idle loop so the newly added timer is taken into
|
|
+ * account when the CPU goes back to idle and evaluates the timer
|
|
+ * wheel for the next timer event.
|
|
+ */
|
|
+void wake_up_idle_cpu(int cpu)
|
|
+{
|
|
+ struct task_struct *idle;
|
|
+ struct rq *rq;
|
|
+
|
|
+ if (cpu == smp_processor_id())
|
|
+ return;
|
|
+
|
|
+ rq = cpu_rq(cpu);
|
|
+ idle = rq->idle;
|
|
+
|
|
+ /*
|
|
+ * This is safe, as this function is called with the timer
|
|
+ * wheel base lock of (cpu) held. When the CPU is on the way
|
|
+ * to idle and has not yet set rq->curr to idle then it will
|
|
+ * be serialized on the timer wheel base lock and take the new
|
|
+ * timer into account automatically.
|
|
+ */
|
|
+ if (unlikely(rq->curr != idle))
|
|
+ return;
|
|
+
|
|
+ /*
|
|
+ * We can set TIF_RESCHED on the idle task of the other CPU
|
|
+ * lockless. The worst case is that the other CPU runs the
|
|
+ * idle task through an additional NOOP schedule()
|
|
+ */
|
|
+ set_tsk_need_resched(idle);
|
|
+
|
|
+ /* NEED_RESCHED must be visible before we test polling */
|
|
+ smp_mb();
|
|
+ if (!tsk_is_polling(idle))
|
|
+ smp_send_reschedule(cpu);
|
|
+}
|
|
+
|
|
+#endif /* CONFIG_NO_HZ */
|
|
+
|
|
+/*
|
|
+ * Change a given task's CPU affinity. Migrate the thread to a
|
|
+ * proper CPU and schedule it away if the CPU it's executing on
|
|
+ * is removed from the allowed bitmask.
|
|
+ *
|
|
+ * NOTE: the caller must have a valid reference to the task, the
|
|
+ * task must not exit() & deallocate itself prematurely. The
|
|
+ * call is not atomic; no spinlocks may be held.
|
|
+ */
|
|
+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
|
|
+{
|
|
+ unsigned long flags;
|
|
+ int running = 0;
|
|
+ int queued = 0;
|
|
+ struct rq *rq;
|
|
+ int ret = 0;
|
|
+
|
|
+ rq = task_grq_lock(p, &flags);
|
|
+ if (!cpumask_intersects(new_mask, cpu_online_mask)) {
|
|
+ ret = -EINVAL;
|
|
+ goto out;
|
|
+ }
|
|
+
|
|
+ if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
|
|
+ !cpumask_equal(&p->cpus_allowed, new_mask))) {
|
|
+ ret = -EINVAL;
|
|
+ goto out;
|
|
+ }
|
|
+
|
|
+ queued = task_queued_only(p);
|
|
+
|
|
+ cpumask_copy(&p->cpus_allowed, new_mask);
|
|
+ p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
|
|
+
|
|
+ /* Can the task run on the task's current CPU? If so, we're done */
|
|
+ if (cpumask_test_cpu(task_cpu(p), new_mask))
|
|
+ goto out;
|
|
+
|
|
+ /* Reschedule the task, schedule() will know if it can keep running */
|
|
+ if (task_running(p))
|
|
+ running = 1;
|
|
+ else
|
|
+ set_task_cpu(p, cpumask_any_and(cpu_online_mask, new_mask));
|
|
+
|
|
+out:
|
|
+ if (queued)
|
|
+ try_preempt(p);
|
|
+ task_grq_unlock(&flags);
|
|
+
|
|
+ /* This might be a flaky way of changing cpus! */
|
|
+ if (running)
|
|
+ schedule();
|
|
+ return ret;
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
|
|
+
|
|
+#ifdef CONFIG_HOTPLUG_CPU
|
|
+/* Schedules idle task to be the next runnable task on current CPU.
|
|
+ * It does so by boosting its priority to highest possible.
|
|
+ * Used by CPU offline code.
|
|
+ */
|
|
+void sched_idle_next(void)
|
|
+{
|
|
+ int this_cpu = smp_processor_id();
|
|
+ struct rq *rq = cpu_rq(this_cpu);
|
|
+ struct task_struct *idle = rq->idle;
|
|
+ unsigned long flags;
|
|
+
|
|
+ /* cpu has to be offline */
|
|
+ BUG_ON(cpu_online(this_cpu));
|
|
+
|
|
+ /*
|
|
+ * Strictly not necessary since rest of the CPUs are stopped by now
|
|
+ * and interrupts disabled on the current cpu.
|
|
+ */
|
|
+ time_grq_lock(rq, &flags);
|
|
+
|
|
+ __setscheduler(idle, SCHED_FIFO, MAX_RT_PRIO - 1);
|
|
+
|
|
+ activate_idle_task(idle);
|
|
+ set_tsk_need_resched(rq->curr);
|
|
+
|
|
+ grq_unlock_irqrestore(&flags);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Ensures that the idle task is using init_mm right before its cpu goes
|
|
+ * offline.
|
|
+ */
|
|
+void idle_task_exit(void)
|
|
+{
|
|
+ struct mm_struct *mm = current->active_mm;
|
|
+
|
|
+ BUG_ON(cpu_online(smp_processor_id()));
|
|
+
|
|
+ if (mm != &init_mm)
|
|
+ switch_mm(mm, &init_mm, current);
|
|
+ mmdrop(mm);
|
|
+}
|
|
+
|
|
+#endif /* CONFIG_HOTPLUG_CPU */
|
|
+
|
|
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
|
|
+
|
|
+static struct ctl_table sd_ctl_dir[] = {
|
|
+ {
|
|
+ .procname = "sched_domain",
|
|
+ .mode = 0555,
|
|
+ },
|
|
+ {0, },
|
|
+};
|
|
+
|
|
+static struct ctl_table sd_ctl_root[] = {
|
|
+ {
|
|
+ .ctl_name = CTL_KERN,
|
|
+ .procname = "kernel",
|
|
+ .mode = 0555,
|
|
+ .child = sd_ctl_dir,
|
|
+ },
|
|
+ {0, },
|
|
+};
|
|
+
|
|
+static struct ctl_table *sd_alloc_ctl_entry(int n)
|
|
+{
|
|
+ struct ctl_table *entry =
|
|
+ kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
|
|
+
|
|
+ return entry;
|
|
+}
|
|
+
|
|
+static void sd_free_ctl_entry(struct ctl_table **tablep)
|
|
+{
|
|
+ struct ctl_table *entry;
|
|
+
|
|
+ /*
|
|
+ * In the intermediate directories, both the child directory and
|
|
+ * procname are dynamically allocated and could fail but the mode
|
|
+ * will always be set. In the lowest directory the names are
|
|
+ * static strings and all have proc handlers.
|
|
+ */
|
|
+ for (entry = *tablep; entry->mode; entry++) {
|
|
+ if (entry->child)
|
|
+ sd_free_ctl_entry(&entry->child);
|
|
+ if (entry->proc_handler == NULL)
|
|
+ kfree(entry->procname);
|
|
+ }
|
|
+
|
|
+ kfree(*tablep);
|
|
+ *tablep = NULL;
|
|
+}
|
|
+
|
|
+static void
|
|
+set_table_entry(struct ctl_table *entry,
|
|
+ const char *procname, void *data, int maxlen,
|
|
+ mode_t mode, proc_handler *proc_handler)
|
|
+{
|
|
+ entry->procname = procname;
|
|
+ entry->data = data;
|
|
+ entry->maxlen = maxlen;
|
|
+ entry->mode = mode;
|
|
+ entry->proc_handler = proc_handler;
|
|
+}
|
|
+
|
|
+static struct ctl_table *
|
|
+sd_alloc_ctl_domain_table(struct sched_domain *sd)
|
|
+{
|
|
+ struct ctl_table *table = sd_alloc_ctl_entry(13);
|
|
+
|
|
+ if (table == NULL)
|
|
+ return NULL;
|
|
+
|
|
+ set_table_entry(&table[0], "min_interval", &sd->min_interval,
|
|
+ sizeof(long), 0644, proc_doulongvec_minmax);
|
|
+ set_table_entry(&table[1], "max_interval", &sd->max_interval,
|
|
+ sizeof(long), 0644, proc_doulongvec_minmax);
|
|
+ set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
|
|
+ sizeof(int), 0644, proc_dointvec_minmax);
|
|
+ set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
|
|
+ sizeof(int), 0644, proc_dointvec_minmax);
|
|
+ set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
|
|
+ sizeof(int), 0644, proc_dointvec_minmax);
|
|
+ set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
|
|
+ sizeof(int), 0644, proc_dointvec_minmax);
|
|
+ set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
|
|
+ sizeof(int), 0644, proc_dointvec_minmax);
|
|
+ set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
|
|
+ sizeof(int), 0644, proc_dointvec_minmax);
|
|
+ set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
|
|
+ sizeof(int), 0644, proc_dointvec_minmax);
|
|
+ set_table_entry(&table[9], "cache_nice_tries",
|
|
+ &sd->cache_nice_tries,
|
|
+ sizeof(int), 0644, proc_dointvec_minmax);
|
|
+ set_table_entry(&table[10], "flags", &sd->flags,
|
|
+ sizeof(int), 0644, proc_dointvec_minmax);
|
|
+ set_table_entry(&table[11], "name", sd->name,
|
|
+ CORENAME_MAX_SIZE, 0444, proc_dostring);
|
|
+ /* &table[12] is terminator */
|
|
+
|
|
+ return table;
|
|
+}
|
|
+
|
|
+static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
|
|
+{
|
|
+ struct ctl_table *entry, *table;
|
|
+ struct sched_domain *sd;
|
|
+ int domain_num = 0, i;
|
|
+ char buf[32];
|
|
+
|
|
+ for_each_domain(cpu, sd)
|
|
+ domain_num++;
|
|
+ entry = table = sd_alloc_ctl_entry(domain_num + 1);
|
|
+ if (table == NULL)
|
|
+ return NULL;
|
|
+
|
|
+ i = 0;
|
|
+ for_each_domain(cpu, sd) {
|
|
+ snprintf(buf, 32, "domain%d", i);
|
|
+ entry->procname = kstrdup(buf, GFP_KERNEL);
|
|
+ entry->mode = 0555;
|
|
+ entry->child = sd_alloc_ctl_domain_table(sd);
|
|
+ entry++;
|
|
+ i++;
|
|
+ }
|
|
+ return table;
|
|
+}
|
|
+
|
|
+static struct ctl_table_header *sd_sysctl_header;
|
|
+static void register_sched_domain_sysctl(void)
|
|
+{
|
|
+ int i, cpu_num = num_online_cpus();
|
|
+ struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
|
|
+ char buf[32];
|
|
+
|
|
+ WARN_ON(sd_ctl_dir[0].child);
|
|
+ sd_ctl_dir[0].child = entry;
|
|
+
|
|
+ if (entry == NULL)
|
|
+ return;
|
|
+
|
|
+ for_each_online_cpu(i) {
|
|
+ snprintf(buf, 32, "cpu%d", i);
|
|
+ entry->procname = kstrdup(buf, GFP_KERNEL);
|
|
+ entry->mode = 0555;
|
|
+ entry->child = sd_alloc_ctl_cpu_table(i);
|
|
+ entry++;
|
|
+ }
|
|
+
|
|
+ WARN_ON(sd_sysctl_header);
|
|
+ sd_sysctl_header = register_sysctl_table(sd_ctl_root);
|
|
+}
|
|
+
|
|
+/* may be called multiple times per register */
|
|
+static void unregister_sched_domain_sysctl(void)
|
|
+{
|
|
+ if (sd_sysctl_header)
|
|
+ unregister_sysctl_table(sd_sysctl_header);
|
|
+ sd_sysctl_header = NULL;
|
|
+ if (sd_ctl_dir[0].child)
|
|
+ sd_free_ctl_entry(&sd_ctl_dir[0].child);
|
|
+}
|
|
+#else
|
|
+static void register_sched_domain_sysctl(void)
|
|
+{
|
|
+}
|
|
+static void unregister_sched_domain_sysctl(void)
|
|
+{
|
|
+}
|
|
+#endif
|
|
+
|
|
+static void set_rq_online(struct rq *rq)
|
|
+{
|
|
+ if (!rq->online) {
|
|
+ cpumask_set_cpu(rq->cpu, rq->rd->online);
|
|
+ rq->online = 1;
|
|
+ }
|
|
+}
|
|
+
|
|
+static void set_rq_offline(struct rq *rq)
|
|
+{
|
|
+ if (rq->online) {
|
|
+ cpumask_clear_cpu(rq->cpu, rq->rd->online);
|
|
+ rq->online = 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_HOTPLUG_CPU
|
|
+/*
|
|
+ * This cpu is going down, so walk over the tasklist and find tasks that can
|
|
+ * only run on this cpu and remove their affinity. Store their value in
|
|
+ * unplugged_mask so it can be restored once their correct cpu is online. No
|
|
+ * need to do anything special since they'll just move on next reschedule if
|
|
+ * they're running.
|
|
+ */
|
|
+static void remove_cpu(unsigned long cpu)
|
|
+{
|
|
+ struct task_struct *p, *t;
|
|
+
|
|
+ read_lock(&tasklist_lock);
|
|
+
|
|
+ do_each_thread(t, p) {
|
|
+ cpumask_t cpus_remaining;
|
|
+
|
|
+ cpus_and(cpus_remaining, p->cpus_allowed, cpu_online_map);
|
|
+ cpu_clear(cpu, cpus_remaining);
|
|
+ if (cpus_empty(cpus_remaining)) {
|
|
+ p->unplugged_mask = p->cpus_allowed;
|
|
+ p->cpus_allowed = cpu_possible_map;
|
|
+ }
|
|
+ } while_each_thread(t, p);
|
|
+
|
|
+ read_unlock(&tasklist_lock);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * This cpu is coming up so add it to the cpus_allowed.
|
|
+ */
|
|
+static void add_cpu(unsigned long cpu)
|
|
+{
|
|
+ struct task_struct *p, *t;
|
|
+
|
|
+ read_lock(&tasklist_lock);
|
|
+
|
|
+ do_each_thread(t, p) {
|
|
+ /* Have we taken all the cpus from the unplugged_mask back */
|
|
+ if (cpus_empty(p->unplugged_mask))
|
|
+ continue;
|
|
+
|
|
+ /* Was this cpu in the unplugged_mask mask */
|
|
+ if (cpu_isset(cpu, p->unplugged_mask)) {
|
|
+ cpu_set(cpu, p->cpus_allowed);
|
|
+ if (cpus_subset(p->unplugged_mask, p->cpus_allowed)) {
|
|
+ /*
|
|
+ * Have we set more than the unplugged_mask?
|
|
+ * If so, that means we have remnants set from
|
|
+ * the unplug/plug cycle and need to remove
|
|
+ * them. Then clear the unplugged_mask as we've
|
|
+ * set all the cpus back.
|
|
+ */
|
|
+ p->cpus_allowed = p->unplugged_mask;
|
|
+ cpus_clear(p->unplugged_mask);
|
|
+ }
|
|
+ }
|
|
+ } while_each_thread(t, p);
|
|
+
|
|
+ read_unlock(&tasklist_lock);
|
|
+}
|
|
+#else
|
|
+static void add_cpu(unsigned long cpu)
|
|
+{
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+ * migration_call - callback that gets triggered when a CPU is added.
|
|
+ */
|
|
+static int __cpuinit
|
|
+migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
|
|
+{
|
|
+ int cpu = (long)hcpu;
|
|
+ unsigned long flags;
|
|
+ struct rq *rq;
|
|
+
|
|
+ switch (action) {
|
|
+
|
|
+ case CPU_UP_PREPARE:
|
|
+ case CPU_UP_PREPARE_FROZEN:
|
|
+ break;
|
|
+
|
|
+ case CPU_ONLINE:
|
|
+ case CPU_ONLINE_FROZEN:
|
|
+ /* Update our root-domain */
|
|
+ rq = cpu_rq(cpu);
|
|
+ grq_lock_irqsave(&flags);
|
|
+ if (rq->rd) {
|
|
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
|
|
+
|
|
+ set_rq_online(rq);
|
|
+ }
|
|
+ add_cpu(cpu);
|
|
+ grq_unlock_irqrestore(&flags);
|
|
+ break;
|
|
+
|
|
+#ifdef CONFIG_HOTPLUG_CPU
|
|
+ case CPU_UP_CANCELED:
|
|
+ case CPU_UP_CANCELED_FROZEN:
|
|
+ break;
|
|
+
|
|
+ case CPU_DEAD:
|
|
+ case CPU_DEAD_FROZEN:
|
|
+ cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
|
|
+ rq = cpu_rq(cpu);
|
|
+ /* Idle task back to normal (off runqueue, low prio) */
|
|
+ grq_lock_irq();
|
|
+ remove_cpu(cpu);
|
|
+ deactivate_task(rq->idle);
|
|
+ rq->idle->static_prio = MAX_PRIO;
|
|
+ __setscheduler(rq->idle, SCHED_NORMAL, 0);
|
|
+ rq->idle->prio = PRIO_LIMIT;
|
|
+ update_rq_clock(rq);
|
|
+ grq_unlock_irq();
|
|
+ cpuset_unlock();
|
|
+ break;
|
|
+
|
|
+ case CPU_DYING:
|
|
+ case CPU_DYING_FROZEN:
|
|
+ rq = cpu_rq(cpu);
|
|
+ grq_lock_irqsave(&flags);
|
|
+ if (rq->rd) {
|
|
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
|
|
+ set_rq_offline(rq);
|
|
+ }
|
|
+ grq_unlock_irqrestore(&flags);
|
|
+ break;
|
|
+#endif
|
|
+ }
|
|
+ return NOTIFY_OK;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Register at high priority so that task migration (migrate_all_tasks)
|
|
+ * happens before everything else. This has to be lower priority than
|
|
+ * the notifier in the perf_counter subsystem, though.
|
|
+ */
|
|
+static struct notifier_block __cpuinitdata migration_notifier = {
|
|
+ .notifier_call = migration_call,
|
|
+ .priority = 10
|
|
+};
|
|
+
|
|
+int __init migration_init(void)
|
|
+{
|
|
+ void *cpu = (void *)(long)smp_processor_id();
|
|
+ int err;
|
|
+
|
|
+ /* Start one for the boot CPU: */
|
|
+ err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
|
|
+ BUG_ON(err == NOTIFY_BAD);
|
|
+ migration_call(&migration_notifier, CPU_ONLINE, cpu);
|
|
+ register_cpu_notifier(&migration_notifier);
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+early_initcall(migration_init);
|
|
+#endif
|
|
+
|
|
+/*
|
|
+ * sched_domains_mutex serializes calls to arch_init_sched_domains,
|
|
+ * detach_destroy_domains and partition_sched_domains.
|
|
+ */
|
|
+static DEFINE_MUTEX(sched_domains_mutex);
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+
|
|
+#ifdef CONFIG_SCHED_DEBUG
|
|
+
|
|
+static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
|
|
+ struct cpumask *groupmask)
|
|
+{
|
|
+ struct sched_group *group = sd->groups;
|
|
+ char str[256];
|
|
+
|
|
+ cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
|
|
+ cpumask_clear(groupmask);
|
|
+
|
|
+ printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
|
|
+
|
|
+ if (!(sd->flags & SD_LOAD_BALANCE)) {
|
|
+ printk("does not load-balance\n");
|
|
+ if (sd->parent)
|
|
+ printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
|
|
+ " has parent");
|
|
+ return -1;
|
|
+ }
|
|
+
|
|
+ printk(KERN_CONT "span %s level %s\n", str, sd->name);
|
|
+
|
|
+ if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
|
|
+ printk(KERN_ERR "ERROR: domain->span does not contain "
|
|
+ "CPU%d\n", cpu);
|
|
+ }
|
|
+ if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
|
|
+ printk(KERN_ERR "ERROR: domain->groups does not contain"
|
|
+ " CPU%d\n", cpu);
|
|
+ }
|
|
+
|
|
+ printk(KERN_DEBUG "%*s groups:", level + 1, "");
|
|
+ do {
|
|
+ if (!group) {
|
|
+ printk("\n");
|
|
+ printk(KERN_ERR "ERROR: group is NULL\n");
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ if (!group->__cpu_power) {
|
|
+ printk(KERN_CONT "\n");
|
|
+ printk(KERN_ERR "ERROR: domain->cpu_power not "
|
|
+ "set\n");
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ if (!cpumask_weight(sched_group_cpus(group))) {
|
|
+ printk(KERN_CONT "\n");
|
|
+ printk(KERN_ERR "ERROR: empty group\n");
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
|
|
+ printk(KERN_CONT "\n");
|
|
+ printk(KERN_ERR "ERROR: repeated CPUs\n");
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ cpumask_or(groupmask, groupmask, sched_group_cpus(group));
|
|
+
|
|
+ cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
|
|
+
|
|
+ printk(KERN_CONT " %s", str);
|
|
+ if (group->__cpu_power != SCHED_LOAD_SCALE) {
|
|
+ printk(KERN_CONT " (__cpu_power = %d)",
|
|
+ group->__cpu_power);
|
|
+ }
|
|
+
|
|
+ group = group->next;
|
|
+ } while (group != sd->groups);
|
|
+ printk(KERN_CONT "\n");
|
|
+
|
|
+ if (!cpumask_equal(sched_domain_span(sd), groupmask))
|
|
+ printk(KERN_ERR "ERROR: groups don't span domain->span\n");
|
|
+
|
|
+ if (sd->parent &&
|
|
+ !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
|
|
+ printk(KERN_ERR "ERROR: parent span is not a superset "
|
|
+ "of domain->span\n");
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static void sched_domain_debug(struct sched_domain *sd, int cpu)
|
|
+{
|
|
+ cpumask_var_t groupmask;
|
|
+ int level = 0;
|
|
+
|
|
+ if (!sd) {
|
|
+ printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
|
|
+
|
|
+ if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
|
|
+ printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ for (;;) {
|
|
+ if (sched_domain_debug_one(sd, cpu, level, groupmask))
|
|
+ break;
|
|
+ level++;
|
|
+ sd = sd->parent;
|
|
+ if (!sd)
|
|
+ break;
|
|
+ }
|
|
+ free_cpumask_var(groupmask);
|
|
+}
|
|
+#else /* !CONFIG_SCHED_DEBUG */
|
|
+# define sched_domain_debug(sd, cpu) do { } while (0)
|
|
+#endif /* CONFIG_SCHED_DEBUG */
|
|
+
|
|
+static int sd_degenerate(struct sched_domain *sd)
|
|
+{
|
|
+ if (cpumask_weight(sched_domain_span(sd)) == 1)
|
|
+ return 1;
|
|
+
|
|
+ /* Following flags need at least 2 groups */
|
|
+ if (sd->flags & (SD_LOAD_BALANCE |
|
|
+ SD_BALANCE_NEWIDLE |
|
|
+ SD_BALANCE_FORK |
|
|
+ SD_BALANCE_EXEC |
|
|
+ SD_SHARE_CPUPOWER |
|
|
+ SD_SHARE_PKG_RESOURCES)) {
|
|
+ if (sd->groups != sd->groups->next)
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ /* Following flags don't use groups */
|
|
+ if (sd->flags & (SD_WAKE_IDLE |
|
|
+ SD_WAKE_AFFINE |
|
|
+ SD_WAKE_BALANCE))
|
|
+ return 0;
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static int
|
|
+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
|
|
+{
|
|
+ unsigned long cflags = sd->flags, pflags = parent->flags;
|
|
+
|
|
+ if (sd_degenerate(parent))
|
|
+ return 1;
|
|
+
|
|
+ if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
|
|
+ return 0;
|
|
+
|
|
+ /* Does parent contain flags not in child? */
|
|
+ /* WAKE_BALANCE is a subset of WAKE_AFFINE */
|
|
+ if (cflags & SD_WAKE_AFFINE)
|
|
+ pflags &= ~SD_WAKE_BALANCE;
|
|
+ /* Flags needing groups don't count if only 1 group in parent */
|
|
+ if (parent->groups == parent->groups->next) {
|
|
+ pflags &= ~(SD_LOAD_BALANCE |
|
|
+ SD_BALANCE_NEWIDLE |
|
|
+ SD_BALANCE_FORK |
|
|
+ SD_BALANCE_EXEC |
|
|
+ SD_SHARE_CPUPOWER |
|
|
+ SD_SHARE_PKG_RESOURCES);
|
|
+ if (nr_node_ids == 1)
|
|
+ pflags &= ~SD_SERIALIZE;
|
|
+ }
|
|
+ if (~cflags & pflags)
|
|
+ return 0;
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static void free_rootdomain(struct root_domain *rd)
|
|
+{
|
|
+ free_cpumask_var(rd->rto_mask);
|
|
+ free_cpumask_var(rd->online);
|
|
+ free_cpumask_var(rd->span);
|
|
+ kfree(rd);
|
|
+}
|
|
+
|
|
+static void rq_attach_root(struct rq *rq, struct root_domain *rd)
|
|
+{
|
|
+ struct root_domain *old_rd = NULL;
|
|
+ unsigned long flags;
|
|
+
|
|
+ grq_lock_irqsave(&flags);
|
|
+
|
|
+ if (rq->rd) {
|
|
+ old_rd = rq->rd;
|
|
+
|
|
+ if (cpumask_test_cpu(rq->cpu, old_rd->online))
|
|
+ set_rq_offline(rq);
|
|
+
|
|
+ cpumask_clear_cpu(rq->cpu, old_rd->span);
|
|
+
|
|
+ /*
|
|
+ * If we dont want to free the old_rt yet then
|
|
+ * set old_rd to NULL to skip the freeing later
|
|
+ * in this function:
|
|
+ */
|
|
+ if (!atomic_dec_and_test(&old_rd->refcount))
|
|
+ old_rd = NULL;
|
|
+ }
|
|
+
|
|
+ atomic_inc(&rd->refcount);
|
|
+ rq->rd = rd;
|
|
+
|
|
+ cpumask_set_cpu(rq->cpu, rd->span);
|
|
+ if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
|
|
+ set_rq_online(rq);
|
|
+
|
|
+ grq_unlock_irqrestore(&flags);
|
|
+
|
|
+ if (old_rd)
|
|
+ free_rootdomain(old_rd);
|
|
+}
|
|
+
|
|
+static int init_rootdomain(struct root_domain *rd, bool bootmem)
|
|
+{
|
|
+ gfp_t gfp = GFP_KERNEL;
|
|
+
|
|
+ memset(rd, 0, sizeof(*rd));
|
|
+
|
|
+ if (bootmem)
|
|
+ gfp = GFP_NOWAIT;
|
|
+
|
|
+ if (!alloc_cpumask_var(&rd->span, gfp))
|
|
+ goto out;
|
|
+ if (!alloc_cpumask_var(&rd->online, gfp))
|
|
+ goto free_span;
|
|
+ if (!alloc_cpumask_var(&rd->rto_mask, gfp))
|
|
+ goto free_online;
|
|
+
|
|
+ return 0;
|
|
+
|
|
+free_online:
|
|
+ free_cpumask_var(rd->online);
|
|
+free_span:
|
|
+ free_cpumask_var(rd->span);
|
|
+out:
|
|
+ return -ENOMEM;
|
|
+}
|
|
+
|
|
+static void init_defrootdomain(void)
|
|
+{
|
|
+ init_rootdomain(&def_root_domain, true);
|
|
+
|
|
+ atomic_set(&def_root_domain.refcount, 1);
|
|
+}
|
|
+
|
|
+static struct root_domain *alloc_rootdomain(void)
|
|
+{
|
|
+ struct root_domain *rd;
|
|
+
|
|
+ rd = kmalloc(sizeof(*rd), GFP_KERNEL);
|
|
+ if (!rd)
|
|
+ return NULL;
|
|
+
|
|
+ if (init_rootdomain(rd, false) != 0) {
|
|
+ kfree(rd);
|
|
+ return NULL;
|
|
+ }
|
|
+
|
|
+ return rd;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
|
|
+ * hold the hotplug lock.
|
|
+ */
|
|
+static void
|
|
+cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
|
|
+{
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
+ struct sched_domain *tmp;
|
|
+
|
|
+ /* Remove the sched domains which do not contribute to scheduling. */
|
|
+ for (tmp = sd; tmp; ) {
|
|
+ struct sched_domain *parent = tmp->parent;
|
|
+ if (!parent)
|
|
+ break;
|
|
+
|
|
+ if (sd_parent_degenerate(tmp, parent)) {
|
|
+ tmp->parent = parent->parent;
|
|
+ if (parent->parent)
|
|
+ parent->parent->child = tmp;
|
|
+ } else
|
|
+ tmp = tmp->parent;
|
|
+ }
|
|
+
|
|
+ if (sd && sd_degenerate(sd)) {
|
|
+ sd = sd->parent;
|
|
+ if (sd)
|
|
+ sd->child = NULL;
|
|
+ }
|
|
+
|
|
+ sched_domain_debug(sd, cpu);
|
|
+
|
|
+ rq_attach_root(rq, rd);
|
|
+ rcu_assign_pointer(rq->sd, sd);
|
|
+}
|
|
+
|
|
+/* cpus with isolated domains */
|
|
+static cpumask_var_t cpu_isolated_map;
|
|
+
|
|
+/* Setup the mask of cpus configured for isolated domains */
|
|
+static int __init isolated_cpu_setup(char *str)
|
|
+{
|
|
+ cpulist_parse(str, cpu_isolated_map);
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+__setup("isolcpus=", isolated_cpu_setup);
|
|
+
|
|
+/*
|
|
+ * init_sched_build_groups takes the cpumask we wish to span, and a pointer
|
|
+ * to a function which identifies what group(along with sched group) a CPU
|
|
+ * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
|
|
+ * (due to the fact that we keep track of groups covered with a struct cpumask).
|
|
+ *
|
|
+ * init_sched_build_groups will build a circular linked list of the groups
|
|
+ * covered by the given span, and will set each group's ->cpumask correctly,
|
|
+ * and ->cpu_power to 0.
|
|
+ */
|
|
+static void
|
|
+init_sched_build_groups(const struct cpumask *span,
|
|
+ const struct cpumask *cpu_map,
|
|
+ int (*group_fn)(int cpu, const struct cpumask *cpu_map,
|
|
+ struct sched_group **sg,
|
|
+ struct cpumask *tmpmask),
|
|
+ struct cpumask *covered, struct cpumask *tmpmask)
|
|
+{
|
|
+ struct sched_group *first = NULL, *last = NULL;
|
|
+ int i;
|
|
+
|
|
+ cpumask_clear(covered);
|
|
+
|
|
+ for_each_cpu(i, span) {
|
|
+ struct sched_group *sg;
|
|
+ int group = group_fn(i, cpu_map, &sg, tmpmask);
|
|
+ int j;
|
|
+
|
|
+ if (cpumask_test_cpu(i, covered))
|
|
+ continue;
|
|
+
|
|
+ cpumask_clear(sched_group_cpus(sg));
|
|
+ sg->__cpu_power = 0;
|
|
+
|
|
+ for_each_cpu(j, span) {
|
|
+ if (group_fn(j, cpu_map, NULL, tmpmask) != group)
|
|
+ continue;
|
|
+
|
|
+ cpumask_set_cpu(j, covered);
|
|
+ cpumask_set_cpu(j, sched_group_cpus(sg));
|
|
+ }
|
|
+ if (!first)
|
|
+ first = sg;
|
|
+ if (last)
|
|
+ last->next = sg;
|
|
+ last = sg;
|
|
+ }
|
|
+ last->next = first;
|
|
+}
|
|
+
|
|
+#define SD_NODES_PER_DOMAIN 16
|
|
+
|
|
+#ifdef CONFIG_NUMA
|
|
+
|
|
+/**
|
|
+ * find_next_best_node - find the next node to include in a sched_domain
|
|
+ * @node: node whose sched_domain we're building
|
|
+ * @used_nodes: nodes already in the sched_domain
|
|
+ *
|
|
+ * Find the next node to include in a given scheduling domain. Simply
|
|
+ * finds the closest node not already in the @used_nodes map.
|
|
+ *
|
|
+ * Should use nodemask_t.
|
|
+ */
|
|
+static int find_next_best_node(int node, nodemask_t *used_nodes)
|
|
+{
|
|
+ int i, n, val, min_val, best_node = 0;
|
|
+
|
|
+ min_val = INT_MAX;
|
|
+
|
|
+ for (i = 0; i < nr_node_ids; i++) {
|
|
+ /* Start at @node */
|
|
+ n = (node + i) % nr_node_ids;
|
|
+
|
|
+ if (!nr_cpus_node(n))
|
|
+ continue;
|
|
+
|
|
+ /* Skip already used nodes */
|
|
+ if (node_isset(n, *used_nodes))
|
|
+ continue;
|
|
+
|
|
+ /* Simple min distance search */
|
|
+ val = node_distance(node, n);
|
|
+
|
|
+ if (val < min_val) {
|
|
+ min_val = val;
|
|
+ best_node = n;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ node_set(best_node, *used_nodes);
|
|
+ return best_node;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * sched_domain_node_span - get a cpumask for a node's sched_domain
|
|
+ * @node: node whose cpumask we're constructing
|
|
+ * @span: resulting cpumask
|
|
+ *
|
|
+ * Given a node, construct a good cpumask for its sched_domain to span. It
|
|
+ * should be one that prevents unnecessary balancing, but also spreads tasks
|
|
+ * out optimally.
|
|
+ */
|
|
+static void sched_domain_node_span(int node, struct cpumask *span)
|
|
+{
|
|
+ nodemask_t used_nodes;
|
|
+ int i;
|
|
+
|
|
+ cpumask_clear(span);
|
|
+ nodes_clear(used_nodes);
|
|
+
|
|
+ cpumask_or(span, span, cpumask_of_node(node));
|
|
+ node_set(node, used_nodes);
|
|
+
|
|
+ for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
|
|
+ int next_node = find_next_best_node(node, &used_nodes);
|
|
+
|
|
+ cpumask_or(span, span, cpumask_of_node(next_node));
|
|
+ }
|
|
+}
|
|
+#endif /* CONFIG_NUMA */
|
|
+
|
|
+int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
|
|
+
|
|
+/*
|
|
+ * The cpus mask in sched_group and sched_domain hangs off the end.
|
|
+ *
|
|
+ * ( See the the comments in include/linux/sched.h:struct sched_group
|
|
+ * and struct sched_domain. )
|
|
+ */
|
|
+struct static_sched_group {
|
|
+ struct sched_group sg;
|
|
+ DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
|
|
+};
|
|
+
|
|
+struct static_sched_domain {
|
|
+ struct sched_domain sd;
|
|
+ DECLARE_BITMAP(span, CONFIG_NR_CPUS);
|
|
+};
|
|
+
|
|
+/*
|
|
+ * SMT sched-domains:
|
|
+ */
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
+static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
|
|
+static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
|
|
+
|
|
+static int
|
|
+cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
|
|
+ struct sched_group **sg, struct cpumask *unused)
|
|
+{
|
|
+ if (sg)
|
|
+ *sg = &per_cpu(sched_group_cpus, cpu).sg;
|
|
+ return cpu;
|
|
+}
|
|
+#endif /* CONFIG_SCHED_SMT */
|
|
+
|
|
+/*
|
|
+ * multi-core sched-domains:
|
|
+ */
|
|
+#ifdef CONFIG_SCHED_MC
|
|
+static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
|
|
+static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
|
|
+#endif /* CONFIG_SCHED_MC */
|
|
+
|
|
+#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
|
|
+static int
|
|
+cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
|
|
+ struct sched_group **sg, struct cpumask *mask)
|
|
+{
|
|
+ int group;
|
|
+
|
|
+ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
|
|
+ group = cpumask_first(mask);
|
|
+ if (sg)
|
|
+ *sg = &per_cpu(sched_group_core, group).sg;
|
|
+ return group;
|
|
+}
|
|
+#elif defined(CONFIG_SCHED_MC)
|
|
+static int
|
|
+cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
|
|
+ struct sched_group **sg, struct cpumask *unused)
|
|
+{
|
|
+ if (sg)
|
|
+ *sg = &per_cpu(sched_group_core, cpu).sg;
|
|
+ return cpu;
|
|
+}
|
|
+#endif
|
|
+
|
|
+static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
|
|
+static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
|
|
+
|
|
+static int
|
|
+cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
|
|
+ struct sched_group **sg, struct cpumask *mask)
|
|
+{
|
|
+ int group;
|
|
+#ifdef CONFIG_SCHED_MC
|
|
+ cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
|
|
+ group = cpumask_first(mask);
|
|
+#elif defined(CONFIG_SCHED_SMT)
|
|
+ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
|
|
+ group = cpumask_first(mask);
|
|
+#else
|
|
+ group = cpu;
|
|
+#endif
|
|
+ if (sg)
|
|
+ *sg = &per_cpu(sched_group_phys, group).sg;
|
|
+ return group;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
|
|
+ * @group: The group whose first cpu is to be returned.
|
|
+ */
|
|
+static inline unsigned int group_first_cpu(struct sched_group *group)
|
|
+{
|
|
+ return cpumask_first(sched_group_cpus(group));
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_NUMA
|
|
+/*
|
|
+ * The init_sched_build_groups can't handle what we want to do with node
|
|
+ * groups, so roll our own. Now each node has its own list of groups which
|
|
+ * gets dynamically allocated.
|
|
+ */
|
|
+static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
|
|
+static struct sched_group ***sched_group_nodes_bycpu;
|
|
+
|
|
+static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
|
|
+static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
|
|
+
|
|
+static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
|
|
+ struct sched_group **sg,
|
|
+ struct cpumask *nodemask)
|
|
+{
|
|
+ int group;
|
|
+
|
|
+ cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
|
|
+ group = cpumask_first(nodemask);
|
|
+
|
|
+ if (sg)
|
|
+ *sg = &per_cpu(sched_group_allnodes, group).sg;
|
|
+ return group;
|
|
+}
|
|
+
|
|
+static void init_numa_sched_groups_power(struct sched_group *group_head)
|
|
+{
|
|
+ struct sched_group *sg = group_head;
|
|
+ int j;
|
|
+
|
|
+ if (!sg)
|
|
+ return;
|
|
+ do {
|
|
+ for_each_cpu(j, sched_group_cpus(sg)) {
|
|
+ struct sched_domain *sd;
|
|
+
|
|
+ sd = &per_cpu(phys_domains, j).sd;
|
|
+ if (j != group_first_cpu(sd->groups)) {
|
|
+ /*
|
|
+ * Only add "power" once for each
|
|
+ * physical package.
|
|
+ */
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ sg_inc_cpu_power(sg, sd->groups->__cpu_power);
|
|
+ }
|
|
+ sg = sg->next;
|
|
+ } while (sg != group_head);
|
|
+}
|
|
+#endif /* CONFIG_NUMA */
|
|
+
|
|
+#ifdef CONFIG_NUMA
|
|
+/* Free memory allocated for various sched_group structures */
|
|
+static void free_sched_groups(const struct cpumask *cpu_map,
|
|
+ struct cpumask *nodemask)
|
|
+{
|
|
+ int cpu, i;
|
|
+
|
|
+ for_each_cpu(cpu, cpu_map) {
|
|
+ struct sched_group **sched_group_nodes
|
|
+ = sched_group_nodes_bycpu[cpu];
|
|
+
|
|
+ if (!sched_group_nodes)
|
|
+ continue;
|
|
+
|
|
+ for (i = 0; i < nr_node_ids; i++) {
|
|
+ struct sched_group *oldsg, *sg = sched_group_nodes[i];
|
|
+
|
|
+ cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
|
|
+ if (cpumask_empty(nodemask))
|
|
+ continue;
|
|
+
|
|
+ if (sg == NULL)
|
|
+ continue;
|
|
+ sg = sg->next;
|
|
+next_sg:
|
|
+ oldsg = sg;
|
|
+ sg = sg->next;
|
|
+ kfree(oldsg);
|
|
+ if (oldsg != sched_group_nodes[i])
|
|
+ goto next_sg;
|
|
+ }
|
|
+ kfree(sched_group_nodes);
|
|
+ sched_group_nodes_bycpu[cpu] = NULL;
|
|
+ }
|
|
+}
|
|
+#else /* !CONFIG_NUMA */
|
|
+static void free_sched_groups(const struct cpumask *cpu_map,
|
|
+ struct cpumask *nodemask)
|
|
+{
|
|
+}
|
|
+#endif /* CONFIG_NUMA */
|
|
+
|
|
+/*
|
|
+ * Initialize sched groups cpu_power.
|
|
+ *
|
|
+ * cpu_power indicates the capacity of sched group, which is used while
|
|
+ * distributing the load between different sched groups in a sched domain.
|
|
+ * Typically cpu_power for all the groups in a sched domain will be same unless
|
|
+ * there are asymmetries in the topology. If there are asymmetries, group
|
|
+ * having more cpu_power will pickup more load compared to the group having
|
|
+ * less cpu_power.
|
|
+ *
|
|
+ * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
|
|
+ * the maximum number of tasks a group can handle in the presence of other idle
|
|
+ * or lightly loaded groups in the same sched domain.
|
|
+ */
|
|
+static void init_sched_groups_power(int cpu, struct sched_domain *sd)
|
|
+{
|
|
+ struct sched_domain *child;
|
|
+ struct sched_group *group;
|
|
+
|
|
+ WARN_ON(!sd || !sd->groups);
|
|
+
|
|
+ if (cpu != group_first_cpu(sd->groups))
|
|
+ return;
|
|
+
|
|
+ child = sd->child;
|
|
+
|
|
+ sd->groups->__cpu_power = 0;
|
|
+
|
|
+ /*
|
|
+ * For perf policy, if the groups in child domain share resources
|
|
+ * (for example cores sharing some portions of the cache hierarchy
|
|
+ * or SMT), then set this domain groups cpu_power such that each group
|
|
+ * can handle only one task, when there are other idle groups in the
|
|
+ * same sched domain.
|
|
+ */
|
|
+ if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
|
|
+ (child->flags &
|
|
+ (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
|
|
+ sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * add cpu_power of each child group to this groups cpu_power
|
|
+ */
|
|
+ group = child->groups;
|
|
+ do {
|
|
+ sg_inc_cpu_power(sd->groups, group->__cpu_power);
|
|
+ group = group->next;
|
|
+ } while (group != child->groups);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Initializers for schedule domains
|
|
+ * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
|
|
+ */
|
|
+
|
|
+#ifdef CONFIG_SCHED_DEBUG
|
|
+# define SD_INIT_NAME(sd, type) sd->name = #type
|
|
+#else
|
|
+# define SD_INIT_NAME(sd, type) do { } while (0)
|
|
+#endif
|
|
+
|
|
+#define SD_INIT(sd, type) sd_init_##type(sd)
|
|
+
|
|
+#define SD_INIT_FUNC(type) \
|
|
+static noinline void sd_init_##type(struct sched_domain *sd) \
|
|
+{ \
|
|
+ memset(sd, 0, sizeof(*sd)); \
|
|
+ *sd = SD_##type##_INIT; \
|
|
+ sd->level = SD_LV_##type; \
|
|
+ SD_INIT_NAME(sd, type); \
|
|
+}
|
|
+
|
|
+SD_INIT_FUNC(CPU)
|
|
+#ifdef CONFIG_NUMA
|
|
+ SD_INIT_FUNC(ALLNODES)
|
|
+ SD_INIT_FUNC(NODE)
|
|
+#endif
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
+ SD_INIT_FUNC(SIBLING)
|
|
+#endif
|
|
+#ifdef CONFIG_SCHED_MC
|
|
+ SD_INIT_FUNC(MC)
|
|
+#endif
|
|
+
|
|
+static int default_relax_domain_level = -1;
|
|
+
|
|
+static int __init setup_relax_domain_level(char *str)
|
|
+{
|
|
+ unsigned long val;
|
|
+
|
|
+ val = simple_strtoul(str, NULL, 0);
|
|
+ if (val < SD_LV_MAX)
|
|
+ default_relax_domain_level = val;
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+__setup("relax_domain_level=", setup_relax_domain_level);
|
|
+
|
|
+static void set_domain_attribute(struct sched_domain *sd,
|
|
+ struct sched_domain_attr *attr)
|
|
+{
|
|
+ int request;
|
|
+
|
|
+ if (!attr || attr->relax_domain_level < 0) {
|
|
+ if (default_relax_domain_level < 0)
|
|
+ return;
|
|
+ else
|
|
+ request = default_relax_domain_level;
|
|
+ } else
|
|
+ request = attr->relax_domain_level;
|
|
+ if (request < sd->level) {
|
|
+ /* turn off idle balance on this domain */
|
|
+ sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
|
|
+ } else {
|
|
+ /* turn on idle balance on this domain */
|
|
+ sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Build sched domains for a given set of cpus and attach the sched domains
|
|
+ * to the individual cpus
|
|
+ */
|
|
+static int __build_sched_domains(const struct cpumask *cpu_map,
|
|
+ struct sched_domain_attr *attr)
|
|
+{
|
|
+ int i, err = -ENOMEM;
|
|
+ struct root_domain *rd;
|
|
+ cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
|
|
+ tmpmask;
|
|
+#ifdef CONFIG_NUMA
|
|
+ cpumask_var_t domainspan, covered, notcovered;
|
|
+ struct sched_group **sched_group_nodes = NULL;
|
|
+ int sd_allnodes = 0;
|
|
+
|
|
+ if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
|
|
+ goto out;
|
|
+ if (!alloc_cpumask_var(&covered, GFP_KERNEL))
|
|
+ goto free_domainspan;
|
|
+ if (!alloc_cpumask_var(¬covered, GFP_KERNEL))
|
|
+ goto free_covered;
|
|
+#endif
|
|
+
|
|
+ if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
|
|
+ goto free_notcovered;
|
|
+ if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
|
|
+ goto free_nodemask;
|
|
+ if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
|
|
+ goto free_this_sibling_map;
|
|
+ if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
|
|
+ goto free_this_core_map;
|
|
+ if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
|
|
+ goto free_send_covered;
|
|
+
|
|
+#ifdef CONFIG_NUMA
|
|
+ /*
|
|
+ * Allocate the per-node list of sched groups
|
|
+ */
|
|
+ sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
|
|
+ GFP_KERNEL);
|
|
+ if (!sched_group_nodes) {
|
|
+ printk(KERN_WARNING "Can not alloc sched group node list\n");
|
|
+ goto free_tmpmask;
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ rd = alloc_rootdomain();
|
|
+ if (!rd) {
|
|
+ printk(KERN_WARNING "Cannot alloc root domain\n");
|
|
+ goto free_sched_groups;
|
|
+ }
|
|
+
|
|
+#ifdef CONFIG_NUMA
|
|
+ sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
|
|
+#endif
|
|
+
|
|
+ /*
|
|
+ * Set up domains for cpus specified by the cpu_map.
|
|
+ */
|
|
+ for_each_cpu(i, cpu_map) {
|
|
+ struct sched_domain *sd = NULL, *p;
|
|
+
|
|
+ cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
|
|
+
|
|
+#ifdef CONFIG_NUMA
|
|
+ if (cpumask_weight(cpu_map) >
|
|
+ SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
|
|
+ sd = &per_cpu(allnodes_domains, i).sd;
|
|
+ SD_INIT(sd, ALLNODES);
|
|
+ set_domain_attribute(sd, attr);
|
|
+ cpumask_copy(sched_domain_span(sd), cpu_map);
|
|
+ cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
|
|
+ p = sd;
|
|
+ sd_allnodes = 1;
|
|
+ } else
|
|
+ p = NULL;
|
|
+
|
|
+ sd = &per_cpu(node_domains, i).sd;
|
|
+ SD_INIT(sd, NODE);
|
|
+ set_domain_attribute(sd, attr);
|
|
+ sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
|
|
+ sd->parent = p;
|
|
+ if (p)
|
|
+ p->child = sd;
|
|
+ cpumask_and(sched_domain_span(sd),
|
|
+ sched_domain_span(sd), cpu_map);
|
|
+#endif
|
|
+
|
|
+ p = sd;
|
|
+ sd = &per_cpu(phys_domains, i).sd;
|
|
+ SD_INIT(sd, CPU);
|
|
+ set_domain_attribute(sd, attr);
|
|
+ cpumask_copy(sched_domain_span(sd), nodemask);
|
|
+ sd->parent = p;
|
|
+ if (p)
|
|
+ p->child = sd;
|
|
+ cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
|
|
+
|
|
+#ifdef CONFIG_SCHED_MC
|
|
+ p = sd;
|
|
+ sd = &per_cpu(core_domains, i).sd;
|
|
+ SD_INIT(sd, MC);
|
|
+ set_domain_attribute(sd, attr);
|
|
+ cpumask_and(sched_domain_span(sd), cpu_map,
|
|
+ cpu_coregroup_mask(i));
|
|
+ sd->parent = p;
|
|
+ p->child = sd;
|
|
+ cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
|
|
+#endif
|
|
+
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
+ p = sd;
|
|
+ sd = &per_cpu(cpu_domains, i).sd;
|
|
+ SD_INIT(sd, SIBLING);
|
|
+ set_domain_attribute(sd, attr);
|
|
+ cpumask_and(sched_domain_span(sd),
|
|
+ topology_thread_cpumask(i), cpu_map);
|
|
+ sd->parent = p;
|
|
+ p->child = sd;
|
|
+ cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
|
|
+#endif
|
|
+ }
|
|
+
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
+ /* Set up CPU (sibling) groups */
|
|
+ for_each_cpu(i, cpu_map) {
|
|
+ cpumask_and(this_sibling_map,
|
|
+ topology_thread_cpumask(i), cpu_map);
|
|
+ if (i != cpumask_first(this_sibling_map))
|
|
+ continue;
|
|
+
|
|
+ init_sched_build_groups(this_sibling_map, cpu_map,
|
|
+ &cpu_to_cpu_group,
|
|
+ send_covered, tmpmask);
|
|
+ }
|
|
+#endif
|
|
+
|
|
+#ifdef CONFIG_SCHED_MC
|
|
+ /* Set up multi-core groups */
|
|
+ for_each_cpu(i, cpu_map) {
|
|
+ cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
|
|
+ if (i != cpumask_first(this_core_map))
|
|
+ continue;
|
|
+
|
|
+ init_sched_build_groups(this_core_map, cpu_map,
|
|
+ &cpu_to_core_group,
|
|
+ send_covered, tmpmask);
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ /* Set up physical groups */
|
|
+ for (i = 0; i < nr_node_ids; i++) {
|
|
+ cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
|
|
+ if (cpumask_empty(nodemask))
|
|
+ continue;
|
|
+
|
|
+ init_sched_build_groups(nodemask, cpu_map,
|
|
+ &cpu_to_phys_group,
|
|
+ send_covered, tmpmask);
|
|
+ }
|
|
+
|
|
+#ifdef CONFIG_NUMA
|
|
+ /* Set up node groups */
|
|
+ if (sd_allnodes) {
|
|
+ init_sched_build_groups(cpu_map, cpu_map,
|
|
+ &cpu_to_allnodes_group,
|
|
+ send_covered, tmpmask);
|
|
+ }
|
|
+
|
|
+ for (i = 0; i < nr_node_ids; i++) {
|
|
+ /* Set up node groups */
|
|
+ struct sched_group *sg, *prev;
|
|
+ int j;
|
|
+
|
|
+ cpumask_clear(covered);
|
|
+ cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
|
|
+ if (cpumask_empty(nodemask)) {
|
|
+ sched_group_nodes[i] = NULL;
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ sched_domain_node_span(i, domainspan);
|
|
+ cpumask_and(domainspan, domainspan, cpu_map);
|
|
+
|
|
+ sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
|
|
+ GFP_KERNEL, i);
|
|
+ if (!sg) {
|
|
+ printk(KERN_WARNING "Can not alloc domain group for "
|
|
+ "node %d\n", i);
|
|
+ goto error;
|
|
+ }
|
|
+ sched_group_nodes[i] = sg;
|
|
+ for_each_cpu(j, nodemask) {
|
|
+ struct sched_domain *sd;
|
|
+
|
|
+ sd = &per_cpu(node_domains, j).sd;
|
|
+ sd->groups = sg;
|
|
+ }
|
|
+ sg->__cpu_power = 0;
|
|
+ cpumask_copy(sched_group_cpus(sg), nodemask);
|
|
+ sg->next = sg;
|
|
+ cpumask_or(covered, covered, nodemask);
|
|
+ prev = sg;
|
|
+
|
|
+ for (j = 0; j < nr_node_ids; j++) {
|
|
+ int n = (i + j) % nr_node_ids;
|
|
+
|
|
+ cpumask_complement(notcovered, covered);
|
|
+ cpumask_and(tmpmask, notcovered, cpu_map);
|
|
+ cpumask_and(tmpmask, tmpmask, domainspan);
|
|
+ if (cpumask_empty(tmpmask))
|
|
+ break;
|
|
+
|
|
+ cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
|
|
+ if (cpumask_empty(tmpmask))
|
|
+ continue;
|
|
+
|
|
+ sg = kmalloc_node(sizeof(struct sched_group) +
|
|
+ cpumask_size(),
|
|
+ GFP_KERNEL, i);
|
|
+ if (!sg) {
|
|
+ printk(KERN_WARNING
|
|
+ "Can not alloc domain group for node %d\n", j);
|
|
+ goto error;
|
|
+ }
|
|
+ sg->__cpu_power = 0;
|
|
+ cpumask_copy(sched_group_cpus(sg), tmpmask);
|
|
+ sg->next = prev->next;
|
|
+ cpumask_or(covered, covered, tmpmask);
|
|
+ prev->next = sg;
|
|
+ prev = sg;
|
|
+ }
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ /* Calculate CPU power for physical packages and nodes */
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
+ for_each_cpu(i, cpu_map) {
|
|
+ struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
|
|
+
|
|
+ init_sched_groups_power(i, sd);
|
|
+ }
|
|
+#endif
|
|
+#ifdef CONFIG_SCHED_MC
|
|
+ for_each_cpu(i, cpu_map) {
|
|
+ struct sched_domain *sd = &per_cpu(core_domains, i).sd;
|
|
+
|
|
+ init_sched_groups_power(i, sd);
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ for_each_cpu(i, cpu_map) {
|
|
+ struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
|
|
+
|
|
+ init_sched_groups_power(i, sd);
|
|
+ }
|
|
+
|
|
+#ifdef CONFIG_NUMA
|
|
+ for (i = 0; i < nr_node_ids; i++)
|
|
+ init_numa_sched_groups_power(sched_group_nodes[i]);
|
|
+
|
|
+ if (sd_allnodes) {
|
|
+ struct sched_group *sg;
|
|
+
|
|
+ cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
|
|
+ tmpmask);
|
|
+ init_numa_sched_groups_power(sg);
|
|
+ }
|
|
+#endif
|
|
+
|
|
+ /* Attach the domains */
|
|
+ for_each_cpu(i, cpu_map) {
|
|
+ struct sched_domain *sd;
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
+ sd = &per_cpu(cpu_domains, i).sd;
|
|
+#elif defined(CONFIG_SCHED_MC)
|
|
+ sd = &per_cpu(core_domains, i).sd;
|
|
+#else
|
|
+ sd = &per_cpu(phys_domains, i).sd;
|
|
+#endif
|
|
+ cpu_attach_domain(sd, rd, i);
|
|
+ }
|
|
+
|
|
+ err = 0;
|
|
+
|
|
+free_tmpmask:
|
|
+ free_cpumask_var(tmpmask);
|
|
+free_send_covered:
|
|
+ free_cpumask_var(send_covered);
|
|
+free_this_core_map:
|
|
+ free_cpumask_var(this_core_map);
|
|
+free_this_sibling_map:
|
|
+ free_cpumask_var(this_sibling_map);
|
|
+free_nodemask:
|
|
+ free_cpumask_var(nodemask);
|
|
+free_notcovered:
|
|
+#ifdef CONFIG_NUMA
|
|
+ free_cpumask_var(notcovered);
|
|
+free_covered:
|
|
+ free_cpumask_var(covered);
|
|
+free_domainspan:
|
|
+ free_cpumask_var(domainspan);
|
|
+out:
|
|
+#endif
|
|
+ return err;
|
|
+
|
|
+free_sched_groups:
|
|
+#ifdef CONFIG_NUMA
|
|
+ kfree(sched_group_nodes);
|
|
+#endif
|
|
+ goto free_tmpmask;
|
|
+
|
|
+#ifdef CONFIG_NUMA
|
|
+error:
|
|
+ free_sched_groups(cpu_map, tmpmask);
|
|
+ free_rootdomain(rd);
|
|
+ goto free_tmpmask;
|
|
+#endif
|
|
+}
|
|
+
|
|
+static int build_sched_domains(const struct cpumask *cpu_map)
|
|
+{
|
|
+ return __build_sched_domains(cpu_map, NULL);
|
|
+}
|
|
+
|
|
+static struct cpumask *doms_cur; /* current sched domains */
|
|
+static int ndoms_cur; /* number of sched domains in 'doms_cur' */
|
|
+static struct sched_domain_attr *dattr_cur;
|
|
+ /* attribues of custom domains in 'doms_cur' */
|
|
+
|
|
+/*
|
|
+ * Special case: If a kmalloc of a doms_cur partition (array of
|
|
+ * cpumask) fails, then fallback to a single sched domain,
|
|
+ * as determined by the single cpumask fallback_doms.
|
|
+ */
|
|
+static cpumask_var_t fallback_doms;
|
|
+
|
|
+/*
|
|
+ * arch_update_cpu_topology lets virtualized architectures update the
|
|
+ * cpu core maps. It is supposed to return 1 if the topology changed
|
|
+ * or 0 if it stayed the same.
|
|
+ */
|
|
+int __attribute__((weak)) arch_update_cpu_topology(void)
|
|
+{
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Set up scheduler domains and groups. Callers must hold the hotplug lock.
|
|
+ * For now this just excludes isolated cpus, but could be used to
|
|
+ * exclude other special cases in the future.
|
|
+ */
|
|
+static int arch_init_sched_domains(const struct cpumask *cpu_map)
|
|
+{
|
|
+ int err;
|
|
+
|
|
+ arch_update_cpu_topology();
|
|
+ ndoms_cur = 1;
|
|
+ doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
|
|
+ if (!doms_cur)
|
|
+ doms_cur = fallback_doms;
|
|
+ cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
|
|
+ dattr_cur = NULL;
|
|
+ err = build_sched_domains(doms_cur);
|
|
+ register_sched_domain_sysctl();
|
|
+
|
|
+ return err;
|
|
+}
|
|
+
|
|
+static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
|
|
+ struct cpumask *tmpmask)
|
|
+{
|
|
+ free_sched_groups(cpu_map, tmpmask);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Detach sched domains from a group of cpus specified in cpu_map
|
|
+ * These cpus will now be attached to the NULL domain
|
|
+ */
|
|
+static void detach_destroy_domains(const struct cpumask *cpu_map)
|
|
+{
|
|
+ /* Save because hotplug lock held. */
|
|
+ static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
|
|
+ int i;
|
|
+
|
|
+ for_each_cpu(i, cpu_map)
|
|
+ cpu_attach_domain(NULL, &def_root_domain, i);
|
|
+ synchronize_sched();
|
|
+ arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
|
|
+}
|
|
+
|
|
+/* handle null as "default" */
|
|
+static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
|
|
+ struct sched_domain_attr *new, int idx_new)
|
|
+{
|
|
+ struct sched_domain_attr tmp;
|
|
+
|
|
+ /* fast path */
|
|
+ if (!new && !cur)
|
|
+ return 1;
|
|
+
|
|
+ tmp = SD_ATTR_INIT;
|
|
+ return !memcmp(cur ? (cur + idx_cur) : &tmp,
|
|
+ new ? (new + idx_new) : &tmp,
|
|
+ sizeof(struct sched_domain_attr));
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Partition sched domains as specified by the 'ndoms_new'
|
|
+ * cpumasks in the array doms_new[] of cpumasks. This compares
|
|
+ * doms_new[] to the current sched domain partitioning, doms_cur[].
|
|
+ * It destroys each deleted domain and builds each new domain.
|
|
+ *
|
|
+ * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
|
|
+ * The masks don't intersect (don't overlap.) We should setup one
|
|
+ * sched domain for each mask. CPUs not in any of the cpumasks will
|
|
+ * not be load balanced. If the same cpumask appears both in the
|
|
+ * current 'doms_cur' domains and in the new 'doms_new', we can leave
|
|
+ * it as it is.
|
|
+ *
|
|
+ * The passed in 'doms_new' should be kmalloc'd. This routine takes
|
|
+ * ownership of it and will kfree it when done with it. If the caller
|
|
+ * failed the kmalloc call, then it can pass in doms_new == NULL &&
|
|
+ * ndoms_new == 1, and partition_sched_domains() will fallback to
|
|
+ * the single partition 'fallback_doms', it also forces the domains
|
|
+ * to be rebuilt.
|
|
+ *
|
|
+ * If doms_new == NULL it will be replaced with cpu_online_mask.
|
|
+ * ndoms_new == 0 is a special case for destroying existing domains,
|
|
+ * and it will not create the default domain.
|
|
+ *
|
|
+ * Call with hotplug lock held
|
|
+ */
|
|
+/* FIXME: Change to struct cpumask *doms_new[] */
|
|
+void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
|
|
+ struct sched_domain_attr *dattr_new)
|
|
+{
|
|
+ int i, j, n;
|
|
+ int new_topology;
|
|
+
|
|
+ mutex_lock(&sched_domains_mutex);
|
|
+
|
|
+ /* always unregister in case we don't destroy any domains */
|
|
+ unregister_sched_domain_sysctl();
|
|
+
|
|
+ /* Let architecture update cpu core mappings. */
|
|
+ new_topology = arch_update_cpu_topology();
|
|
+
|
|
+ n = doms_new ? ndoms_new : 0;
|
|
+
|
|
+ /* Destroy deleted domains */
|
|
+ for (i = 0; i < ndoms_cur; i++) {
|
|
+ for (j = 0; j < n && !new_topology; j++) {
|
|
+ if (cpumask_equal(&doms_cur[i], &doms_new[j])
|
|
+ && dattrs_equal(dattr_cur, i, dattr_new, j))
|
|
+ goto match1;
|
|
+ }
|
|
+ /* no match - a current sched domain not in new doms_new[] */
|
|
+ detach_destroy_domains(doms_cur + i);
|
|
+match1:
|
|
+ ;
|
|
+ }
|
|
+
|
|
+ if (doms_new == NULL) {
|
|
+ ndoms_cur = 0;
|
|
+ doms_new = fallback_doms;
|
|
+ cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
|
|
+ WARN_ON_ONCE(dattr_new);
|
|
+ }
|
|
+
|
|
+ /* Build new domains */
|
|
+ for (i = 0; i < ndoms_new; i++) {
|
|
+ for (j = 0; j < ndoms_cur && !new_topology; j++) {
|
|
+ if (cpumask_equal(&doms_new[i], &doms_cur[j])
|
|
+ && dattrs_equal(dattr_new, i, dattr_cur, j))
|
|
+ goto match2;
|
|
+ }
|
|
+ /* no match - add a new doms_new */
|
|
+ __build_sched_domains(doms_new + i,
|
|
+ dattr_new ? dattr_new + i : NULL);
|
|
+match2:
|
|
+ ;
|
|
+ }
|
|
+
|
|
+ /* Remember the new sched domains */
|
|
+ if (doms_cur != fallback_doms)
|
|
+ kfree(doms_cur);
|
|
+ kfree(dattr_cur); /* kfree(NULL) is safe */
|
|
+ doms_cur = doms_new;
|
|
+ dattr_cur = dattr_new;
|
|
+ ndoms_cur = ndoms_new;
|
|
+
|
|
+ register_sched_domain_sysctl();
|
|
+
|
|
+ mutex_unlock(&sched_domains_mutex);
|
|
+}
|
|
+
|
|
+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
|
|
+static void arch_reinit_sched_domains(void)
|
|
+{
|
|
+ get_online_cpus();
|
|
+
|
|
+ /* Destroy domains first to force the rebuild */
|
|
+ partition_sched_domains(0, NULL, NULL);
|
|
+
|
|
+ rebuild_sched_domains();
|
|
+ put_online_cpus();
|
|
+}
|
|
+
|
|
+static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
|
|
+{
|
|
+ unsigned int level = 0;
|
|
+
|
|
+ if (sscanf(buf, "%u", &level) != 1)
|
|
+ return -EINVAL;
|
|
+
|
|
+ /*
|
|
+ * level is always be positive so don't check for
|
|
+ * level < POWERSAVINGS_BALANCE_NONE which is 0
|
|
+ * What happens on 0 or 1 byte write,
|
|
+ * need to check for count as well?
|
|
+ */
|
|
+
|
|
+ if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
|
|
+ return -EINVAL;
|
|
+
|
|
+ if (smt)
|
|
+ sched_smt_power_savings = level;
|
|
+ else
|
|
+ sched_mc_power_savings = level;
|
|
+
|
|
+ arch_reinit_sched_domains();
|
|
+
|
|
+ return count;
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_SCHED_MC
|
|
+static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
|
|
+ char *page)
|
|
+{
|
|
+ return sprintf(page, "%u\n", sched_mc_power_savings);
|
|
+}
|
|
+static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
|
|
+ const char *buf, size_t count)
|
|
+{
|
|
+ return sched_power_savings_store(buf, count, 0);
|
|
+}
|
|
+static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
|
|
+ sched_mc_power_savings_show,
|
|
+ sched_mc_power_savings_store);
|
|
+#endif
|
|
+
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
+static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
|
|
+ char *page)
|
|
+{
|
|
+ return sprintf(page, "%u\n", sched_smt_power_savings);
|
|
+}
|
|
+static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
|
|
+ const char *buf, size_t count)
|
|
+{
|
|
+ return sched_power_savings_store(buf, count, 1);
|
|
+}
|
|
+static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
|
|
+ sched_smt_power_savings_show,
|
|
+ sched_smt_power_savings_store);
|
|
+#endif
|
|
+
|
|
+int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
|
|
+{
|
|
+ int err = 0;
|
|
+
|
|
+#ifdef CONFIG_SCHED_SMT
|
|
+ if (smt_capable())
|
|
+ err = sysfs_create_file(&cls->kset.kobj,
|
|
+ &attr_sched_smt_power_savings.attr);
|
|
+#endif
|
|
+#ifdef CONFIG_SCHED_MC
|
|
+ if (!err && mc_capable())
|
|
+ err = sysfs_create_file(&cls->kset.kobj,
|
|
+ &attr_sched_mc_power_savings.attr);
|
|
+#endif
|
|
+ return err;
|
|
+}
|
|
+#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
|
|
+
|
|
+#ifndef CONFIG_CPUSETS
|
|
+/*
|
|
+ * Add online and remove offline CPUs from the scheduler domains.
|
|
+ * When cpusets are enabled they take over this function.
|
|
+ */
|
|
+static int update_sched_domains(struct notifier_block *nfb,
|
|
+ unsigned long action, void *hcpu)
|
|
+{
|
|
+ switch (action) {
|
|
+ case CPU_ONLINE:
|
|
+ case CPU_ONLINE_FROZEN:
|
|
+ case CPU_DEAD:
|
|
+ case CPU_DEAD_FROZEN:
|
|
+ partition_sched_domains(1, NULL, NULL);
|
|
+ return NOTIFY_OK;
|
|
+
|
|
+ default:
|
|
+ return NOTIFY_DONE;
|
|
+ }
|
|
+}
|
|
+#endif
|
|
+
|
|
+static int update_runtime(struct notifier_block *nfb,
|
|
+ unsigned long action, void *hcpu)
|
|
+{
|
|
+ switch (action) {
|
|
+ case CPU_DOWN_PREPARE:
|
|
+ case CPU_DOWN_PREPARE_FROZEN:
|
|
+ return NOTIFY_OK;
|
|
+
|
|
+ case CPU_DOWN_FAILED:
|
|
+ case CPU_DOWN_FAILED_FROZEN:
|
|
+ case CPU_ONLINE:
|
|
+ case CPU_ONLINE_FROZEN:
|
|
+ return NOTIFY_OK;
|
|
+
|
|
+ default:
|
|
+ return NOTIFY_DONE;
|
|
+ }
|
|
+}
|
|
+
|
|
+void __init sched_init_smp(void)
|
|
+{
|
|
+ cpumask_var_t non_isolated_cpus;
|
|
+
|
|
+ alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
|
|
+
|
|
+#if defined(CONFIG_NUMA)
|
|
+ sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
|
|
+ GFP_KERNEL);
|
|
+ BUG_ON(sched_group_nodes_bycpu == NULL);
|
|
+#endif
|
|
+ get_online_cpus();
|
|
+ mutex_lock(&sched_domains_mutex);
|
|
+ arch_init_sched_domains(cpu_online_mask);
|
|
+ cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
|
|
+ if (cpumask_empty(non_isolated_cpus))
|
|
+ cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
|
|
+ mutex_unlock(&sched_domains_mutex);
|
|
+ put_online_cpus();
|
|
+
|
|
+#ifndef CONFIG_CPUSETS
|
|
+ /* XXX: Theoretical race here - CPU may be hotplugged now */
|
|
+ hotcpu_notifier(update_sched_domains, 0);
|
|
+#endif
|
|
+
|
|
+ /* RT runtime code needs to handle some hotplug events */
|
|
+ hotcpu_notifier(update_runtime, 0);
|
|
+
|
|
+ /* Move init over to a non-isolated CPU */
|
|
+ if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
|
|
+ BUG();
|
|
+ free_cpumask_var(non_isolated_cpus);
|
|
+
|
|
+ alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
|
|
+
|
|
+ /*
|
|
+ * Assume that every added cpu gives us slightly less overall latency
|
|
+ * allowing us to increase the base rr_interval, but in a non linear
|
|
+ * fashion.
|
|
+ */
|
|
+ rr_interval *= 1 + ilog2(num_online_cpus());
|
|
+}
|
|
+#else
|
|
+void __init sched_init_smp(void)
|
|
+{
|
|
+}
|
|
+#endif /* CONFIG_SMP */
|
|
+
|
|
+unsigned int sysctl_timer_migration = 1;
|
|
+
|
|
+int in_sched_functions(unsigned long addr)
|
|
+{
|
|
+ return in_lock_functions(addr) ||
|
|
+ (addr >= (unsigned long)__sched_text_start
|
|
+ && addr < (unsigned long)__sched_text_end);
|
|
+}
|
|
+
|
|
+void __init sched_init(void)
|
|
+{
|
|
+ int i;
|
|
+ int highest_cpu = 0;
|
|
+
|
|
+ prio_ratios[0] = 100;
|
|
+ for (i = 1 ; i < PRIO_RANGE ; i++)
|
|
+ prio_ratios[i] = prio_ratios[i - 1] * 11 / 10;
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+ init_defrootdomain();
|
|
+ cpus_clear(grq.cpu_idle_map);
|
|
+#endif
|
|
+ spin_lock_init(&grq.lock);
|
|
+ for_each_possible_cpu(i) {
|
|
+ struct rq *rq;
|
|
+
|
|
+ rq = cpu_rq(i);
|
|
+ INIT_LIST_HEAD(&rq->queue);
|
|
+ rq->rq_deadline = 0;
|
|
+ rq->rq_prio = 0;
|
|
+ rq->cpu = i;
|
|
+ rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc =
|
|
+ rq->iowait_pc = rq->idle_pc = 0;
|
|
+#ifdef CONFIG_SMP
|
|
+ rq->sd = NULL;
|
|
+ rq->rd = NULL;
|
|
+ rq->online = 0;
|
|
+ INIT_LIST_HEAD(&rq->migration_queue);
|
|
+ rq_attach_root(rq, &def_root_domain);
|
|
+#endif
|
|
+ atomic_set(&rq->nr_iowait, 0);
|
|
+ highest_cpu = i;
|
|
+ }
|
|
+ grq.iso_ticks = grq.nr_running = grq.nr_uninterruptible = 0;
|
|
+ for (i = 0; i < PRIO_LIMIT; i++)
|
|
+ INIT_LIST_HEAD(grq.queue + i);
|
|
+ bitmap_zero(grq.prio_bitmap, PRIO_LIMIT);
|
|
+ /* delimiter for bitsearch */
|
|
+ __set_bit(PRIO_LIMIT, grq.prio_bitmap);
|
|
+
|
|
+#ifdef CONFIG_SMP
|
|
+ nr_cpu_ids = highest_cpu + 1;
|
|
+#endif
|
|
+
|
|
+#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
+ INIT_HLIST_HEAD(&init_task.preempt_notifiers);
|
|
+#endif
|
|
+
|
|
+#ifdef CONFIG_RT_MUTEXES
|
|
+ plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
|
|
+#endif
|
|
+
|
|
+ /*
|
|
+ * The boot idle thread does lazy MMU switching as well:
|
|
+ */
|
|
+ atomic_inc(&init_mm.mm_count);
|
|
+ enter_lazy_tlb(&init_mm, current);
|
|
+
|
|
+ /*
|
|
+ * Make us the idle thread. Technically, schedule() should not be
|
|
+ * called from this thread, however somewhere below it might be,
|
|
+ * but because we are the idle thread, we just pick up running again
|
|
+ * when this runqueue becomes "idle".
|
|
+ */
|
|
+ init_idle(current, smp_processor_id());
|
|
+
|
|
+ /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
|
|
+ alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
|
|
+#ifdef CONFIG_SMP
|
|
+#ifdef CONFIG_NO_HZ
|
|
+ alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
|
|
+ alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
|
|
+#endif
|
|
+ alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
|
|
+#endif /* SMP */
|
|
+ perf_counter_init();
|
|
+}
|
|
+
|
|
+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
|
|
+void __might_sleep(char *file, int line)
|
|
+{
|
|
+#ifdef in_atomic
|
|
+ static unsigned long prev_jiffy; /* ratelimiting */
|
|
+
|
|
+ if ((in_atomic() || irqs_disabled()) &&
|
|
+ system_state == SYSTEM_RUNNING && !oops_in_progress) {
|
|
+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
|
|
+ return;
|
|
+ prev_jiffy = jiffies;
|
|
+ printk(KERN_ERR "BUG: sleeping function called from invalid"
|
|
+ " context at %s:%d\n", file, line);
|
|
+ printk("in_atomic():%d, irqs_disabled():%d\n",
|
|
+ in_atomic(), irqs_disabled());
|
|
+ debug_show_held_locks(current);
|
|
+ if (irqs_disabled())
|
|
+ print_irqtrace_events(current);
|
|
+ dump_stack();
|
|
+ }
|
|
+#endif
|
|
+}
|
|
+EXPORT_SYMBOL(__might_sleep);
|
|
+#endif
|
|
+
|
|
+#ifdef CONFIG_MAGIC_SYSRQ
|
|
+void normalize_rt_tasks(void)
|
|
+{
|
|
+ struct task_struct *g, *p;
|
|
+ unsigned long flags;
|
|
+ struct rq *rq;
|
|
+ int queued;
|
|
+
|
|
+ read_lock_irq(&tasklist_lock);
|
|
+
|
|
+ do_each_thread(g, p) {
|
|
+ if (!rt_task(p) && !iso_task(p))
|
|
+ continue;
|
|
+
|
|
+ spin_lock_irqsave(&p->pi_lock, flags);
|
|
+ rq = __task_grq_lock(p);
|
|
+ update_rq_clock(rq);
|
|
+
|
|
+ queued = task_queued_only(p);
|
|
+ if (queued)
|
|
+ dequeue_task(p);
|
|
+ __setscheduler(p, SCHED_NORMAL, 0);
|
|
+ if (task_running(p))
|
|
+ resched_task(p);
|
|
+ if (queued) {
|
|
+ enqueue_task(p);
|
|
+ try_preempt(p);
|
|
+ }
|
|
+
|
|
+ __task_grq_unlock();
|
|
+ spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
+ } while_each_thread(g, p);
|
|
+
|
|
+ read_unlock_irq(&tasklist_lock);
|
|
+}
|
|
+#endif /* CONFIG_MAGIC_SYSRQ */
|
|
+
|
|
+#ifdef CONFIG_IA64
|
|
+/*
|
|
+ * These functions are only useful for the IA64 MCA handling.
|
|
+ *
|
|
+ * They can only be called when the whole system has been
|
|
+ * stopped - every CPU needs to be quiescent, and no scheduling
|
|
+ * activity can take place. Using them for anything else would
|
|
+ * be a serious bug, and as a result, they aren't even visible
|
|
+ * under any other configuration.
|
|
+ */
|
|
+
|
|
+/**
|
|
+ * curr_task - return the current task for a given cpu.
|
|
+ * @cpu: the processor in question.
|
|
+ *
|
|
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
|
|
+ */
|
|
+struct task_struct *curr_task(int cpu)
|
|
+{
|
|
+ return cpu_curr(cpu);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * set_curr_task - set the current task for a given cpu.
|
|
+ * @cpu: the processor in question.
|
|
+ * @p: the task pointer to set.
|
|
+ *
|
|
+ * Description: This function must only be used when non-maskable interrupts
|
|
+ * are serviced on a separate stack. It allows the architecture to switch the
|
|
+ * notion of the current task on a cpu in a non-blocking manner. This function
|
|
+ * must be called with all CPU's synchronized, and interrupts disabled, the
|
|
+ * and caller must save the original value of the current task (see
|
|
+ * curr_task() above) and restore that value before reenabling interrupts and
|
|
+ * re-starting the system.
|
|
+ *
|
|
+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
|
|
+ */
|
|
+void set_curr_task(int cpu, struct task_struct *p)
|
|
+{
|
|
+ cpu_curr(cpu) = p;
|
|
+}
|
|
+
|
|
+#endif
|
|
+
|
|
+/*
|
|
+ * Use precise platform statistics if available:
|
|
+ */
|
|
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING
|
|
+cputime_t task_utime(struct task_struct *p)
|
|
+{
|
|
+ return p->utime;
|
|
+}
|
|
+
|
|
+cputime_t task_stime(struct task_struct *p)
|
|
+{
|
|
+ return p->stime;
|
|
+}
|
|
+#else
|
|
+cputime_t task_utime(struct task_struct *p)
|
|
+{
|
|
+ clock_t utime = cputime_to_clock_t(p->utime),
|
|
+ total = utime + cputime_to_clock_t(p->stime);
|
|
+ u64 temp;
|
|
+
|
|
+ temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
|
|
+
|
|
+ if (total) {
|
|
+ temp *= utime;
|
|
+ do_div(temp, total);
|
|
+ }
|
|
+ utime = (clock_t)temp;
|
|
+
|
|
+ p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
|
|
+ return p->prev_utime;
|
|
+}
|
|
+
|
|
+cputime_t task_stime(struct task_struct *p)
|
|
+{
|
|
+ clock_t stime;
|
|
+
|
|
+ stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
|
|
+ cputime_to_clock_t(task_utime(p));
|
|
+
|
|
+ if (stime >= 0)
|
|
+ p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
|
|
+
|
|
+ return p->prev_stime;
|
|
+}
|
|
+#endif
|
|
+
|
|
+inline cputime_t task_gtime(struct task_struct *p)
|
|
+{
|
|
+ return p->gtime;
|
|
+}
|
|
+
|
|
+void __cpuinit init_idle_bootup_task(struct task_struct *idle)
|
|
+{}
|
|
+
|
|
+#ifdef CONFIG_SCHED_DEBUG
|
|
+void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
|
|
+{}
|
|
+
|
|
+void proc_sched_set_task(struct task_struct *p)
|
|
+{}
|
|
+#endif
|
|
--- a/kernel/sysctl.c
|
|
+++ b/kernel/sysctl.c
|
|
@@ -86,6 +86,8 @@ extern int percpu_pagelist_fraction;
|
|
extern int compat_log;
|
|
extern int latencytop_enabled;
|
|
extern int sysctl_nr_open_min, sysctl_nr_open_max;
|
|
+extern int rr_interval;
|
|
+extern int sched_iso_cpu;
|
|
#ifndef CONFIG_MMU
|
|
extern int sysctl_nr_trim_pages;
|
|
#endif
|
|
@@ -103,7 +105,8 @@ static int zero;
|
|
static int __maybe_unused one = 1;
|
|
static int __maybe_unused two = 2;
|
|
static unsigned long one_ul = 1;
|
|
-static int one_hundred = 100;
|
|
+static int __read_mostly one_hundred = 100;
|
|
+static int __maybe_unused __read_mostly five_thousand = 5000;
|
|
|
|
/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
|
|
static unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
|
|
@@ -238,7 +241,7 @@ static struct ctl_table root_table[] = {
|
|
{ .ctl_name = 0 }
|
|
};
|
|
|
|
-#ifdef CONFIG_SCHED_DEBUG
|
|
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SCHED_CFS)
|
|
static int min_sched_granularity_ns = 100000; /* 100 usecs */
|
|
static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */
|
|
static int min_wakeup_granularity_ns; /* 0 usecs */
|
|
@@ -246,7 +249,7 @@ static int max_wakeup_granularity_ns = N
|
|
#endif
|
|
|
|
static struct ctl_table kern_table[] = {
|
|
-#ifdef CONFIG_SCHED_DEBUG
|
|
+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SCHED_CFS)
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "sched_min_granularity_ns",
|
|
@@ -342,6 +345,7 @@ static struct ctl_table kern_table[] = {
|
|
.extra2 = &one,
|
|
},
|
|
#endif
|
|
+#ifdef CONFIG_SCHED_CFS
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
.procname = "sched_rt_period_us",
|
|
@@ -366,6 +370,7 @@ static struct ctl_table kern_table[] = {
|
|
.mode = 0644,
|
|
.proc_handler = &proc_dointvec,
|
|
},
|
|
+#endif
|
|
#ifdef CONFIG_PROVE_LOCKING
|
|
{
|
|
.ctl_name = CTL_UNNUMBERED,
|
|
@@ -798,6 +803,30 @@ static struct ctl_table kern_table[] = {
|
|
.proc_handler = &proc_dointvec,
|
|
},
|
|
#endif
|
|
+#ifdef CONFIG_SCHED_BFS
|
|
+ {
|
|
+ .ctl_name = CTL_UNNUMBERED,
|
|
+ .procname = "rr_interval",
|
|
+ .data = &rr_interval,
|
|
+ .maxlen = sizeof (int),
|
|
+ .mode = 0644,
|
|
+ .proc_handler = &proc_dointvec_minmax,
|
|
+ .strategy = &sysctl_intvec,
|
|
+ .extra1 = &one,
|
|
+ .extra2 = &five_thousand,
|
|
+ },
|
|
+ {
|
|
+ .ctl_name = CTL_UNNUMBERED,
|
|
+ .procname = "iso_cpu",
|
|
+ .data = &sched_iso_cpu,
|
|
+ .maxlen = sizeof (int),
|
|
+ .mode = 0644,
|
|
+ .proc_handler = &proc_dointvec_minmax,
|
|
+ .strategy = &sysctl_intvec,
|
|
+ .extra1 = &zero,
|
|
+ .extra2 = &one_hundred,
|
|
+ },
|
|
+#endif
|
|
#if defined(CONFIG_S390) && defined(CONFIG_SMP)
|
|
{
|
|
.ctl_name = KERN_SPIN_RETRY,
|
|
--- a/kernel/workqueue.c
|
|
+++ b/kernel/workqueue.c
|
|
@@ -317,7 +317,9 @@ static int worker_thread(void *__cwq)
|
|
if (cwq->wq->freezeable)
|
|
set_freezable();
|
|
|
|
+#ifdef CONFIG_SCHED_CFS
|
|
set_user_nice(current, -5);
|
|
+#endif
|
|
|
|
for (;;) {
|
|
prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
|