Recently, upgrade device autodetection has been added to the mvebu target.
This exposes some shortcomings of the generic export_bootdevice function,
e.g. on the Turris Omnia: export_bootdevice silently reports the root
partition to be the boot device. This makes the sysupgrade process fail at
several places.
Fix this by clearly distinguishing between /proc/cmdline arguments which
specify the boot disk, and those which specify the root partition. Only in
the latter case, strip off the partition, and do it consistently.
root=PARTUUID=<pseudo PARTUUID for MBR> (any partition) and root=/dev/*
(any partition) are accepted.
The root of the problem is that the *existing* export_bootdevice in
/lib/upgrade/common.sh behaves differently, if the kernel is booted with
root=/dev/..., or if it is booted with root=PARTUUID=...
In the former case, it reports back major/minor of the root partition,
in the latter case it reports back major/minor of the complete boot disk.
Targets, which boot with root=/dev/... *and* use export_bootdevice /
export_partdevice, have added workarounds to this behaviour, by specifying
*negative* increments to the export_partdevice function.
Consequently, those targets have to be adapted to use positive increments,
otherwise they are broken by the change to export_bootdevice.
Fixes: 4e8345ff68 ("mvebu: base-files: autodetect upgrade device")
Signed-off-by: Klaus Kudielka <klaus.kudielka@gmail.com>
Tested-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
MT7620 integrated WMAC does not need RT2x00 PCI driver or firmware
Also corrected kmod-eeprom-93cx6 and kmod-lib-crc-itu-t dependencies
according to original Kconfig and lsmod output
This will remove some unnecessary packages from MT7620 target to
save some space
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[75 characters per line in the commit message]
Probably glibc too. argp_help takes a char *. not const char *.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
[updated with upstream version of the patch]
This version has important change for tegra boards which is reserving
32MB memory for Linux kernel instead of current 16MB.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
Purpose of these changes is to introduce a hook for post service
shutdown in a similar fashion to the existing hook service_started. I
found it to be useful to specify a hook that is called once the service
has been stopped and not before the service is stopped like the
stop_service hook does.
The concrete use case I have for this is that I'm running a binary that
takes over the hardware watchdog timer. Said binary unfortunately can
not use ubus directly to tell procd to hand over the watchdog timer so
this has to be done in the service file for the binary in question. In
order to support a clean handover of the watchdog timer back to procd,
the service init script has to dispatch the ubus invocation once the
binary in question has been stopped.
Signed-off-by: Arthur Skowronek <ags@digineo.de>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
[added commit message, use the same form as other hooks]
No target is using kernel 3.18 anymore, remove all the generic
support for kernel 3.18.
The removed packages are depending on kernel 3.18 only and are not used on
any recent kernel.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This target only supports kernel 3.18, which is not supported in OpenWrt
any more for multiple releases. It also looks like there is no active
maintainer for this target.
Remove the code and all the packages which are only used by this target.
To add this target to OpenWrt again port it to a recent and supported
kernel version.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This target only supports kernel 4.1, which is not supported in OpenWrt
any more for multiple releases. It also looks like there is no active
maintainer for this target.
Remove the code and all the packages which are only used by this target.
To add this target to OpenWrt again port it to a recent and supported
kernel version.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This target only supports kernel 3.18, which is not supported in OpenWrt
any more for multiple releases. It also looks like there is no active
maintainer for this target.
Remove the code and all the packages which are only used by this target.
To add this target to OpenWrt again port it to a recent and supported
kernel version.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This target only supports kernel 3.18, which is not supported in OpenWrt
any more for multiple releases. It also looks like there is no active
maintainer for this target.
Remove the code and all the packages which are only used by this target.
To add this target to OpenWrt again port it to a recent and supported
kernel version.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This should be helpful for implementing service_running() in procd init
scripts.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Acked-by: John Crispin <john@phrozen.org>
Sometimes is desirable to run a process with a specific group id
instead of the default one which is derived from passwd entry.
This can be achived now by using procd_set_param group $mygroup.
Signed-off-by: Michael Heimpold <mhei@heimpold.de>
Signed-off-by: Hans Dedecker <dedeckeh@gmail.com> [PKG_SOURCE_VERSION update]
Optional syslog facility can be set by adding procd_set_param facility
$myfacility.
While at, also add stdout/stderr documentation.
Signed-off-by: Michael Heimpold <mhei@heimpold.de>
Signed-off-by: Hans Dedecker <dedeckeh@gmail.com> [PKG_SOURCE_VERSION update]
Currently Auto probing for BMP/BME280 does not work because kernel
module name in the call is not correct.
Package name was used instead of kernel module name.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Some of changes:
* Support for local-name()
* General refactoring
* Better parsing performance
* Fix possible buffer overflow & memleak
* Validation checks
* More commit functions (file, buffer, fd)
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Add a conditional to the individual package's for the kmods in DEPENDS.
This avoids the need to compile the kernel modules when the crypto
engine packages are not selected. The final binares are not affected by
this.
Signed-off-by: Eneas U de Queiroz <cote2004-github@yahoo.com>
Tested-by: Rosen Penev <rosenp@gmail.com>
struct ieee80211_local needs to be passed in separately instead of
dereferencing the (potentially NULL) sdata
Signed-off-by: Felix Fietkau <nbd@nbd.name>
9cd701a4f028 ath10k-ct: Add PN get/set API for wave-2 firmware.
5c8a4668323b ath10k-ct: Support over-riding the power ctl table in eeprom
75e2705f31bb ath10k-ct: CCA, eeprom, other changes.
a696e602a0fc ath10k-ct: Attempt to fix-out-of-tree compile for 4.16
a2aec62262df ath10k: Improve beacon tx status for 4.20 kernel.
be5c21a82b15 ath10k-ct: Fix out-of-tree compile for 4.20, pull in stable changes for 4.19
Fixes compile errors when using the 4.20 flavour.
Also the amount of beacon errors seems to have dropped.
Tested on a Mikrotik RB912UAGS-5HPacD
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
This reverts commit c6aa9ff388.
Further testing has revealed that we will need to allow concurrent
requests after all, especially for situations where CGI processes
initiate further HTTP requests to the local host.
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
This applies an upstream patch that fixes a OPENSSL_config() bug that
causes SSL initialization to fail when the openssl.cnf file is not
found. The config file is not installed by default.
Signed-off-by: Eneas U de Queiroz <cote2004-github@yahoo.com>
4a9d2005 Update manual pages
acf6a922 Bump up version number to 1.38.0, LT revision to 31:3:17
4ff45821 Update AUTHORS
42dce01e Merge branch 'nghttpx-fix-backend-selection-on-retry'
a35059e3 nghttpx: Fix bug that altered authority and path affect backend selection
5a30fafd Merge branch 'nghttpx-fix-chunked-request-stall'
dce91ad3 Merge branch 'nghttpx-dont-log-authorization'
2cff8b43 nghttpx: Fix bug that chunked request stalls
be96654d nghttpx: Don't log authorization request header field value with -LINFO
ce962c3f Merge branch 'update-http-parser'
f931504e Update http-parser to v2.9.1
d978f351 Fix bug that on_header callback is still called after stream is closed
ec519f22 Merge pull request #1270 from baitisj/master
e8b213e3 Bump up version number to 1.38.0-DEV
Signed-off-by: Hans Dedecker <dedeckeh@gmail.com>
The sender domain has a DMARC Reject/Quarantine policy which disallows
sending mailing list messages using the original "From" header.
To mitigate this problem, the original message has been wrapped
automatically by the mailing list software.
Enable engine support by default. Right now, some packages require
this, so it is always enabled by the bots. Many packages will compile
differently when engine support is detected, needing engine symbols from
the libraries.
However, being off by default, a user compiling its own image will fail
to run some popular packages from the official repo.
Note that disabling engines did not work in 1.0.2, so this problem never
showed up before.
NPN support has been removed in major browsers & servers, and has become
a small bloat, so it does not make sense to leave it on by default.
Remove deprecated CONFIG_ENGINE_CRYPTO symbol that is no longer needed.
Signed-off-by: Eneas U de Queiroz <cote2004-github@yahoo.com>
Currently the Geode builds fails on following kernel module missing
dependencies:
Package kmod-drm-amdgpu is missing dependencies for the following libraries:
backlight.ko
drm_kms_helper.ko
fb.ko
ttm.ko
So this patch tries to fix the kmod-drm-amdgpu module dependecies.
Fixes: 2f239c0 ("x86: video: add amdgpu DRM kernel package")
Fixes: 2f6918e ("x86: video: add radeon DRM module support")
Tested-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
Signed-off-by: Lucian Cristian <lucian.cristian@gmail.com>
Commit 6e060bd62c introduced a dependency to the dialout group.
Adding this group to the "group" file in the base-files package is not
enough to handle this dependency, because after a sysupgrade this entry
will be missing in the "group" file.
To address this problem the dependencies to the required groups needs to
be set in the Makefile of the procd package.
Then, the uci-default script "13_fix_group_user" will add the groups
on first boot-up after a sysupgrade.
Fixes: 6e060bd62c ("base-files/hotplug: fix dedicated group for tty devices")
Tested-by: Michael Heimpold <mhei@heimpold.de>
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
Both targets have their own idea of how to use ehci-fsl.
This patch reverts part of commit
68b8d3b079 ("kernel: usb: add FSL EHCI package") and moves
ehci-fsl back into kmod-usb2, while also making it hopefully
useable for the mpc85xx target.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
24f9dc7 Iron out all extra compiler warnings
9d8dbc9 Enable extra compiler checks
ff8d356 mbim-proxy support
ccca03f umbim: add registration set support
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Replace the patch introduced by commit d0b969eee8 ("mac80211: rt2x00:
do not increment sequence number while re-transmitting") was merged
into wireless-drivers.git. Replace our version with the merged version.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
EAP-pwd missing commit validation
Published: April 10, 2019
Identifiers:
- CVE-2019-9497 (EAP-pwd server not checking for reflection attack)
- CVE-2019-9498 (EAP-pwd server missing commit validation for
scalar/element)
- CVE-2019-9499 (EAP-pwd peer missing commit validation for
scalar/element)
Latest version available from: https://w1.fi/security/2019-4/
Vulnerability
EAP-pwd implementation in hostapd (EAP server) and wpa_supplicant (EAP
peer) was discovered not to validate the received scalar and element
values in EAP-pwd-Commit messages properly. This could result in attacks
that would be able to complete EAP-pwd authentication exchange without
the attacker having to know the used password.
A reflection attack is possible against the EAP-pwd server since the
hostapd EAP server did not verify that the EAP-pwd-Commit contains
scalar/element values that differ from the ones the server sent out
itself. This allows the attacker to complete EAP-pwd authentication
without knowing the password, but this does not result in the attacker
being able to derive the session key (MSK), i.e., the attacker would not
be able to complete the following key exchange (e.g., 4-way handshake in
RSN/WPA).
An attack using invalid scalar/element values is possible against both
the EAP-pwd server and peer since hostapd and wpa_supplicant did not
validate these values in the received EAP-pwd-Commit messages. If the
used crypto library does not implement additional checks for the element
(EC point), this could result in attacks where the attacker could use a
specially crafted commit message values to manipulate the exchange to
result in deriving a session key value from a very small set of possible
values. This could further be used to attack the EAP-pwd server in a
practical manner. An attack against the EAP-pwd peer is slightly more
complex, but still consider practical. These invalid scalar/element
attacks could result in the attacker being able to complete
authentication and learn the session key and MSK to allow the key
exchange to be completed as well, i.e., the attacker gaining access to
the network in case of the attack against the EAP server or the attacker
being able to operate a rogue AP in case of the attack against the EAP
peer.
While similar attacks might be applicable against SAE, it should be
noted that the SAE implementation in hostapd and wpa_supplicant does
have the validation steps that were missing from the EAP-pwd
implementation and as such, these attacks do not apply to the current
SAE implementation. Old versions of wpa_supplicant/hostapd did not
include the reflection attack check in the SAE implementation, though,
since that was added in June 2015 for v2.5 (commit 6a58444d27fd 'SAE:
Verify that own/peer commit-scalar and COMMIT-ELEMENT are different').
Vulnerable versions/configurations
All hostapd versions with EAP-pwd support (CONFIG_EAP_PWD=y in the build
configuration and EAP-pwd being enabled in the runtime configuration)
are vulnerable against the reflection attack.
All wpa_supplicant and hostapd versions with EAP-pwd support
(CONFIG_EAP_PWD=y in the build configuration and EAP-pwd being enabled
in the runtime configuration) are vulnerable against the invalid
scalar/element attack when built against a crypto library that does not
have an explicit validation step on imported EC points. The following
list indicates which cases are vulnerable/not vulnerable:
- OpenSSL v1.0.2 or older: vulnerable
- OpenSSL v1.1.0 or newer: not vulnerable
- BoringSSL with commit 38feb990a183 ('Require that EC points are on the
curve.') from September 2015: not vulnerable
- BoringSSL without commit 38feb990a183: vulnerable
- LibreSSL: vulnerable
- wolfssl: vulnerable
Acknowledgments
Thanks to Mathy Vanhoef (New York University Abu Dhabi) for discovering
and reporting the issues and for proposing changes to address them in
the implementation.
Possible mitigation steps
- Merge the following commits to wpa_supplicant/hostapd and rebuild:
CVE-2019-9497:
EAP-pwd server: Detect reflection attacks
CVE-2019-9498:
EAP-pwd server: Verify received scalar and element
EAP-pwd: Check element x,y coordinates explicitly
CVE-2019-9499:
EAP-pwd client: Verify received scalar and element
EAP-pwd: Check element x,y coordinates explicitly
These patches are available from https://w1.fi/security/2019-4/
- Update to wpa_supplicant/hostapd v2.8 or newer, once available
Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
[bump PKG_RELEASE]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
hostapd: fix SAE confirm missing state validation
Published: April 10, 2019
Identifiers:
- CVE-2019-9496 (SAE confirm missing state validation in hostapd/AP)
Latest version available from: https://w1.fi/security/2019-3/
Vulnerability
When hostapd is used to operate an access point with SAE (Simultaneous
Authentication of Equals; also known as WPA3-Personal), an invalid
authentication sequence could result in the hostapd process terminating
due to a NULL pointer dereference when processing SAE confirm
message. This was caused by missing state validation steps when
processing the SAE confirm message in hostapd/AP mode.
Similar cases against the wpa_supplicant SAE station implementation had
already been tested by the hwsim test cases, but those sequences did not
trigger this specific code path in AP mode which is why the issue was
not discovered earlier.
An attacker in radio range of an access point using hostapd in SAE
configuration could use this issue to perform a denial of service attack
by forcing the hostapd process to terminate.
Vulnerable versions/configurations
All hostapd versions with SAE support (CONFIG_SAE=y in the build
configuration and SAE being enabled in the runtime configuration).
Possible mitigation steps
- Merge the following commit to hostapd and rebuild:
SAE: Fix confirm message validation in error cases
These patches are available from https://w1.fi/security/2019-3/
- Update to hostapd v2.8 or newer, once available
Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
[bump PKG_RELEASE]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
EAP-pwd side-channel attack
Published: April 10, 2019
Identifiers:
- CVE-2019-9495 (cache attack against EAP-pwd)
Latest version available from: https://w1.fi/security/2019-2/
Vulnerability
Number of potential side channel attacks were recently discovered in the
SAE implementations used by both hostapd and wpa_supplicant (see
security advisory 2019-1 and VU#871675). EAP-pwd uses a similar design
for deriving PWE from the password and while a specific attack against
EAP-pwd is not yet known to be tested, there is no reason to believe
that the EAP-pwd implementation would be immune against the type of
cache attack that was identified for the SAE implementation. Since the
EAP-pwd implementation in hostapd (EAP server) and wpa_supplicant (EAP
peer) does not support MODP groups, the timing attack described against
SAE is not applicable for the EAP-pwd implementation.
A novel cache-based attack against SAE handshake would likely be
applicable against the EAP-pwd implementation. Even though the
wpa_supplicant/hostapd PWE derivation iteration for EAP-pwd has
protections against timing attacks, this new cache-based attack might
enable an attacker to determine which code branch is taken in the
iteration if the attacker is able to run unprivileged code on the victim
machine (e.g., an app installed on a smart phone or potentially a
JavaScript code on a web site loaded by a web browser). This depends on
the used CPU not providing sufficient protection to prevent unprivileged
applications from observing memory access patterns through the shared
cache (which is the most likely case with today's designs).
The attacker could use information about the selected branch to learn
information about the password and combine this information from number
of handshake instances with an offline dictionary attack. With
sufficient number of handshakes and sufficiently weak password, this
might result in full recovery of the used password if that password is
not strong enough to protect against dictionary attacks.
This attack requires the attacker to be able to run a program on the
target device. This is not commonly the case on an authentication server
(EAP server), so the most likely target for this would be a client
device using EAP-pwd.
The commits listed in the end of this advisory change the EAP-pwd
implementation shared by hostapd and wpa_supplicant to perform the PWE
derivation loop using operations that use constant time and memory
access pattern to minimize the externally observable differences from
operations that depend on the password even for the case where the
attacker might be able to run unprivileged code on the same device.
Vulnerable versions/configurations
All wpa_supplicant and hostapd versions with EAP-pwd support
(CONFIG_EAP_PWD=y in the build configuration and EAP-pwd being enabled
in the runtime configuration).
It should also be noted that older versions of wpa_supplicant/hostapd
prior to v2.7 did not include additional protection against certain
timing differences. The definition of the EAP-pwd (RFC 5931) does not
describe such protection, but the same issue that was addressed in SAE
earlier can be applicable against EAP-pwd as well and as such, that
implementation specific extra protection (commit 22ac3dfebf7b, "EAP-pwd:
Mask timing of PWE derivation") is needed to avoid showing externally
visible timing differences that could leak information about the
password. Any uses of older wpa_supplicant/hostapd versions with EAP-pwd
are recommended to update to v2.7 or newer in addition to the mitigation
steps listed below for the more recently discovered issue.
Possible mitigation steps
- Merge the following commits to wpa_supplicant/hostapd and rebuild:
OpenSSL: Use constant time operations for private bignums
Add helper functions for constant time operations
OpenSSL: Use constant time selection for crypto_bignum_legendre()
EAP-pwd: Use constant time and memory access for finding the PWE
These patches are available from https://w1.fi/security/2019-2/
- Update to wpa_supplicant/hostapd v2.8 or newer, once available
- Use strong passwords to prevent dictionary attacks
Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
[bump PKG_RELEASE]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
SAE side-channel attacks
Published: April 10, 2019
Identifiers:
- VU#871675
- CVE-2019-9494 (cache attack against SAE)
Latest version available from: https://w1.fi/security/2019-1/
Vulnerability
Number of potential side channel attacks were discovered in the SAE
implementations used by both hostapd (AP) and wpa_supplicant
(infrastructure BSS station/mesh station). SAE (Simultaneous
Authentication of Equals) is also known as WPA3-Personal. The discovered
side channel attacks may be able to leak information about the used
password based on observable timing differences and cache access
patterns. This might result in full password recovery when combined with
an offline dictionary attack and if the password is not strong enough to
protect against dictionary attacks.
Cache attack
A novel cache-based attack against SAE handshake was discovered. This
attack targets SAE with ECC groups. ECC group 19 being the mandatory
group to support and the most likely used group for SAE today, so this
attack applies to the most common SAE use case. Even though the PWE
derivation iteration in SAE has protections against timing attacks, this
new cache-based attack enables an attacker to determine which code
branch is taken in the iteration if the attacker is able to run
unprivileged code on the victim machine (e.g., an app installed on a
smart phone or potentially a JavaScript code on a web site loaded by a
web browser). This depends on the used CPU not providing sufficient
protection to prevent unprivileged applications from observing memory
access patterns through the shared cache (which is the most likely case
with today's designs).
The attacker can use information about the selected branch to learn
information about the password and combine this information from number
of handshake instances with an offline dictionary attack. With
sufficient number of handshakes and sufficiently weak password, this
might result in full discovery of the used password.
This attack requires the attacker to be able to run a program on the
target device. This is not commonly the case on access points, so the
most likely target for this would be a client device using SAE in an
infrastructure BSS or mesh BSS.
The commits listed in the end of this advisory change the SAE
implementation shared by hostapd and wpa_supplicant to perform the PWE
derivation loop using operations that use constant time and memory
access pattern to minimize the externally observable differences from
operations that depend on the password even for the case where the
attacker might be able to run unprivileged code on the same device.
Timing attack
The timing attack applies to the MODP groups 22, 23, and 24 where the
PWE generation algorithm defined for SAE can have sufficient timing
differences for an attacker to be able to determine how many rounds were
needed to find the PWE based on the used password and MAC
addresses. When the attack is repeated with multiple times, the attacker
may be able to gather enough information about the password to be able
to recover it fully using an offline dictionary attack if the password
is not strong enough to protect against dictionary attacks. This attack
could be performed by an attacker in radio range of an access point or a
station enabling the specific MODP groups.
This timing attack requires the applicable MODP groups to be enabled
explicitly in hostapd/wpa_supplicant configuration (sae_groups
parameter). All versions of hostapd/wpa_supplicant have disabled these
groups by default.
While this security advisory lists couple of commits introducing
additional protection for MODP groups in SAE, it should be noted that
the groups 22, 23, and 24 are not considered strong enough to meet the
current expectation for a secure system. As such, their use is
discouraged even if the additional protection mechanisms in the
implementation are included.
Vulnerable versions/configurations
All wpa_supplicant and hostapd versions with SAE support (CONFIG_SAE=y
in the build configuration and SAE being enabled in the runtime
configuration).
Acknowledgments
Thanks to Mathy Vanhoef (New York University Abu Dhabi) and Eyal Ronen
(Tel Aviv University) for discovering the issues and for discussions on
how to address them.
Possible mitigation steps
- Merge the following commits to wpa_supplicant/hostapd and rebuild:
OpenSSL: Use constant time operations for private bignums
Add helper functions for constant time operations
OpenSSL: Use constant time selection for crypto_bignum_legendre()
SAE: Minimize timing differences in PWE derivation
SAE: Avoid branches in is_quadratic_residue_blind()
SAE: Mask timing of MODP groups 22, 23, 24
SAE: Use const_time selection for PWE in FFC
SAE: Use constant time operations in sae_test_pwd_seed_ffc()
These patches are available from https://w1.fi/security/2019-1/
- Update to wpa_supplicant/hostapd v2.8 or newer, once available
- In addition to either of the above alternatives, disable MODP groups
1, 2, 5, 22, 23, and 24 by removing them from hostapd/wpa_supplicant
sae_groups runtime configuration parameter, if they were explicitly
enabled since those groups are not considered strong enough to meet
current security expectations. The groups 22, 23, and 24 are related
to the discovered side channel (timing) attack. The other groups in
the list are consider too weak to provide sufficient security. Note
that all these groups have been disabled by default in all
hostapd/wpa_supplicant versions and these would be used only if
explicitly enabled in the configuration.
- Use strong passwords to prevent dictionary attacks
Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
[bump PKG_RELEASE]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
With this change, the file is reduced from 5186 bytes to 4649 bytes that
its approximately 10.5 percent less memory consumption. For small
devices, sometimes every byte counts.
Also, all other protocol handler use tabs instead of spaces.
Signed-off-by: Florian Eckert <fe@dev.tdt.de>