musl: install a few extra headers to improve compatibility with various packages

Signed-off-by: Felix Fietkau <nbd@openwrt.org>

SVN-Revision: 41056
lede-17.01
Felix Fietkau 2014-06-09 13:47:36 +00:00
parent 9c40648f3a
commit d2675afecc
6 changed files with 1039 additions and 0 deletions

View File

@ -25,6 +25,7 @@ endef
define Host/Install
$(call Host/SetToolchainInfo)
$(MAKE) $(MUSL_MAKEOPTS) DESTDIR="$(TOOLCHAIN_DIR)/" install
$(CP) ./include $(TOOLCHAIN_DIR)/
endef
$(eval $(call HostBuild))

View File

@ -0,0 +1 @@
#include <sys/user.h>

View File

@ -0,0 +1,56 @@
#ifndef _FEATURES_H
#define _FEATURES_H
#ifdef _ALL_SOURCE
#define _GNU_SOURCE 1
#endif
#if !defined(_POSIX_SOURCE) && !defined(_POSIX_C_SOURCE) \
&& !defined(_XOPEN_SOURCE) && !defined(_GNU_SOURCE) \
&& !defined(_BSD_SOURCE) && !defined(__STRICT_ANSI__)
#define _BSD_SOURCE 1
#define _XOPEN_SOURCE 700
#endif
#if __STDC_VERSION__ >= 199901L
#define __restrict restrict
#elif !defined(__GNUC__)
#define __restrict
#endif
#if __STDC_VERSION__ >= 199901L || defined(__cplusplus)
#define __inline inline
#endif
#if __STDC_VERSION__ >= 201112L
#elif defined(__GNUC__)
#define _Noreturn __attribute__((__noreturn__))
#else
#define _Noreturn
#endif
/* Convenience macros to test the versions of glibc and gcc.
Use them like this:
#if __GNUC_PREREQ (2,8)
... code requiring gcc 2.8 or later ...
#endif
Note - they won't work for gcc1 or glibc1, since the _MINOR macros
were not defined then. */
#if defined __GNUC__ && defined __GNUC_MINOR__
# define __GNUC_PREREQ(maj, min) \
((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min))
#else
# define __GNUC_PREREQ(maj, min) 0
#endif
#if !defined __FORCE_NOGLIBC && (!defined _LIBC || defined __FORCE_GLIBC)
#undef __GNU_LIBRARY__
#define __GNU_LIBRARY__ 6
#define __GLIBC__ 2
#define __GLIBC_MINOR__ 16
#endif
#include <sys/glibc-types.h>
#endif

View File

@ -0,0 +1,378 @@
/* Copyright (C) 1992-2002, 2004, 2005, 2006, 2007, 2009, 2011, 2012
Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#ifndef _SYS_CDEFS_H
#define _SYS_CDEFS_H 1
/* We are almost always included from features.h. */
#ifndef _FEATURES_H
# include <features.h>
#endif
/* The GNU libc does not support any K&R compilers or the traditional mode
of ISO C compilers anymore. Check for some of the combinations not
anymore supported. */
#if defined __GNUC__ && !defined __STDC__
# error "You need a ISO C conforming compiler to use the glibc headers"
#endif
/* Some user header file might have defined this before. */
#undef __P
#undef __PMT
#ifdef __GNUC__
/* All functions, except those with callbacks or those that
synchronize memory, are leaf functions. */
# if __GNUC_PREREQ (4, 6) && !defined _LIBC
# define __LEAF , __leaf__
# define __LEAF_ATTR __attribute__ ((__leaf__))
# else
# define __LEAF
# define __LEAF_ATTR
# endif
/* GCC can always grok prototypes. For C++ programs we add throw()
to help it optimize the function calls. But this works only with
gcc 2.8.x and egcs. For gcc 3.2 and up we even mark C functions
as non-throwing using a function attribute since programs can use
the -fexceptions options for C code as well. */
# if !defined __cplusplus && __GNUC_PREREQ (3, 3)
# define __THROW __attribute__ ((__nothrow__ __LEAF))
# define __THROWNL __attribute__ ((__nothrow__))
# define __NTH(fct) __attribute__ ((__nothrow__ __LEAF)) fct
# else
# if defined __cplusplus && __GNUC_PREREQ (2,8)
# define __THROW throw ()
# define __THROWNL throw ()
# define __NTH(fct) __LEAF_ATTR fct throw ()
# else
# define __THROW
# define __THROWNL
# define __NTH(fct) fct
# endif
# endif
#else /* Not GCC. */
# define __inline /* No inline functions. */
# define __THROW
# define __THROWNL
# define __NTH(fct) fct
#endif /* GCC. */
/* These two macros are not used in glibc anymore. They are kept here
only because some other projects expect the macros to be defined. */
#define __P(args) args
#define __PMT(args) args
/* For these things, GCC behaves the ANSI way normally,
and the non-ANSI way under -traditional. */
#define __CONCAT(x,y) x ## y
#define __STRING(x) #x
/* This is not a typedef so `const __ptr_t' does the right thing. */
#define __ptr_t void *
#define __long_double_t long double
/* C++ needs to know that types and declarations are C, not C++. */
#ifdef __cplusplus
# define __BEGIN_DECLS extern "C" {
# define __END_DECLS }
#else
# define __BEGIN_DECLS
# define __END_DECLS
#endif
/* The standard library needs the functions from the ISO C90 standard
in the std namespace. At the same time we want to be safe for
future changes and we include the ISO C99 code in the non-standard
namespace __c99. The C++ wrapper header take case of adding the
definitions to the global namespace. */
#if defined __cplusplus && defined _GLIBCPP_USE_NAMESPACES
# define __BEGIN_NAMESPACE_STD namespace std {
# define __END_NAMESPACE_STD }
# define __USING_NAMESPACE_STD(name) using std::name;
# define __BEGIN_NAMESPACE_C99 namespace __c99 {
# define __END_NAMESPACE_C99 }
# define __USING_NAMESPACE_C99(name) using __c99::name;
#else
/* For compatibility we do not add the declarations into any
namespace. They will end up in the global namespace which is what
old code expects. */
# define __BEGIN_NAMESPACE_STD
# define __END_NAMESPACE_STD
# define __USING_NAMESPACE_STD(name)
# define __BEGIN_NAMESPACE_C99
# define __END_NAMESPACE_C99
# define __USING_NAMESPACE_C99(name)
#endif
/* Support for bounded pointers. */
#ifndef __BOUNDED_POINTERS__
# define __bounded /* nothing */
# define __unbounded /* nothing */
# define __ptrvalue /* nothing */
#endif
/* Fortify support. */
#define __bos(ptr) __builtin_object_size (ptr, __USE_FORTIFY_LEVEL > 1)
#define __bos0(ptr) __builtin_object_size (ptr, 0)
#define __fortify_function __extern_always_inline __attribute_artificial__
#if __GNUC_PREREQ (4,3)
# define __warndecl(name, msg) \
extern void name (void) __attribute__((__warning__ (msg)))
# define __warnattr(msg) __attribute__((__warning__ (msg)))
# define __errordecl(name, msg) \
extern void name (void) __attribute__((__error__ (msg)))
#else
# define __warndecl(name, msg) extern void name (void)
# define __warnattr(msg)
# define __errordecl(name, msg) extern void name (void)
#endif
/* Support for flexible arrays. */
#if __GNUC_PREREQ (2,97)
/* GCC 2.97 supports C99 flexible array members. */
# define __flexarr []
#else
# ifdef __GNUC__
# define __flexarr [0]
# else
# if defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L
# define __flexarr []
# else
/* Some other non-C99 compiler. Approximate with [1]. */
# define __flexarr [1]
# endif
# endif
#endif
/* __asm__ ("xyz") is used throughout the headers to rename functions
at the assembly language level. This is wrapped by the __REDIRECT
macro, in order to support compilers that can do this some other
way. When compilers don't support asm-names at all, we have to do
preprocessor tricks instead (which don't have exactly the right
semantics, but it's the best we can do).
Example:
int __REDIRECT(setpgrp, (__pid_t pid, __pid_t pgrp), setpgid); */
#if defined __GNUC__ && __GNUC__ >= 2
# define __REDIRECT(name, proto, alias) name proto __asm__ (__ASMNAME (#alias))
# ifdef __cplusplus
# define __REDIRECT_NTH(name, proto, alias) \
name proto __THROW __asm__ (__ASMNAME (#alias))
# define __REDIRECT_NTHNL(name, proto, alias) \
name proto __THROWNL __asm__ (__ASMNAME (#alias))
# else
# define __REDIRECT_NTH(name, proto, alias) \
name proto __asm__ (__ASMNAME (#alias)) __THROW
# define __REDIRECT_NTHNL(name, proto, alias) \
name proto __asm__ (__ASMNAME (#alias)) __THROWNL
# endif
# define __ASMNAME(cname) __ASMNAME2 (__USER_LABEL_PREFIX__, cname)
# define __ASMNAME2(prefix, cname) __STRING (prefix) cname
/*
#elif __SOME_OTHER_COMPILER__
# define __REDIRECT(name, proto, alias) name proto; \
_Pragma("let " #name " = " #alias)
*/
#endif
/* GCC has various useful declarations that can be made with the
`__attribute__' syntax. All of the ways we use this do fine if
they are omitted for compilers that don't understand it. */
#if !defined __GNUC__ || __GNUC__ < 2
# define __attribute__(xyz) /* Ignore */
#endif
/* At some point during the gcc 2.96 development the `malloc' attribute
for functions was introduced. We don't want to use it unconditionally
(although this would be possible) since it generates warnings. */
#if __GNUC_PREREQ (2,96)
# define __attribute_malloc__ __attribute__ ((__malloc__))
#else
# define __attribute_malloc__ /* Ignore */
#endif
/* At some point during the gcc 2.96 development the `pure' attribute
for functions was introduced. We don't want to use it unconditionally
(although this would be possible) since it generates warnings. */
#if __GNUC_PREREQ (2,96)
# define __attribute_pure__ __attribute__ ((__pure__))
#else
# define __attribute_pure__ /* Ignore */
#endif
/* This declaration tells the compiler that the value is constant. */
#if __GNUC_PREREQ (2,5)
# define __attribute_const__ __attribute__ ((__const__))
#else
# define __attribute_const__ /* Ignore */
#endif
/* At some point during the gcc 3.1 development the `used' attribute
for functions was introduced. We don't want to use it unconditionally
(although this would be possible) since it generates warnings. */
#if __GNUC_PREREQ (3,1)
# define __attribute_used__ __attribute__ ((__used__))
# define __attribute_noinline__ __attribute__ ((__noinline__))
#else
# define __attribute_used__ __attribute__ ((__unused__))
# define __attribute_noinline__ /* Ignore */
#endif
/* gcc allows marking deprecated functions. */
#if __GNUC_PREREQ (3,2)
# define __attribute_deprecated__ __attribute__ ((__deprecated__))
#else
# define __attribute_deprecated__ /* Ignore */
#endif
/* At some point during the gcc 2.8 development the `format_arg' attribute
for functions was introduced. We don't want to use it unconditionally
(although this would be possible) since it generates warnings.
If several `format_arg' attributes are given for the same function, in
gcc-3.0 and older, all but the last one are ignored. In newer gccs,
all designated arguments are considered. */
#if __GNUC_PREREQ (2,8)
# define __attribute_format_arg__(x) __attribute__ ((__format_arg__ (x)))
#else
# define __attribute_format_arg__(x) /* Ignore */
#endif
/* At some point during the gcc 2.97 development the `strfmon' format
attribute for functions was introduced. We don't want to use it
unconditionally (although this would be possible) since it
generates warnings. */
#if __GNUC_PREREQ (2,97)
# define __attribute_format_strfmon__(a,b) \
__attribute__ ((__format__ (__strfmon__, a, b)))
#else
# define __attribute_format_strfmon__(a,b) /* Ignore */
#endif
/* The nonull function attribute allows to mark pointer parameters which
must not be NULL. */
#if __GNUC_PREREQ (3,3)
# define __nonnull(params) __attribute__ ((__nonnull__ params))
#else
# define __nonnull(params)
#endif
/* If fortification mode, we warn about unused results of certain
function calls which can lead to problems. */
#if __GNUC_PREREQ (3,4)
# define __attribute_warn_unused_result__ \
__attribute__ ((__warn_unused_result__))
# if __USE_FORTIFY_LEVEL > 0
# define __wur __attribute_warn_unused_result__
# endif
#else
# define __attribute_warn_unused_result__ /* empty */
#endif
#ifndef __wur
# define __wur /* Ignore */
#endif
/* Forces a function to be always inlined. */
#if __GNUC_PREREQ (3,2)
# define __always_inline __inline __attribute__ ((__always_inline__))
#else
# define __always_inline __inline
#endif
/* Associate error messages with the source location of the call site rather
than with the source location inside the function. */
#if __GNUC_PREREQ (4,3)
# define __attribute_artificial__ __attribute__ ((__artificial__))
#else
# define __attribute_artificial__ /* Ignore */
#endif
/* GCC 4.3 and above with -std=c99 or -std=gnu99 implements ISO C99
inline semantics, unless -fgnu89-inline is used. */
#if !defined __cplusplus || __GNUC_PREREQ (4,3)
# if defined __GNUC_STDC_INLINE__ || defined __cplusplus
# define __extern_inline extern __inline __attribute__ ((__gnu_inline__))
# define __extern_always_inline \
extern __always_inline __attribute__ ((__gnu_inline__))
# else
# define __extern_inline extern __inline
# define __extern_always_inline extern __always_inline
# endif
#endif
/* GCC 4.3 and above allow passing all anonymous arguments of an
__extern_always_inline function to some other vararg function. */
#if __GNUC_PREREQ (4,3)
# define __va_arg_pack() __builtin_va_arg_pack ()
# define __va_arg_pack_len() __builtin_va_arg_pack_len ()
#endif
/* It is possible to compile containing GCC extensions even if GCC is
run in pedantic mode if the uses are carefully marked using the
`__extension__' keyword. But this is not generally available before
version 2.8. */
#if !__GNUC_PREREQ (2,8)
# define __extension__ /* Ignore */
#endif
/* __restrict is known in EGCS 1.2 and above. */
#if !__GNUC_PREREQ (2,92)
# define __restrict /* Ignore */
#endif
/* ISO C99 also allows to declare arrays as non-overlapping. The syntax is
array_name[restrict]
GCC 3.1 supports this. */
#if __GNUC_PREREQ (3,1) && !defined __GNUG__
# define __restrict_arr __restrict
#else
# ifdef __GNUC__
# define __restrict_arr /* Not supported in old GCC. */
# else
# if defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L
# define __restrict_arr restrict
# else
/* Some other non-C99 compiler. */
# define __restrict_arr /* Not supported. */
# endif
# endif
#endif
#if __GNUC__ >= 3
# define __glibc_unlikely(cond) __builtin_expect((cond), 0)
#else
# define __glibc_unlikely(cond) (cond)
#endif
#endif /* sys/cdefs.h */

View File

@ -0,0 +1,29 @@
#ifndef __MUSL_GLIBC_TYPES_H
#define __MUSL_GLIBC_TYPES_H
/* Convenience types. */
typedef unsigned char __u_char;
typedef unsigned short int __u_short;
typedef unsigned int __u_int;
typedef unsigned long int __u_long;
/* Fixed-size types, underlying types depend on word size and compiler. */
typedef signed char __int8_t;
typedef unsigned char __uint8_t;
typedef signed short int __int16_t;
typedef unsigned short int __uint16_t;
typedef signed int __int32_t;
typedef unsigned int __uint32_t;
#if __WORDSIZE == 64
typedef signed long int __int64_t;
typedef unsigned long int __uint64_t;
#else
__extension__ typedef signed long long int __int64_t;
__extension__ typedef unsigned long long int __uint64_t;
#endif
#define __off64_t off_t
#define __loff_t off_t
typedef char *__caddr_t;
#endif

View File

@ -0,0 +1,574 @@
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)queue.h 8.5 (Berkeley) 8/20/94
*/
#ifndef _SYS_QUEUE_H_
#define _SYS_QUEUE_H_
/*
* This file defines five types of data structures: singly-linked lists,
* lists, simple queues, tail queues, and circular queues.
*
* A singly-linked list is headed by a single forward pointer. The
* elements are singly linked for minimum space and pointer manipulation
* overhead at the expense of O(n) removal for arbitrary elements. New
* elements can be added to the list after an existing element or at the
* head of the list. Elements being removed from the head of the list
* should use the explicit macro for this purpose for optimum
* efficiency. A singly-linked list may only be traversed in the forward
* direction. Singly-linked lists are ideal for applications with large
* datasets and few or no removals or for implementing a LIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
* so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before
* or after an existing element or at the head of the list. A list
* may only be traversed in the forward direction.
*
* A simple queue is headed by a pair of pointers, one the head of the
* list and the other to the tail of the list. The elements are singly
* linked to save space, so elements can only be removed from the
* head of the list. New elements can be added to the list after
* an existing element, at the head of the list, or at the end of the
* list. A simple queue may only be traversed in the forward direction.
*
* A tail queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or
* after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction.
*
* A circle queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the list.
* A circle queue may be traversed in either direction, but has a more
* complex end of list detection.
*
* For details on the use of these macros, see the queue(3) manual page.
*/
/*
* List definitions.
*/
#define LIST_HEAD(name, type) \
struct name { \
struct type *lh_first; /* first element */ \
}
#define LIST_HEAD_INITIALIZER(head) \
{ NULL }
#define LIST_ENTRY(type) \
struct { \
struct type *le_next; /* next element */ \
struct type **le_prev; /* address of previous next element */ \
}
/*
* List functions.
*/
#define LIST_INIT(head) do { \
(head)->lh_first = NULL; \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_AFTER(listelm, elm, field) do { \
if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
(listelm)->field.le_next->field.le_prev = \
&(elm)->field.le_next; \
(listelm)->field.le_next = (elm); \
(elm)->field.le_prev = &(listelm)->field.le_next; \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.le_prev = (listelm)->field.le_prev; \
(elm)->field.le_next = (listelm); \
*(listelm)->field.le_prev = (elm); \
(listelm)->field.le_prev = &(elm)->field.le_next; \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.le_next = (head)->lh_first) != NULL) \
(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
(head)->lh_first = (elm); \
(elm)->field.le_prev = &(head)->lh_first; \
} while (/*CONSTCOND*/0)
#define LIST_REMOVE(elm, field) do { \
if ((elm)->field.le_next != NULL) \
(elm)->field.le_next->field.le_prev = \
(elm)->field.le_prev; \
*(elm)->field.le_prev = (elm)->field.le_next; \
} while (/*CONSTCOND*/0)
#define LIST_FOREACH(var, head, field) \
for ((var) = ((head)->lh_first); \
(var); \
(var) = ((var)->field.le_next))
/*
* List access methods.
*/
#define LIST_EMPTY(head) ((head)->lh_first == NULL)
#define LIST_FIRST(head) ((head)->lh_first)
#define LIST_NEXT(elm, field) ((elm)->field.le_next)
/*
* Singly-linked List definitions.
*/
#define SLIST_HEAD(name, type) \
struct name { \
struct type *slh_first; /* first element */ \
}
#define SLIST_HEAD_INITIALIZER(head) \
{ NULL }
#define SLIST_ENTRY(type) \
struct { \
struct type *sle_next; /* next element */ \
}
/*
* Singly-linked List functions.
*/
#define SLIST_INIT(head) do { \
(head)->slh_first = NULL; \
} while (/*CONSTCOND*/0)
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
(elm)->field.sle_next = (slistelm)->field.sle_next; \
(slistelm)->field.sle_next = (elm); \
} while (/*CONSTCOND*/0)
#define SLIST_INSERT_HEAD(head, elm, field) do { \
(elm)->field.sle_next = (head)->slh_first; \
(head)->slh_first = (elm); \
} while (/*CONSTCOND*/0)
#define SLIST_REMOVE_HEAD(head, field) do { \
(head)->slh_first = (head)->slh_first->field.sle_next; \
} while (/*CONSTCOND*/0)
#define SLIST_REMOVE(head, elm, type, field) do { \
if ((head)->slh_first == (elm)) { \
SLIST_REMOVE_HEAD((head), field); \
} \
else { \
struct type *curelm = (head)->slh_first; \
while(curelm->field.sle_next != (elm)) \
curelm = curelm->field.sle_next; \
curelm->field.sle_next = \
curelm->field.sle_next->field.sle_next; \
} \
} while (/*CONSTCOND*/0)
#define SLIST_FOREACH(var, head, field) \
for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
/*
* Singly-linked List access methods.
*/
#define SLIST_EMPTY(head) ((head)->slh_first == NULL)
#define SLIST_FIRST(head) ((head)->slh_first)
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
/*
* Singly-linked Tail queue declarations.
*/
#define STAILQ_HEAD(name, type) \
struct name { \
struct type *stqh_first; /* first element */ \
struct type **stqh_last; /* addr of last next element */ \
}
#define STAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).stqh_first }
#define STAILQ_ENTRY(type) \
struct { \
struct type *stqe_next; /* next element */ \
}
/*
* Singly-linked Tail queue functions.
*/
#define STAILQ_INIT(head) do { \
(head)->stqh_first = NULL; \
(head)->stqh_last = &(head)->stqh_first; \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
(head)->stqh_last = &(elm)->field.stqe_next; \
(head)->stqh_first = (elm); \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.stqe_next = NULL; \
*(head)->stqh_last = (elm); \
(head)->stqh_last = &(elm)->field.stqe_next; \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
(head)->stqh_last = &(elm)->field.stqe_next; \
(listelm)->field.stqe_next = (elm); \
} while (/*CONSTCOND*/0)
#define STAILQ_REMOVE_HEAD(head, field) do { \
if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
(head)->stqh_last = &(head)->stqh_first; \
} while (/*CONSTCOND*/0)
#define STAILQ_REMOVE(head, elm, type, field) do { \
if ((head)->stqh_first == (elm)) { \
STAILQ_REMOVE_HEAD((head), field); \
} else { \
struct type *curelm = (head)->stqh_first; \
while (curelm->field.stqe_next != (elm)) \
curelm = curelm->field.stqe_next; \
if ((curelm->field.stqe_next = \
curelm->field.stqe_next->field.stqe_next) == NULL) \
(head)->stqh_last = &(curelm)->field.stqe_next; \
} \
} while (/*CONSTCOND*/0)
#define STAILQ_FOREACH(var, head, field) \
for ((var) = ((head)->stqh_first); \
(var); \
(var) = ((var)->field.stqe_next))
#define STAILQ_CONCAT(head1, head2) do { \
if (!STAILQ_EMPTY((head2))) { \
*(head1)->stqh_last = (head2)->stqh_first; \
(head1)->stqh_last = (head2)->stqh_last; \
STAILQ_INIT((head2)); \
} \
} while (/*CONSTCOND*/0)
/*
* Singly-linked Tail queue access methods.
*/
#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
#define STAILQ_FIRST(head) ((head)->stqh_first)
#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
/*
* Simple queue definitions.
*/
#define SIMPLEQ_HEAD(name, type) \
struct name { \
struct type *sqh_first; /* first element */ \
struct type **sqh_last; /* addr of last next element */ \
}
#define SIMPLEQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).sqh_first }
#define SIMPLEQ_ENTRY(type) \
struct { \
struct type *sqe_next; /* next element */ \
}
/*
* Simple queue functions.
*/
#define SIMPLEQ_INIT(head) do { \
(head)->sqh_first = NULL; \
(head)->sqh_last = &(head)->sqh_first; \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
(head)->sqh_last = &(elm)->field.sqe_next; \
(head)->sqh_first = (elm); \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.sqe_next = NULL; \
*(head)->sqh_last = (elm); \
(head)->sqh_last = &(elm)->field.sqe_next; \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
(head)->sqh_last = &(elm)->field.sqe_next; \
(listelm)->field.sqe_next = (elm); \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_REMOVE_HEAD(head, field) do { \
if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
(head)->sqh_last = &(head)->sqh_first; \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_REMOVE(head, elm, type, field) do { \
if ((head)->sqh_first == (elm)) { \
SIMPLEQ_REMOVE_HEAD((head), field); \
} else { \
struct type *curelm = (head)->sqh_first; \
while (curelm->field.sqe_next != (elm)) \
curelm = curelm->field.sqe_next; \
if ((curelm->field.sqe_next = \
curelm->field.sqe_next->field.sqe_next) == NULL) \
(head)->sqh_last = &(curelm)->field.sqe_next; \
} \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_FOREACH(var, head, field) \
for ((var) = ((head)->sqh_first); \
(var); \
(var) = ((var)->field.sqe_next))
/*
* Simple queue access methods.
*/
#define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL)
#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
/*
* Tail queue definitions.
*/
#define _TAILQ_HEAD(name, type, qual) \
struct name { \
qual type *tqh_first; /* first element */ \
qual type *qual *tqh_last; /* addr of last next element */ \
}
#define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type,)
#define TAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).tqh_first }
#define _TAILQ_ENTRY(type, qual) \
struct { \
qual type *tqe_next; /* next element */ \
qual type *qual *tqe_prev; /* address of previous next element */\
}
#define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type,)
/*
* Tail queue functions.
*/
#define TAILQ_INIT(head) do { \
(head)->tqh_first = NULL; \
(head)->tqh_last = &(head)->tqh_first; \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
(head)->tqh_first->field.tqe_prev = \
&(elm)->field.tqe_next; \
else \
(head)->tqh_last = &(elm)->field.tqe_next; \
(head)->tqh_first = (elm); \
(elm)->field.tqe_prev = &(head)->tqh_first; \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.tqe_next = NULL; \
(elm)->field.tqe_prev = (head)->tqh_last; \
*(head)->tqh_last = (elm); \
(head)->tqh_last = &(elm)->field.tqe_next; \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
(elm)->field.tqe_next->field.tqe_prev = \
&(elm)->field.tqe_next; \
else \
(head)->tqh_last = &(elm)->field.tqe_next; \
(listelm)->field.tqe_next = (elm); \
(elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
(elm)->field.tqe_next = (listelm); \
*(listelm)->field.tqe_prev = (elm); \
(listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
} while (/*CONSTCOND*/0)
#define TAILQ_REMOVE(head, elm, field) do { \
if (((elm)->field.tqe_next) != NULL) \
(elm)->field.tqe_next->field.tqe_prev = \
(elm)->field.tqe_prev; \
else \
(head)->tqh_last = (elm)->field.tqe_prev; \
*(elm)->field.tqe_prev = (elm)->field.tqe_next; \
} while (/*CONSTCOND*/0)
#define TAILQ_FOREACH(var, head, field) \
for ((var) = ((head)->tqh_first); \
(var); \
(var) = ((var)->field.tqe_next))
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \
(var); \
(var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
#define TAILQ_CONCAT(head1, head2, field) do { \
if (!TAILQ_EMPTY(head2)) { \
*(head1)->tqh_last = (head2)->tqh_first; \
(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
(head1)->tqh_last = (head2)->tqh_last; \
TAILQ_INIT((head2)); \
} \
} while (/*CONSTCOND*/0)
/*
* Tail queue access methods.
*/
#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
#define TAILQ_FIRST(head) ((head)->tqh_first)
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
#define TAILQ_LAST(head, headname) \
(*(((struct headname *)((head)->tqh_last))->tqh_last))
#define TAILQ_PREV(elm, headname, field) \
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
/*
* Circular queue definitions.
*/
#define CIRCLEQ_HEAD(name, type) \
struct name { \
struct type *cqh_first; /* first element */ \
struct type *cqh_last; /* last element */ \
}
#define CIRCLEQ_HEAD_INITIALIZER(head) \
{ (void *)&head, (void *)&head }
#define CIRCLEQ_ENTRY(type) \
struct { \
struct type *cqe_next; /* next element */ \
struct type *cqe_prev; /* previous element */ \
}
/*
* Circular queue functions.
*/
#define CIRCLEQ_INIT(head) do { \
(head)->cqh_first = (void *)(head); \
(head)->cqh_last = (void *)(head); \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
(elm)->field.cqe_next = (listelm)->field.cqe_next; \
(elm)->field.cqe_prev = (listelm); \
if ((listelm)->field.cqe_next == (void *)(head)) \
(head)->cqh_last = (elm); \
else \
(listelm)->field.cqe_next->field.cqe_prev = (elm); \
(listelm)->field.cqe_next = (elm); \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
(elm)->field.cqe_next = (listelm); \
(elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
if ((listelm)->field.cqe_prev == (void *)(head)) \
(head)->cqh_first = (elm); \
else \
(listelm)->field.cqe_prev->field.cqe_next = (elm); \
(listelm)->field.cqe_prev = (elm); \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
(elm)->field.cqe_next = (head)->cqh_first; \
(elm)->field.cqe_prev = (void *)(head); \
if ((head)->cqh_last == (void *)(head)) \
(head)->cqh_last = (elm); \
else \
(head)->cqh_first->field.cqe_prev = (elm); \
(head)->cqh_first = (elm); \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.cqe_next = (void *)(head); \
(elm)->field.cqe_prev = (head)->cqh_last; \
if ((head)->cqh_first == (void *)(head)) \
(head)->cqh_first = (elm); \
else \
(head)->cqh_last->field.cqe_next = (elm); \
(head)->cqh_last = (elm); \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_REMOVE(head, elm, field) do { \
if ((elm)->field.cqe_next == (void *)(head)) \
(head)->cqh_last = (elm)->field.cqe_prev; \
else \
(elm)->field.cqe_next->field.cqe_prev = \
(elm)->field.cqe_prev; \
if ((elm)->field.cqe_prev == (void *)(head)) \
(head)->cqh_first = (elm)->field.cqe_next; \
else \
(elm)->field.cqe_prev->field.cqe_next = \
(elm)->field.cqe_next; \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_FOREACH(var, head, field) \
for ((var) = ((head)->cqh_first); \
(var) != (const void *)(head); \
(var) = ((var)->field.cqe_next))
#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
for ((var) = ((head)->cqh_last); \
(var) != (const void *)(head); \
(var) = ((var)->field.cqe_prev))
/*
* Circular queue access methods.
*/
#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
#define CIRCLEQ_LAST(head) ((head)->cqh_last)
#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
#define CIRCLEQ_LOOP_NEXT(head, elm, field) \
(((elm)->field.cqe_next == (void *)(head)) \
? ((head)->cqh_first) \
: (elm->field.cqe_next))
#define CIRCLEQ_LOOP_PREV(head, elm, field) \
(((elm)->field.cqe_prev == (void *)(head)) \
? ((head)->cqh_last) \
: (elm->field.cqe_prev))
#endif /* sys/queue.h */