openwrt/package/ltq-dsl/src/ifxmips_atm_core.c

4770 lines
168 KiB
C
Raw Normal View History

/******************************************************************************
**
** FILE NAME : ifxmips_atm_core.c
** PROJECT : UEIP
** MODULES : ATM
**
** DATE : 7 Jul 2009
** AUTHOR : Xu Liang
** DESCRIPTION : ATM driver common source file (core functions)
** COPYRIGHT : Copyright (c) 2006
** Infineon Technologies AG
** Am Campeon 1-12, 85579 Neubiberg, Germany
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** HISTORY
** $Date $Author $Comment
** 07 JUL 2009 Xu Liang Init Version
*******************************************************************************/
/*
* ####################################
* Version No.
* ####################################
*/
#define IFX_ATM_VER_MAJOR 1
#define IFX_ATM_VER_MID 0
#define IFX_ATM_VER_MINOR 19
/*
* ####################################
* Head File
* ####################################
*/
/*
* Common Head File
*/
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/ioctl.h>
#include <linux/atmdev.h>
#include <linux/atm.h>
#include <linux/clk.h>
/*
* Chip Specific Head File
*/
#include <lantiq_soc.h>
#include "ifxmips_compat.h"
#define IFX_MEI_BSP 1
#include "ifxmips_mei_interface.h"
#include "ifxmips_atm_core.h"
/*
* ####################################
* Kernel Version Adaption
* ####################################
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,11)
#define MODULE_PARM_ARRAY(a, b) module_param_array(a, int, NULL, 0)
#define MODULE_PARM(a, b) module_param(a, int, 0)
#else
#define MODULE_PARM_ARRAY(a, b) MODULE_PARM(a, b)
#endif
/*!
\addtogroup IFXMIPS_ATM_MODULE_PARAMS
*/
/*@{*/
/*
* ####################################
* Parameters to Configure PPE
* ####################################
*/
/*!
\brief QSB cell delay variation due to concurrency
*/
static int qsb_tau = 1; /* QSB cell delay variation due to concurrency */
/*!
\brief QSB scheduler burst length
*/
static int qsb_srvm = 0x0F; /* QSB scheduler burst length */
/*!
\brief QSB time step, all legal values are 1, 2, 4
*/
static int qsb_tstep = 4 ; /* QSB time step, all legal values are 1, 2, 4 */
/*!
\brief Write descriptor delay
*/
static int write_descriptor_delay = 0x20; /* Write descriptor delay */
/*!
\brief AAL5 padding byte ('~')
*/
static int aal5_fill_pattern = 0x007E; /* AAL5 padding byte ('~') */
/*!
\brief Max frame size for RX
*/
static int aal5r_max_packet_size = 0x0700; /* Max frame size for RX */
/*!
\brief Min frame size for RX
*/
static int aal5r_min_packet_size = 0x0000; /* Min frame size for RX */
/*!
\brief Max frame size for TX
*/
static int aal5s_max_packet_size = 0x0700; /* Max frame size for TX */
/*!
\brief Min frame size for TX
*/
static int aal5s_min_packet_size = 0x0000; /* Min frame size for TX */
/*!
\brief Drop error packet in RX path
*/
static int aal5r_drop_error_packet = 1; /* Drop error packet in RX path */
/*!
\brief Number of descriptors per DMA RX channel
*/
static int dma_rx_descriptor_length = 128; /* Number of descriptors per DMA RX channel */
/*!
\brief Number of descriptors per DMA TX channel
*/
static int dma_tx_descriptor_length = 64; /* Number of descriptors per DMA TX channel */
/*!
\brief PPE core clock cycles between descriptor write and effectiveness in external RAM
*/
static int dma_rx_clp1_descriptor_threshold = 38;
/*@}*/
MODULE_PARM(qsb_tau, "i");
MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
MODULE_PARM(qsb_srvm, "i");
MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
MODULE_PARM(qsb_tstep, "i");
MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
MODULE_PARM(write_descriptor_delay, "i");
MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
MODULE_PARM(aal5_fill_pattern, "i");
MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
MODULE_PARM(aal5r_max_packet_size, "i");
MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
MODULE_PARM(aal5r_min_packet_size, "i");
MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
MODULE_PARM(aal5s_max_packet_size, "i");
MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
MODULE_PARM(aal5s_min_packet_size, "i");
MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
MODULE_PARM(aal5r_drop_error_packet, "i");
MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
MODULE_PARM(dma_rx_descriptor_length, "i");
MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
MODULE_PARM(dma_tx_descriptor_length, "i");
MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
/*
* ####################################
* Definition
* ####################################
*/
#define ENABLE_LED_FRAMEWORK 1
#define DUMP_SKB_LEN ~0
/*
* ####################################
* Declaration
* ####################################
*/
/*
* Network Operations
*/
static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
static int ppe_open(struct atm_vcc *);
static void ppe_close(struct atm_vcc *);
static int ppe_send(struct atm_vcc *, struct sk_buff *);
static int ppe_send_oam(struct atm_vcc *, void *, int);
static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);
/*
* ADSL LED
*/
static INLINE void adsl_led_flash(void);
/*
* 64-bit operation used by MIB calculation
*/
static INLINE void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);
/*
* buffer manage functions
*/
static INLINE struct sk_buff* alloc_skb_rx(void);
static INLINE struct sk_buff* alloc_skb_tx(unsigned int);
struct sk_buff* atm_alloc_tx(struct atm_vcc *, unsigned int);
static INLINE void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
static INLINE struct sk_buff *get_skb_rx_pointer(unsigned int);
static INLINE int get_tx_desc(unsigned int);
/*
* mailbox handler and signal function
*/
static INLINE void mailbox_oam_rx_handler(void);
static INLINE void mailbox_aal_rx_handler(void);
#if defined(ENABLE_TASKLET) && ENABLE_TASKLET
static void do_ppe_tasklet(unsigned long);
#endif
static irqreturn_t mailbox_irq_handler(int, void *);
static INLINE void mailbox_signal(unsigned int, int);
/*
* QSB & HTU setting functions
*/
static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
static void qsb_global_set(void);
static INLINE void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
static INLINE void clear_htu_entry(unsigned int);
static void validate_oam_htu_entry(void);
static void invalidate_oam_htu_entry(void);
/*
* look up for connection ID
*/
static INLINE int find_vpi(unsigned int);
static INLINE int find_vpivci(unsigned int, unsigned int);
static INLINE int find_vcc(struct atm_vcc *);
/*
* ReTX functions
*/
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
static void retx_polling_func(unsigned long);
static int init_atm_tc_retrans_param(void);
static void clear_atm_tc_retrans_param(void);
#endif
/*
* Debug Functions
*/
#if defined(DEBUG_DUMP_SKB) && DEBUG_DUMP_SKB
static void dump_skb(struct sk_buff *, unsigned int, char *, int, int, int);
#else
#define dump_skb(skb, len, title, port, ch, is_tx) do {} while (0)
#endif
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
static void skb_swap(struct sk_buff *, unsigned int);
#else
#define skb_swap(skb, byteoff) do {} while (0)
#endif
/*
* Proc File Functions
*/
static INLINE void proc_file_create(void);
static INLINE void proc_file_delete(void);
static int proc_read_version(char *, char **, off_t, int, int *, void *);
static int proc_read_mib(char *, char **, off_t, int, int *, void *);
static int proc_write_mib(struct file *, const char *, unsigned long, void *);
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
static int proc_read_retx_mib(char *, char **, off_t, int, int *, void *);
static int proc_write_retx_mib(struct file *, const char *, unsigned long, void *);
#endif
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
static int proc_read_dbg(char *, char **, off_t, int, int *, void *);
static int proc_write_dbg(struct file *, const char *, unsigned long, void *);
static int proc_write_mem(struct file *, const char *, unsigned long, void *);
#if defined(CONFIG_AR9) || defined(CONFIG_VR9) || defined(CONFIG_DANUBE) || defined(CONFIG_AMAZON_SE)
static int proc_read_pp32(char *, char **, off_t, int, int *, void *);
static int proc_write_pp32(struct file *, const char *, unsigned long, void *);
#endif
#endif
#if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
static int proc_read_htu(char *, char **, off_t, int, int *, void *);
static int proc_read_txq(char *, char **, off_t, int, int *, void *);
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
static int proc_read_retx_fw(char *, char **, off_t, int, int *, void *);
static int proc_read_retx_stats(char *, char **, off_t, int, int *, void *);
static int proc_write_retx_stats(struct file *, const char *, unsigned long, void *);
static int proc_read_retx_cfg(char *, char **, off_t, int, int *, void *);
static int proc_write_retx_cfg(struct file *, const char *, unsigned long, void *);
static int proc_read_retx_dsl_param(char *, char **, off_t, int, int *, void *);
#endif
#endif
/*
* Proc Help Functions
*/
static int stricmp(const char *, const char *);
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
static int strincmp(const char *, const char *, int);
static int get_token(char **, char **, int *, int *);
static unsigned int get_number(char **, int *, int);
static void ignore_space(char **, int *);
#endif
static INLINE int ifx_atm_version(char *);
/*
* Init & clean-up functions
*/
static INLINE void check_parameters(void);
static INLINE int init_priv_data(void);
static INLINE void clear_priv_data(void);
static INLINE void init_rx_tables(void);
static INLINE void init_tx_tables(void);
/*
* Exteranl Function
*/
#if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
extern void ifx_push_oam(unsigned char *);
#else
static inline void ifx_push_oam(unsigned char *dummy) {}
#endif
#if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
#if !defined(ENABLE_LED_FRAMEWORK) || !ENABLE_LED_FRAMEWORK
extern int ifx_mei_atm_led_blink(void) __attribute__ ((weak));
#endif
extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr) __attribute__ ((weak));
#else
#if !defined(ENABLE_LED_FRAMEWORK) || !ENABLE_LED_FRAMEWORK
static inline int ifx_mei_atm_led_blink(void) { return IFX_SUCCESS; }
#endif
static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
{
if ( is_showtime != NULL )
*is_showtime = 0;
return IFX_SUCCESS;
}
#endif
/*
* External variable
*/
struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int) = NULL;
//extern struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int);
#if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) __attribute__ ((weak));
extern int (*ifx_mei_atm_showtime_exit)(void) __attribute__ ((weak));
#else
int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);
int (*ifx_mei_atm_showtime_exit)(void) = NULL;
EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);
#endif
/*
* ####################################
* Local Variable
* ####################################
*/
static struct atm_priv_data g_atm_priv_data;
static struct atmdev_ops g_ifx_atm_ops = {
.open = ppe_open,
.close = ppe_close,
.ioctl = ppe_ioctl,
.send = ppe_send,
.send_oam = ppe_send_oam,
.change_qos = ppe_change_qos,
.owner = THIS_MODULE,
};
#if defined(ENABLE_TASKLET) && ENABLE_TASKLET
DECLARE_TASKLET(g_dma_tasklet, do_ppe_tasklet, 0);
#endif
static int g_showtime = 0;
static void *g_xdata_addr = NULL;
#if 0 /*--- defined(ENABLE_LED_FRAMEWORK) && ENABLE_LED_FRAMEWORK ---*/
static void *g_data_led_trigger = NULL;
#endif
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
static unsigned long g_retx_playout_buffer = 0;
static volatile int g_retx_htu = 1;
static struct dsl_param g_dsl_param = {0};
static int g_retx_polling_cnt = HZ;
static struct timeval g_retx_polling_start = {0}, g_retx_polling_end = {0};
static struct timer_list g_retx_polling_timer;
#endif
unsigned int ifx_atm_dbg_enable = 0;
static struct proc_dir_entry* g_atm_dir = NULL;
/*
* ####################################
* Local Function
* ####################################
*/
static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
{
int ret = 0;
atm_cell_ifEntry_t mib_cell;
atm_aal5_ifEntry_t mib_aal5;
atm_aal5_vcc_x_t mib_vcc;
unsigned int value;
int conn;
if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
|| _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
return -ENOTTY;
if ( _IOC_DIR(cmd) & _IOC_READ )
ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
else if ( _IOC_DIR(cmd) & _IOC_WRITE )
ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
if ( ret )
return -EFAULT;
switch ( cmd )
{
case PPE_ATM_MIB_CELL: /* cell level MIB */
/* These MIB should be read at ARC side, now put zero only. */
mib_cell.ifHCInOctets_h = 0;
mib_cell.ifHCInOctets_l = 0;
mib_cell.ifHCOutOctets_h = 0;
mib_cell.ifHCOutOctets_l = 0;
mib_cell.ifInErrors = 0;
mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
mib_cell.ifOutErrors = 0;
ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
break;
case PPE_ATM_MIB_AAL5: /* AAL5 MIB */
value = WAN_MIB_TABLE->wrx_total_byte;
u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
g_atm_priv_data.prev_wrx_total_byte = value;
mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;
value = WAN_MIB_TABLE->wtx_total_byte;
u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
g_atm_priv_data.prev_wtx_total_byte = value;
mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;
mib_aal5.ifInUcastPkts = g_atm_priv_data.wrx_pdu;
mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
mib_aal5.ifInErrors = WAN_MIB_TABLE->wrx_err_pdu;
mib_aal5.ifInDiscards = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
mib_aal5.ifOutErros = g_atm_priv_data.wtx_err_pdu;
mib_aal5.ifOutDiscards = g_atm_priv_data.wtx_drop_pdu;
ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
break;
case PPE_ATM_MIB_VCC: /* VCC related MIB */
copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
if ( conn >= 0 )
{
mib_vcc.mib_vcc.aal5VccCrcErrors = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
mib_vcc.mib_vcc.aal5VccSarTimeOuts = 0; /* no timer support */
ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
}
else
ret = -EINVAL;
break;
default:
ret = -ENOIOCTLCMD;
}
return ret;
}
static int ppe_open(struct atm_vcc *vcc)
{
int ret;
short vpi = vcc->vpi;
int vci = vcc->vci;
struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
int conn;
int f_enable_irq = 0;
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
int sys_flag;
#endif
if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
return -EPROTONOSUPPORT;
#if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
/* check bandwidth */
if (vcc->qos.txtp.traffic_class == ATM_CBR &&
vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
{
printk("CBR set. %s, line %d returns EINVAL\n", __FUNCTION__, __LINE__);
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
if(vcc->qos.txtp.traffic_class == ATM_VBR_RT &&
vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
{
printk("VBR RT set. %s, line %d returns EINVAL\n", __FUNCTION__, __LINE__);
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
if (vcc->qos.txtp.traffic_class == ATM_VBR_NRT &&
vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
{
printk("VBR NRT set. %s, line %d returns EINVAL\n", __FUNCTION__, __LINE__);
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
if (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS &&
vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
{
printk("UBR PLUS set. %s, line %d returns EINVAL\n", __FUNCTION__, __LINE__);
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
#endif
/* check existing vpi,vci */
conn = find_vpivci(vpi, vci);
if ( conn >= 0 ) {
ret = -EADDRINUSE;
goto PPE_OPEN_EXIT;
}
/* check whether it need to enable irq */
if ( g_atm_priv_data.conn_table == 0 )
f_enable_irq = 1;
/* allocate connection */
for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
g_atm_priv_data.conn[conn].vcc = vcc;
break;
}
}
if ( conn == MAX_PVC_NUMBER )
{
printk("max_pvc_number reached\n");
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
/* reserve bandwidth */
switch ( vcc->qos.txtp.traffic_class ) {
case ATM_CBR:
case ATM_VBR_RT:
port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
break;
case ATM_VBR_NRT:
port->tx_current_cell_rate += vcc->qos.txtp.scr;
break;
case ATM_UBR_PLUS:
port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
break;
}
/* set qsb */
set_qsb(vcc, &vcc->qos, conn);
/* update atm_vcc structure */
vcc->itf = (int)vcc->dev->dev_data;
vcc->vpi = vpi;
vcc->vci = vci;
set_bit(ATM_VF_READY, &vcc->flags);
/* enable irq */
if (f_enable_irq ) {
ifx_atm_alloc_tx = atm_alloc_tx;
*MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
*MBOX_IGU1_IER = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
enable_irq(PPE_MAILBOX_IGU1_INT);
}
/* set port */
WTX_QUEUE_CONFIG(conn + FIRST_QSB_QID)->sbid = (int)vcc->dev->dev_data;
/* set htu entry */
set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
// ReTX: occupy second QID
local_irq_save(sys_flag);
if ( g_retx_htu && vcc->qos.aal == ATM_AAL5 )
{
int retx_conn = (conn + 8) % 16; // ReTX queue
if ( retx_conn < MAX_PVC_NUMBER && test_and_set_bit(retx_conn, &g_atm_priv_data.conn_table) == 0 ) {
g_atm_priv_data.conn[retx_conn].vcc = vcc;
set_htu_entry(vpi, vci, retx_conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 1);
}
}
local_irq_restore(sys_flag);
#endif
ret = 0;
PPE_OPEN_EXIT:
return ret;
}
static void ppe_close(struct atm_vcc *vcc)
{
int conn;
struct port *port;
struct connection *connection;
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
int sys_flag;
#endif
if ( vcc == NULL )
return;
/* get connection id */
conn = find_vcc(vcc);
if ( conn < 0 ) {
err("can't find vcc");
goto PPE_CLOSE_EXIT;
}
connection = &g_atm_priv_data.conn[conn];
port = &g_atm_priv_data.port[connection->port];
/* clear htu */
clear_htu_entry(conn);
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
// ReTX: release second QID
local_irq_save(sys_flag);
if ( g_retx_htu && vcc->qos.aal == ATM_AAL5 )
{
int retx_conn = (conn + 8) % 16; // ReTX queue
if ( retx_conn < MAX_PVC_NUMBER && g_atm_priv_data.conn[retx_conn].vcc == vcc ) {
clear_htu_entry(retx_conn);
g_atm_priv_data.conn[retx_conn].vcc = NULL;
g_atm_priv_data.conn[retx_conn].aal5_vcc_crc_err = 0;
g_atm_priv_data.conn[retx_conn].aal5_vcc_oversize_sdu = 0;
clear_bit(retx_conn, &g_atm_priv_data.conn_table);
}
}
local_irq_restore(sys_flag);
#endif
/* release connection */
connection->vcc = NULL;
connection->aal5_vcc_crc_err = 0;
connection->aal5_vcc_oversize_sdu = 0;
clear_bit(conn, &g_atm_priv_data.conn_table);
/* disable irq */
if ( g_atm_priv_data.conn_table == 0 ) {
disable_irq(PPE_MAILBOX_IGU1_INT);
ifx_atm_alloc_tx = NULL;
}
/* release bandwidth */
switch ( vcc->qos.txtp.traffic_class )
{
case ATM_CBR:
case ATM_VBR_RT:
port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
break;
case ATM_VBR_NRT:
port->tx_current_cell_rate -= vcc->qos.txtp.scr;
break;
case ATM_UBR_PLUS:
port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
break;
}
PPE_CLOSE_EXIT:
return;
}
static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
{
int ret;
int conn;
int desc_base;
struct tx_descriptor reg_desc = {0};
if ( vcc == NULL || skb == NULL )
return -EINVAL;
skb_orphan(skb);
skb_get(skb);
atm_free_tx_skb_vcc(skb, vcc);
conn = find_vcc(vcc);
if ( conn < 0 ) {
ret = -EINVAL;
goto FIND_VCC_FAIL;
}
if ( !g_showtime ) {
err("not in showtime");
ret = -EIO;
goto PPE_SEND_FAIL;
}
if ( vcc->qos.aal == ATM_AAL5 ) {
int byteoff;
int datalen;
struct tx_inband_header *header;
datalen = skb->len;
byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
if ( skb_headroom(skb) < byteoff + TX_INBAND_HEADER_LENGTH ) {
struct sk_buff *new_skb;
new_skb = alloc_skb_tx(datalen);
if ( new_skb == NULL ) {
err("ALLOC_SKB_TX_FAIL");
ret = -ENOMEM;
goto PPE_SEND_FAIL;
}
skb_put(new_skb, datalen);
memcpy(new_skb->data, skb->data, datalen);
dev_kfree_skb_any(skb);
skb = new_skb;
byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
}
skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
header = (struct tx_inband_header *)skb->data;
/* setup inband trailer */
header->uu = 0;
header->cpi = 0;
header->pad = aal5_fill_pattern;
header->res1 = 0;
/* setup cell header */
header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
header->pti = ATM_PTI_US0;
header->vci = vcc->vci;
header->vpi = vcc->vpi;
header->gfc = 0;
/* setup descriptor */
reg_desc.dataptr = (unsigned int)skb->data >> 2;
reg_desc.datalen = datalen;
reg_desc.byteoff = byteoff;
reg_desc.iscell = 0;
}
else {
/* if data pointer is not aligned, allocate new sk_buff */
if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 ) {
struct sk_buff *new_skb;
err("skb->data not aligned");
new_skb = alloc_skb_tx(skb->len);
if ( new_skb == NULL ) {
err("ALLOC_SKB_TX_FAIL");
ret = -ENOMEM;
goto PPE_SEND_FAIL;
}
skb_put(new_skb, skb->len);
memcpy(new_skb->data, skb->data, skb->len);
dev_kfree_skb_any(skb);
skb = new_skb;
}
reg_desc.dataptr = (unsigned int)skb->data >> 2;
reg_desc.datalen = skb->len;
reg_desc.byteoff = 0;
reg_desc.iscell = 1;
}
reg_desc.own = 1;
reg_desc.c = 1;
reg_desc.sop = reg_desc.eop = 1;
desc_base = get_tx_desc(conn);
if ( desc_base < 0 ) {
err("ALLOC_TX_CONNECTION_FAIL");
ret = -EIO;
goto PPE_SEND_FAIL;
}
if ( vcc->stats )
atomic_inc(&vcc->stats->tx);
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wtx_pdu++;
/* update descriptor send pointer */
if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
/* write discriptor to memory and write back cache */
#ifdef CONFIG_DEBUG_SLAB
/* be sure that "redzone 1" is written back to memory */
dma_cache_wback((unsigned long)skb->head, 32);
#endif
dma_cache_wback((unsigned long)skb_shinfo(skb), sizeof(struct skb_shared_info));
dma_cache_wback((unsigned long)skb->data, skb->len);
g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 1);
mailbox_signal(conn, 1);
adsl_led_flash();
return 0;
FIND_VCC_FAIL:
err("FIND_VCC_FAIL");
g_atm_priv_data.wtx_err_pdu++;
dev_kfree_skb_any(skb);
return ret;
PPE_SEND_FAIL:
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wtx_drop_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->tx_err);
dev_kfree_skb_any(skb);
return ret;
}
static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
{
int conn;
struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
int desc_base;
struct sk_buff *skb;
struct tx_descriptor reg_desc = {0};
if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
&& find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
|| ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
&& find_vpi(uni_cell_header->vpi) < 0) )
return -EINVAL;
if ( !g_showtime ) {
err("not in showtime");
return -EIO;
}
conn = find_vcc(vcc);
if ( conn < 0 ) {
err("FIND_VCC_FAIL");
return -EINVAL;
}
skb = alloc_skb_tx(CELL_SIZE);
if ( skb == NULL ) {
err("ALLOC_SKB_TX_FAIL");
return -ENOMEM;
}
memcpy(skb->data, cell, CELL_SIZE);
reg_desc.dataptr = (unsigned int)skb->data >> 2;
reg_desc.datalen = CELL_SIZE;
reg_desc.byteoff = 0;
reg_desc.iscell = 1;
reg_desc.own = 1;
reg_desc.c = 1;
reg_desc.sop = reg_desc.eop = 1;
desc_base = get_tx_desc(conn);
if ( desc_base < 0 ) {
dev_kfree_skb_any(skb);
err("ALLOC_TX_CONNECTION_FAIL");
return -EIO;
}
if ( vcc->stats )
atomic_inc(&vcc->stats->tx);
/* update descriptor send pointer */
if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
/* write discriptor to memory and write back cache */
g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
dma_cache_wback((unsigned long)skb->data, CELL_SIZE);
dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 1);
if ( vcc->qos.aal == ATM_AAL5 && (ifx_atm_dbg_enable & DBG_ENABLE_MASK_MAC_SWAP) ) {
skb_swap(skb, reg_desc.byteoff);
}
mailbox_signal(conn, 1);
adsl_led_flash();
return 0;
}
static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
{
int conn;
if ( vcc == NULL || qos == NULL )
return -EINVAL;
conn = find_vcc(vcc);
if ( conn < 0 )
return -EINVAL;
set_qsb(vcc, qos, conn);
return 0;
}
static INLINE void adsl_led_flash(void)
{
#if 0
#if defined(ENABLE_LED_FRAMEWORK) && ENABLE_LED_FRAMEWORK
if ( g_data_led_trigger != NULL )
ifx_led_trigger_activate(g_data_led_trigger);
#else
if (!IS_ERR(&ifx_mei_atm_led_blink) && &ifx_mei_atm_led_blink )
ifx_mei_atm_led_blink();
#endif
#endif
}
/*
* Description:
* Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
* Input:
* opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
* opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
* ret --- ppe_u64_t, pointer to a variable to hold result
* Output:
* none
*/
static INLINE void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
{
ret->l = opt1.l + opt2;
if ( ret->l < opt1.l || ret->l < opt2 )
ret->h++;
}
static INLINE struct sk_buff* alloc_skb_rx(void)
{
struct sk_buff *skb;
skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
if ( skb != NULL ) {
/* must be burst length alignment */
if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
/* pub skb in reserved area "skb->data - 4" */
*((struct sk_buff **)skb->data - 1) = skb;
/* write back and invalidate cache */
dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
/* invalidate cache */
dma_cache_inv((unsigned long)skb->data, (unsigned int)skb->end - (unsigned int)skb->data);
}
return skb;
}
static INLINE struct sk_buff* alloc_skb_tx(unsigned int size)
{
struct sk_buff *skb;
/* allocate memory including header and padding */
size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
size &= ~(DATA_BUFFER_ALIGNMENT - 1);
skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
/* must be burst length alignment */
if ( skb != NULL )
skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
return skb;
}
struct sk_buff* atm_alloc_tx(struct atm_vcc *vcc, unsigned int size)
{
int conn;
struct sk_buff *skb;
/* oversize packet */
if ( size > aal5s_max_packet_size ) {
err("atm_alloc_tx: oversize packet");
return NULL;
}
/* send buffer overflow */
if ( atomic_read(&sk_atm(vcc)->sk_wmem_alloc) && !atm_may_send(vcc, size) ) {
err("atm_alloc_tx: send buffer overflow");
return NULL;
}
conn = find_vcc(vcc);
if ( conn < 0 ) {
err("atm_alloc_tx: unknown VCC");
return NULL;
}
skb = dev_alloc_skb(size);
if ( skb == NULL ) {
err("atm_alloc_tx: sk buffer is used up");
return NULL;
}
atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc);
return skb;
}
static INLINE void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
{
if ( vcc->pop != NULL )
vcc->pop(vcc, skb);
else
dev_kfree_skb_any(skb);
}
static INLINE struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
{
unsigned int skb_dataptr;
struct sk_buff *skb;
skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
skb = *(struct sk_buff **)skb_dataptr;
ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);
return skb;
}
static INLINE int get_tx_desc(unsigned int conn)
{
int desc_base = -1;
struct connection *p_conn = &g_atm_priv_data.conn[conn];
if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
desc_base = p_conn->tx_desc_pos;
if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
p_conn->tx_desc_pos = 0;
}
return desc_base;
}
static INLINE void mailbox_oam_rx_handler(void)
{
unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
struct rx_descriptor reg_desc;
struct uni_cell_header *header;
int conn;
struct atm_vcc *vcc;
unsigned int i;
for ( i = 0; i < vlddes; i++ ) {
do {
reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
} while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];
if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
conn = find_vpivci(header->vpi, header->vci);
else if ( header->vci == 0x03 || header->vci == 0x04 )
conn = find_vpi(header->vpi);
else
conn = -1;
if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
vcc = g_atm_priv_data.conn[conn].vcc;
if ( vcc->push_oam != NULL )
vcc->push_oam(vcc, header);
else
ifx_push_oam((unsigned char *)header);
adsl_led_flash();
}
reg_desc.byteoff = 0;
reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
reg_desc.own = 1;
reg_desc.c = 0;
g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
g_atm_priv_data.oam_desc_pos = 0;
mailbox_signal(RX_DMA_CH_OAM, 0);
}
}
static INLINE void mailbox_aal_rx_handler(void)
{
unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
struct rx_descriptor reg_desc;
int conn;
struct atm_vcc *vcc;
struct sk_buff *skb, *new_skb;
struct rx_inband_trailer *trailer;
unsigned int i;
for ( i = 0; i < vlddes; i++ ) {
do {
reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
} while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
conn = reg_desc.id;
if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
vcc = g_atm_priv_data.conn[conn].vcc;
skb = get_skb_rx_pointer(reg_desc.dataptr);
if ( reg_desc.err ) {
if ( vcc->qos.aal == ATM_AAL5 ) {
trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
if ( trailer->stw_crc )
g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
if ( trailer->stw_ovz )
g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
g_atm_priv_data.wrx_drop_pdu++;
}
if ( vcc->stats ) {
atomic_inc(&vcc->stats->rx_drop);
atomic_inc(&vcc->stats->rx_err);
}
}
else if ( atm_charge(vcc, skb->truesize) ) {
new_skb = alloc_skb_rx();
if ( new_skb != NULL ) {
skb_reserve(skb, reg_desc.byteoff);
skb_put(skb, reg_desc.datalen);
ATM_SKB(skb)->vcc = vcc;
dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 0);
vcc->push(vcc, skb);
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wrx_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->rx);
adsl_led_flash();
reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
}
else {
atm_return(vcc, skb->truesize);
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wrx_drop_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->rx_drop);
}
}
else {
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wrx_drop_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->rx_drop);
}
}
else {
g_atm_priv_data.wrx_drop_pdu++;
}
reg_desc.byteoff = 0;
reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
reg_desc.own = 1;
reg_desc.c = 0;
g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
g_atm_priv_data.aal_desc_pos = 0;
mailbox_signal(RX_DMA_CH_AAL, 0);
}
}
#if defined(ENABLE_TASKLET) && ENABLE_TASKLET
static void do_ppe_tasklet(unsigned long arg)
{
*MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
mailbox_oam_rx_handler();
mailbox_aal_rx_handler();
if ( (*MBOX_IGU1_ISR & ((1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM))) != 0 )
tasklet_schedule(&g_dma_tasklet);
else
enable_irq(PPE_MAILBOX_IGU1_INT);
}
#endif
static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
{
if ( !*MBOX_IGU1_ISR )
return IRQ_HANDLED;
#if defined(ENABLE_TASKLET) && ENABLE_TASKLET
disable_irq(PPE_MAILBOX_IGU1_INT);
tasklet_schedule(&g_dma_tasklet);
#else
*MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
mailbox_oam_rx_handler();
mailbox_aal_rx_handler();
#endif
return IRQ_HANDLED;
}
static INLINE void mailbox_signal(unsigned int queue, int is_tx)
{
int count = 1000;
if ( is_tx ) {
while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) && count)
count--;
*MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
}
else {
while ( MBOX_IGU3_ISR_ISR(queue) && count)
count--;
*MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
}
ASSERT(count != 0, "MBOX_IGU3_ISR = 0x%08x", ltq_r32(MBOX_IGU3_ISR));
}
static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
{
struct clk *clk = clk_get(0, "fpi");
unsigned int qsb_clk = clk_get_rate(clk);
unsigned int qsb_qid = queue + FIRST_QSB_QID;
union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
unsigned int tmp;
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
static char *str_traffic_class[9] = {
"ATM_NONE",
"ATM_UBR",
"ATM_CBR",
"ATM_VBR",
"ATM_ABR",
"ATM_ANYCLASS",
"ATM_VBR_RT",
"ATM_UBR_PLUS",
"ATM_MAX_PCR"
};
printk(KERN_INFO "QoS Parameters:\n");
printk(KERN_INFO "\tAAL : %d\n", qos->aal);
printk(KERN_INFO "\tTX Traffic Class: %s\n", str_traffic_class[qos->txtp.traffic_class]);
printk(KERN_INFO "\tTX Max PCR : %d\n", qos->txtp.max_pcr);
printk(KERN_INFO "\tTX Min PCR : %d\n", qos->txtp.min_pcr);
printk(KERN_INFO "\tTX PCR : %d\n", qos->txtp.pcr);
printk(KERN_INFO "\tTX Max CDV : %d\n", qos->txtp.max_cdv);
printk(KERN_INFO "\tTX Max SDU : %d\n", qos->txtp.max_sdu);
printk(KERN_INFO "\tTX SCR : %d\n", qos->txtp.scr);
printk(KERN_INFO "\tTX MBS : %d\n", qos->txtp.mbs);
printk(KERN_INFO "\tTX CDV : %d\n", qos->txtp.cdv);
printk(KERN_INFO "\tRX Traffic Class: %s\n", str_traffic_class[qos->rxtp.traffic_class]);
printk(KERN_INFO "\tRX Max PCR : %d\n", qos->rxtp.max_pcr);
printk(KERN_INFO "\tRX Min PCR : %d\n", qos->rxtp.min_pcr);
printk(KERN_INFO "\tRX PCR : %d\n", qos->rxtp.pcr);
printk(KERN_INFO "\tRX Max CDV : %d\n", qos->rxtp.max_cdv);
printk(KERN_INFO "\tRX Max SDU : %d\n", qos->rxtp.max_sdu);
printk(KERN_INFO "\tRX SCR : %d\n", qos->rxtp.scr);
printk(KERN_INFO "\tRX MBS : %d\n", qos->rxtp.mbs);
printk(KERN_INFO "\tRX CDV : %d\n", qos->rxtp.cdv);
}
#endif // defined(DEBUG_QOS) && DEBUG_QOS
/*
* Peak Cell Rate (PCR) Limiter
*/
if ( qos->txtp.max_pcr == 0 )
qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
else {
/* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
/* check if overflow takes place */
qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
}
// A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
// Send packets to these two PVCs at same time, it trigger strange behavior.
// In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
// In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
// To work around, create UBR always with max_pcr.
// If user want to create UBR without max_pcr, we give a default one larger than line-rate.
if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
int port = g_atm_priv_data.conn[queue].port;
unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;
tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
if ( tmp > QSB_TP_TS_MAX )
tmp = QSB_TP_TS_MAX;
else if ( tmp < 1 )
tmp = 1;
qsb_queue_parameter_table.bit.tp = tmp;
}
/*
* Weighted Fair Queueing Factor (WFQF)
*/
switch ( qos->txtp.traffic_class ) {
case ATM_CBR:
case ATM_VBR_RT:
/* real time queue gets weighted fair queueing bypass */
qsb_queue_parameter_table.bit.wfqf = 0;
break;
case ATM_VBR_NRT:
case ATM_UBR_PLUS:
/* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
/* WFQF is maximum cell rate / garenteed cell rate */
/* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
if ( qos->txtp.min_pcr == 0 )
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
else
{
tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
if ( tmp == 0 )
qsb_queue_parameter_table.bit.wfqf = 1;
else if ( tmp > QSB_WFQ_NONUBR_MAX )
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
else
qsb_queue_parameter_table.bit.wfqf = tmp;
}
break;
default:
case ATM_UBR:
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
}
/*
* Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
*/
if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
if ( qos->txtp.scr == 0 ) {
/* disable shaper */
qsb_queue_vbr_parameter_table.bit.taus = 0;
qsb_queue_vbr_parameter_table.bit.ts = 0;
}
else {
/* Cell Loss Priority (CLP) */
if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
/* CLP1 */
qsb_queue_parameter_table.bit.vbr = 1;
else
/* CLP0 */
qsb_queue_parameter_table.bit.vbr = 0;
/* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
if ( tmp == 0 )
qsb_queue_vbr_parameter_table.bit.taus = 1;
else if ( tmp > QSB_TAUS_MAX )
qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
else
qsb_queue_vbr_parameter_table.bit.taus = tmp;
}
}
else {
qsb_queue_vbr_parameter_table.bit.taus = 0;
qsb_queue_vbr_parameter_table.bit.ts = 0;
}
/* Queue Parameter Table (QPT) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
printk("QPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
#endif
/* Queue VBR Paramter Table (QVPT) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
printk("QVPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
#endif
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
printk("set_qsb\n");
printk(" qsb_clk = %lu\n", (unsigned long)qsb_clk);
printk(" qsb_queue_parameter_table.bit.tp = %d\n", (int)qsb_queue_parameter_table.bit.tp);
printk(" qsb_queue_parameter_table.bit.wfqf = %d (0x%08X)\n", (int)qsb_queue_parameter_table.bit.wfqf, (int)qsb_queue_parameter_table.bit.wfqf);
printk(" qsb_queue_parameter_table.bit.vbr = %d\n", (int)qsb_queue_parameter_table.bit.vbr);
printk(" qsb_queue_parameter_table.dword = 0x%08X\n", (int)qsb_queue_parameter_table.dword);
printk(" qsb_queue_vbr_parameter_table.bit.ts = %d\n", (int)qsb_queue_vbr_parameter_table.bit.ts);
printk(" qsb_queue_vbr_parameter_table.bit.taus = %d\n", (int)qsb_queue_vbr_parameter_table.bit.taus);
printk(" qsb_queue_vbr_parameter_table.dword = 0x%08X\n", (int)qsb_queue_vbr_parameter_table.dword);
}
#endif
}
static void qsb_global_set(void)
{
struct clk *clk = clk_get(0, "fpi");
unsigned int qsb_clk = clk_get_rate(clk);
int i;
unsigned int tmp1, tmp2, tmp3;
*QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
*QSB_SBL = QSB_SBL_SBL_SET(qsb_srvm);
*QSB_CFG = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
printk("qsb_clk = %u\n", qsb_clk);
printk("QSB_ICDV (%08X) = %d (%d), QSB_SBL (%08X) = %d (%d), QSB_CFG (%08X) = %d (%d)\n", (unsigned int)QSB_ICDV, *QSB_ICDV, QSB_ICDV_TAU_SET(qsb_tau), (unsigned int)QSB_SBL, *QSB_SBL, QSB_SBL_SBL_SET(qsb_srvm), (unsigned int)QSB_CFG, *QSB_CFG, QSB_CFG_TSTEPC_SET(qsb_tstep >> 1));
}
#endif
/*
* set SCT and SPT per port
*/
for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
tmp2 = tmp1 >> 6; /* integer value of Tsb */
tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
/* carry over to integer part (?) */
if ( tmp3 == (1 << 6) )
{
tmp3 = 0;
tmp2++;
}
if ( tmp2 == 0 )
tmp2 = tmp3 = 1;
/* 1. set mask */
/* 2. write value to data transfer register */
/* 3. start the tranfer */
/* SCT (FracRate) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(tmp3);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
printk("SCT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
#endif
/* SPT (SBV + PN + IntRage) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
#if defined(DEBUG_QOS) && DEBUG_QOS
if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
printk("SPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
#endif
}
}
}
static INLINE void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
{
struct htu_entry htu_entry = { res1: 0x00,
clp: is_retx ? 0x01 : 0x00,
pid: g_atm_priv_data.conn[queue].port & 0x01,
vpi: vpi,
vci: vci,
pti: 0x00,
vld: 0x01};
struct htu_mask htu_mask = { set: 0x01,
#if !defined(ENABLE_ATM_RETX) || !ENABLE_ATM_RETX
clp: 0x01,
pid_mask: 0x02,
#else
clp: g_retx_htu ? 0x00 : 0x01,
pid_mask: RETX_MODE_CFG->retx_en ? 0x03 : 0x02,
#endif
vpi_mask: 0x00,
#if !defined(ENABLE_ATM_RETX) || !ENABLE_ATM_RETX
vci_mask: 0x0000,
#else
vci_mask: RETX_MODE_CFG->retx_en ? 0xFF00 : 0x0000,
#endif
pti_mask: 0x03, // 0xx, user data
clear: 0x00};
struct htu_result htu_result = {res1: 0x00,
cellid: queue,
res2: 0x00,
type: aal5 ? 0x00 : 0x01,
ven: 0x01,
res3: 0x00,
qid: queue};
*HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
*HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER) = htu_mask;
*HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER) = htu_entry;
}
static INLINE void clear_htu_entry(unsigned int queue)
{
HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
}
static void validate_oam_htu_entry(void)
{
HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
HTU_ENTRY(OAM_ARQ_HTU_ENTRY)->vld = 1;
#endif
}
static void invalidate_oam_htu_entry(void)
{
HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
HTU_ENTRY(OAM_ARQ_HTU_ENTRY)->vld = 0;
#endif
}
static INLINE int find_vpi(unsigned int vpi)
{
int i;
unsigned int bit;
for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
if ( (g_atm_priv_data.conn_table & bit) != 0
&& g_atm_priv_data.conn[i].vcc != NULL
&& vpi == g_atm_priv_data.conn[i].vcc->vpi )
return i;
}
return -1;
}
static INLINE int find_vpivci(unsigned int vpi, unsigned int vci)
{
int i;
unsigned int bit;
for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
if ( (g_atm_priv_data.conn_table & bit) != 0
&& g_atm_priv_data.conn[i].vcc != NULL
&& vpi == g_atm_priv_data.conn[i].vcc->vpi
&& vci == g_atm_priv_data.conn[i].vcc->vci )
return i;
}
return -1;
}
static INLINE int find_vcc(struct atm_vcc *vcc)
{
int i;
unsigned int bit;
for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
if ( (g_atm_priv_data.conn_table & bit) != 0
&& g_atm_priv_data.conn[i].vcc == vcc )
return i;
}
return -1;
}
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
static void retx_polling_func(unsigned long arg)
{
int sys_flag;
volatile struct dsl_param *p_dsl_param;
int new_retx_htu;
int retx_en;
int i, max_htu;
local_irq_save(sys_flag);
if ( g_retx_playout_buffer == 0 && g_xdata_addr != NULL && (((volatile struct dsl_param *)g_xdata_addr)->RetxEnable || ((volatile struct dsl_param *)g_xdata_addr)->ServiceSpecificReTx) ) {
local_irq_restore(sys_flag);
g_retx_playout_buffer = __get_free_pages(GFP_KERNEL, RETX_PLAYOUT_BUFFER_ORDER);
if ( g_retx_playout_buffer == 0 )
panic("no memory for g_retx_playout_buffer\n");
memset((void *)g_retx_playout_buffer, 0, RETX_PLAYOUT_BUFFER_SIZE);
dma_cache_inv(g_retx_playout_buffer, RETX_PLAYOUT_BUFFER_SIZE);
}
else
local_irq_restore(sys_flag);
local_irq_save(sys_flag);
if ( g_xdata_addr != NULL ) {
p_dsl_param = (volatile struct dsl_param *)g_xdata_addr;
g_retx_polling_cnt += RETX_POLLING_INTERVAL;
if ( p_dsl_param->update_flag ) {
do_gettimeofday(&g_retx_polling_start);
g_dsl_param = *p_dsl_param;
// we always enable retx (just for test purpose)
//g_dsl_param.RetxEnable = 1;
//RETX_TSYNC_CFG->fw_alpha = 0;
if ( g_dsl_param.RetxEnable || g_dsl_param.ServiceSpecificReTx ) {
// ReTX enabled
// MIB counter updated for each polling
p_dsl_param->RxDtuCorruptedCNT = *RxDTUCorruptedCNT;
p_dsl_param->RxRetxDtuUnCorrectedCNT = *RxRetxDTUUncorrectedCNT;
p_dsl_param->RxLastEFB = *RxLastEFBCNT;
p_dsl_param->RxDtuCorrectedCNT = *RxDTUCorrectedCNT;
// for RETX paramters, we check only once for every second
if ( g_retx_polling_cnt < HZ )
goto _clear_update_flag;
g_retx_polling_cnt -= HZ;
if ( g_dsl_param.ServiceSpecificReTx && g_dsl_param.ReTxPVC == 0 )
new_retx_htu = 1;
else
new_retx_htu = 0;
// default fw_alpha equals to default hardware alpha
RETX_TSYNC_CFG->fw_alpha = 0;
RETX_TD_CFG->td_max = g_dsl_param.MaxDelayrt;
RETX_TD_CFG->td_min = g_dsl_param.MinDelayrt;
*RETX_PLAYOUT_BUFFER_BASE = ((((unsigned int)g_retx_playout_buffer | KSEG1) + 15) & 0xFFFFFFF0) >> 2;
if ( g_dsl_param.ServiceSpecificReTx ) {
*RETX_SERVICE_HEADER_CFG= g_dsl_param.ReTxPVC << 4;
if ( g_dsl_param.ReTxPVC == 0 )
*RETX_MASK_HEADER_CFG = 1;
else
*RETX_MASK_HEADER_CFG = 0;
}
else {
*RETX_SERVICE_HEADER_CFG= 0;
*RETX_MASK_HEADER_CFG = 0;
}
retx_en = 1;
}
else {
// ReTX disabled
new_retx_htu = 0;
RETX_TSYNC_CFG->fw_alpha = 7;
*RETX_SERVICE_HEADER_CFG = 0;
*RETX_MASK_HEADER_CFG = 0;
retx_en = 0;
}
if ( retx_en != RETX_MODE_CFG->retx_en ) {
unsigned int pid_mask, vci_mask;
if ( retx_en ) {
pid_mask = 0x03;
vci_mask = 0xFF00;
}
else {
pid_mask = 0x02;
vci_mask = 0x0000;
}
max_htu = *CFG_WRX_HTUTS;
for ( i = OAM_HTU_ENTRY_NUMBER; i < max_htu; i++ )
if ( HTU_ENTRY(i)->vld ) {
HTU_MASK(i)->pid_mask = pid_mask;
HTU_MASK(i)->vci_mask = vci_mask;
}
}
if ( new_retx_htu != g_retx_htu ) {
int conn, retx_conn;
g_retx_htu = new_retx_htu;
if ( g_retx_htu ) {
max_htu = *CFG_WRX_HTUTS;
for ( i = OAM_HTU_ENTRY_NUMBER; i < max_htu; i++ )
if ( HTU_ENTRY(i)->vld )
HTU_MASK(i)->clp = 0;
for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ )
if ( g_atm_priv_data.conn[conn].vcc && g_atm_priv_data.conn[conn].vcc->qos.aal == ATM_AAL5 && !HTU_ENTRY(conn + OAM_HTU_ENTRY_NUMBER)->clp ) {
retx_conn = (conn + 8) % 16; // ReTX queue
if ( retx_conn < MAX_PVC_NUMBER && test_and_set_bit(retx_conn, &g_atm_priv_data.conn_table) == 0 ) {
g_atm_priv_data.conn[retx_conn].vcc = g_atm_priv_data.conn[conn].vcc;
set_htu_entry(g_atm_priv_data.conn[conn].vcc->vpi, g_atm_priv_data.conn[conn].vcc->vci, retx_conn, g_atm_priv_data.conn[conn].vcc->qos.aal == ATM_AAL5 ? 1 : 0, 1);
}
else {
err("Queue number %d for ReTX queue of PVC(%d.%d) is not available!", retx_conn, g_atm_priv_data.conn[conn].vcc->vpi, g_atm_priv_data.conn[conn].vcc->vci);
}
}
}
else
{
for ( retx_conn = 0; retx_conn < MAX_PVC_NUMBER; retx_conn++ )
if ( g_atm_priv_data.conn[retx_conn].vcc && HTU_ENTRY(retx_conn + OAM_HTU_ENTRY_NUMBER)->clp ) {
clear_htu_entry(retx_conn);
g_atm_priv_data.conn[retx_conn].vcc = NULL;
g_atm_priv_data.conn[retx_conn].aal5_vcc_crc_err = 0;
g_atm_priv_data.conn[retx_conn].aal5_vcc_oversize_sdu = 0;
clear_bit(retx_conn, &g_atm_priv_data.conn_table);
}
max_htu = *CFG_WRX_HTUTS;
for ( i = OAM_HTU_ENTRY_NUMBER; i < max_htu; i++ )
if ( HTU_ENTRY(i)->vld )
HTU_MASK(i)->clp = 1;
}
}
RETX_MODE_CFG->retx_en = retx_en;
_clear_update_flag:
p_dsl_param->update_flag = 0;
do_gettimeofday(&g_retx_polling_end);
}
g_retx_polling_timer.expires = jiffies + RETX_POLLING_INTERVAL;
add_timer(&g_retx_polling_timer);
}
local_irq_restore(sys_flag);
}
static int init_atm_tc_retrans_param(void)
{
int i = 0;
struct DTU_stat_info reset_val;
RETX_MODE_CFG->invld_range = 128;
RETX_MODE_CFG->buff_size = RETX_PLAYOUT_FW_BUFF_SIZE > 4096/32 ? 4096/32 : RETX_PLAYOUT_FW_BUFF_SIZE ;
RETX_MODE_CFG->retx_en = 1;
// default fw_alpha equals to default hardware alpha
RETX_TSYNC_CFG->fw_alpha = 7;
RETX_TSYNC_CFG->sync_inp = 0;
RETX_TD_CFG->td_max = 0;
RETX_TD_CFG->td_min = 0;
// *RETX_PLAYOUT_BUFFER_BASE = KSEG1ADDR(g_retx_playout_buffer); // need " >> 2 " ?
*RETX_PLAYOUT_BUFFER_BASE = ((((unsigned int)g_retx_playout_buffer | KSEG1) + 15) & 0xFFFFFFF0) >> 2;
*RETX_SERVICE_HEADER_CFG = 0;
*RETX_MASK_HEADER_CFG = 0;
// 20us
RETX_MIB_TIMER_CFG->tick_cycle = 4800;
RETX_MIB_TIMER_CFG->ticks_per_sec = 50000;
*LAST_DTU_SID_IN = 255;
*RFBI_FIRST_CW = 1;
// init DTU_STAT_INFO
memset(&reset_val, 0, sizeof(reset_val));
reset_val.dtu_rd_ptr = reset_val.dtu_wr_ptr = 0xffff;
for(i = 0 ; i < 256; i ++) {
DTU_STAT_INFO[i] = reset_val;
}
return 0;
}
static void clear_atm_tc_retrans_param(void)
{
if ( g_retx_playout_buffer ) {
free_pages(g_retx_playout_buffer, RETX_PLAYOUT_BUFFER_ORDER);
g_retx_playout_buffer = 0;
}
}
#endif
#if defined(DEBUG_DUMP_SKB) && DEBUG_DUMP_SKB
static void dump_skb(struct sk_buff *skb, unsigned int len, char *title, int port, int ch, int is_tx)
{
int i;
if ( !(ifx_atm_dbg_enable & (is_tx ? DBG_ENABLE_MASK_DUMP_SKB_TX : DBG_ENABLE_MASK_DUMP_SKB_RX)) )
return;
if ( skb->len < len )
len = skb->len;
if ( len > RX_DMA_CH_AAL_BUF_SIZE ) {
printk("too big data length: skb = %08x, skb->data = %08x, skb->len = %d\n", (unsigned int)skb, (unsigned int)skb->data, skb->len);
return;
}
if ( ch >= 0 )
printk("%s (port %d, ch %d)\n", title, port, ch);
else
printk("%s\n", title);
printk(" skb->data = %08X, skb->tail = %08X, skb->len = %d\n", (unsigned int)skb->data, (unsigned int)skb->tail, (int)skb->len);
for ( i = 1; i <= len; i++ ) {
if ( i % 16 == 1 )
printk(" %4d:", i - 1);
printk(" %02X", (int)(*((char*)skb->data + i - 1) & 0xFF));
if ( i % 16 == 0 )
printk("\n");
}
if ( (i - 1) % 16 != 0 )
printk("\n");
}
#endif
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
static void skb_swap(struct sk_buff *skb, unsigned int byteoff)
{
unsigned int mac_offset = ~0;
unsigned int ip_offset = ~0;
unsigned char tmp[8];
unsigned char *p = NULL;
skb_pull(skb, byteoff + TX_INBAND_HEADER_LENGTH);
if ( skb->data[0] == 0xAA && skb->data[1] == 0xAA && skb->data[2] == 0x03 ) {
// LLC
if ( skb->data[3] == 0x00 && skb->data[4] == 0x80 && skb->data[5] == 0xC2 ) {
// EoA
if ( skb->data[22] == 0x08 && skb->data[23] == 0x00 ) {
// IPv4
mac_offset = 10;
ip_offset = 24;
}
else if ( skb->data[31] == 0x21 ) {
// PPPoE IPv4
mac_offset = 10;
ip_offset = 32;
}
}
else {
// IPoA
if ( skb->data[6] == 0x08 && skb->data[7] == 0x00 ) {
// IPv4
ip_offset = 8;
}
}
}
else if ( skb->data[0] == 0xFE && skb->data[1] == 0xFE && skb->data[2] == 0x03 ) {
// LLC PPPoA
if ( skb->data[4] == 0x00 && skb->data[5] == 0x21 ) {
// IPv4
ip_offset = 6;
}
}
else {
// VC-mux
if ( skb->data[0] == 0x00 && skb->data[1] == 0x21 ) {
// PPPoA IPv4
ip_offset = 2;
}
else if ( skb->data[0] == 0x00 && skb->data[1] == 0x00 ) {
// EoA
if ( skb->data[14] == 0x08 && skb->data[15] ==0x00 ) {
// IPv4
mac_offset = 2;
ip_offset = 16;
}
else if ( skb->data[23] == 0x21 ) {
// PPPoE IPv4
mac_offset = 2;
ip_offset = 26;
}
}
else {
// IPoA
ip_offset = 0;
}
}
if ( mac_offset != ~0 && !(skb->data[mac_offset] & 0x01) ) {
p = skb->data + mac_offset;
// swap MAC
memcpy(tmp, p, 6);
memcpy(p, p + 6, 6);
memcpy(p + 6, tmp, 6);
p += 12;
}
if ( ip_offset != ~0 ) {
p = skb->data + ip_offset + 12;
// swap IP
memcpy(tmp, p, 4);
memcpy(p, p + 4, 4);
memcpy(p + 4, tmp, 4);
p += 8;
}
if ( p != NULL ) {
dma_cache_wback((unsigned long)skb->data, (unsigned long)p - (unsigned long)skb->data);
}
skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
}
#endif
static INLINE void proc_file_create(void)
{
struct proc_dir_entry *res;
g_atm_dir = proc_mkdir("driver/ifx_atm", NULL);
create_proc_read_entry("version",
0,
g_atm_dir,
proc_read_version,
NULL);
res = create_proc_entry("mib",
0,
g_atm_dir);
if ( res != NULL ) {
res->read_proc = proc_read_mib;
res->write_proc = proc_write_mib;
}
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
res = create_proc_entry("retx_mib",
0,
g_atm_dir);
if ( res != NULL ) {
res->read_proc = proc_read_retx_mib;
res->write_proc = proc_write_retx_mib;
}
#endif
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
res = create_proc_entry("dbg",
0,
g_atm_dir);
if ( res != NULL ) {
res->read_proc = proc_read_dbg;
res->write_proc = proc_write_dbg;
}
res = create_proc_entry("mem",
0,
g_atm_dir);
if ( res != NULL )
res->write_proc = proc_write_mem;
#if defined(CONFIG_AR9) || defined(CONFIG_VR9) || defined(CONFIG_DANUBE) || defined(CONFIG_AMAZON_SE)
res = create_proc_entry("pp32",
0,
g_atm_dir);
if ( res != NULL ) {
res->read_proc = proc_read_pp32;
res->write_proc = proc_write_pp32;
}
#endif
#endif
#if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
create_proc_read_entry("htu",
0,
g_atm_dir,
proc_read_htu,
NULL);
create_proc_read_entry("txq",
0,
g_atm_dir,
proc_read_txq,
NULL);
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
create_proc_read_entry("retx_fw",
0,
g_atm_dir,
proc_read_retx_fw,
NULL);
res = create_proc_entry("retx_stats",
0,
g_atm_dir);
if ( res != NULL ) {
res->read_proc = proc_read_retx_stats;
res->write_proc = proc_write_retx_stats;
}
res = create_proc_entry("retx_cfg",
0,
g_atm_dir);
if ( res != NULL ) {
res->read_proc = proc_read_retx_cfg;
res->write_proc = proc_write_retx_cfg;
}
create_proc_read_entry("retx_dsl_param",
0,
g_atm_dir,
proc_read_retx_dsl_param,
NULL);
#endif
#endif
}
static INLINE void proc_file_delete(void)
{
#if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
remove_proc_entry("retx_dsl_param", g_atm_dir);
remove_proc_entry("retx_cfg", g_atm_dir);
remove_proc_entry("retx_stats", g_atm_dir);
remove_proc_entry("retx_fw", g_atm_dir);
#endif
remove_proc_entry("txq", g_atm_dir);
remove_proc_entry("htu", g_atm_dir);
#endif
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
#if defined(CONFIG_AR9) || defined(CONFIG_VR9) || defined(CONFIG_DANUBE) || defined(CONFIG_AMAZON_SE)
remove_proc_entry("pp32", g_atm_dir);
#endif
remove_proc_entry("mem", g_atm_dir);
remove_proc_entry("dbg", g_atm_dir);
#endif
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
remove_proc_entry("retx_mib", g_atm_dir);
#endif
remove_proc_entry("mib", g_atm_dir);
remove_proc_entry("version", g_atm_dir);
remove_proc_entry("driver/ifx_atm", NULL);
}
static int proc_read_version(char *buf, char **start, off_t offset, int count, int *eof, void *data)
{
int len = 0;
len += ifx_atm_version(buf + len);
if ( offset >= len ) {
*start = buf;
*eof = 1;
return 0;
}
*start = buf + offset;
if ( (len -= offset) > count )
return count;
*eof = 1;
return len;
}
static int proc_read_mib(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
len += sprintf(page + off + len, "Firmware\n");
len += sprintf(page + off + len, " wrx_drophtu_cell = %u\n", WAN_MIB_TABLE->wrx_drophtu_cell);
len += sprintf(page + off + len, " wrx_dropdes_pdu = %u\n", WAN_MIB_TABLE->wrx_dropdes_pdu);
len += sprintf(page + off + len, " wrx_correct_pdu = %u\n", WAN_MIB_TABLE->wrx_correct_pdu);
len += sprintf(page + off + len, " wrx_err_pdu = %u\n", WAN_MIB_TABLE->wrx_err_pdu);
len += sprintf(page + off + len, " wrx_dropdes_cell = %u\n", WAN_MIB_TABLE->wrx_dropdes_cell);
len += sprintf(page + off + len, " wrx_correct_cell = %u\n", WAN_MIB_TABLE->wrx_correct_cell);
len += sprintf(page + off + len, " wrx_err_cell = %u\n", WAN_MIB_TABLE->wrx_err_cell);
len += sprintf(page + off + len, " wrx_total_byte = %u\n", WAN_MIB_TABLE->wrx_total_byte);
len += sprintf(page + off + len, " wtx_total_pdu = %u\n", WAN_MIB_TABLE->wtx_total_pdu);
len += sprintf(page + off + len, " wtx_total_cell = %u\n", WAN_MIB_TABLE->wtx_total_cell);
len += sprintf(page + off + len, " wtx_total_byte = %u\n", WAN_MIB_TABLE->wtx_total_byte);
len += sprintf(page + off + len, "Driver\n");
len += sprintf(page + off + len, " wrx_pdu = %u\n", g_atm_priv_data.wrx_pdu);
len += sprintf(page + off + len, " wrx_drop_pdu = %u\n", g_atm_priv_data.wrx_drop_pdu);
len += sprintf(page + off + len, " wtx_pdu = %u\n", g_atm_priv_data.wtx_pdu);
len += sprintf(page + off + len, " wtx_err_pdu = %u\n", g_atm_priv_data.wtx_err_pdu);
len += sprintf(page + off + len, " wtx_drop_pdu = %u\n", g_atm_priv_data.wtx_drop_pdu);
*eof = 1;
return len;
}
static int proc_write_mib(struct file *file, const char *buf, unsigned long count, void *data)
{
char str[1024];
char *p;
int len, rlen;
len = count < sizeof(str) ? count : sizeof(str) - 1;
rlen = len - copy_from_user(str, buf, len);
while ( rlen && str[rlen - 1] <= ' ' )
rlen--;
str[rlen] = 0;
for ( p = str; *p && *p <= ' '; p++, rlen-- );
if ( !*p )
return 0;
if ( stricmp(p, "clear") == 0 || stricmp(p, "clear all") == 0
|| stricmp(p, "clean") == 0 || stricmp(p, "clean all") == 0 ) {
memset(WAN_MIB_TABLE, 0, sizeof(*WAN_MIB_TABLE));
g_atm_priv_data.wrx_pdu = 0;
g_atm_priv_data.wrx_drop_pdu = 0;
g_atm_priv_data.wtx_pdu = 0;
g_atm_priv_data.wtx_err_pdu = 0;
g_atm_priv_data.wtx_drop_pdu = 0;
}
return count;
}
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
static int proc_read_retx_mib(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
printk("Retx FW DTU MIB :\n");
printk(" rx_total_dtu = %u\n", *URETX_RX_TOTAL_DTU);
printk(" rx_bad_dtu = %u\n", *URETX_RX_BAD_DTU);
printk(" rx_good_dtu = %u\n", *URETX_RX_GOOD_DTU);
printk(" rx_corrected_dtu = %u\n", *URETX_RX_CORRECTED_DTU);
printk(" rx_outofdate_dtu = %u\n", *URETX_RX_OUTOFDATE_DTU);
printk(" rx_duplicate_dtu = %u\n", *URETX_RX_DUPLICATE_DTU);
printk(" rx_timeout_dtu = %u\n", *URETX_RX_TIMEOUT_DTU);
printk(" RxDTURetransmittedCNT = %u\n", *RxDTURetransmittedCNT);
printk("\n");
printk("Retx Standard DTU MIB:\n");
printk(" RxLastEFB = %u\n", *RxLastEFBCNT);
printk(" RxDTUCorrectedCNT = %u\n", *RxDTUCorrectedCNT);
printk(" RxDTUCorruptedCNT = %u\n", *RxDTUCorruptedCNT);
printk(" RxRetxDTUUncorrectedCNT = %u\n", *RxRetxDTUUncorrectedCNT);
printk("\n");
printk("Retx FW Cell MIB :\n");
printk(" bc0_total_cell = %u\n", *WRX_BC0_CELL_NUM);
printk(" bc0_drop_cell = %u\n", *WRX_BC0_DROP_CELL_NUM);
printk(" bc0_nonretx_cell = %u\n", *WRX_BC0_NONRETX_CELL_NUM);
printk(" bc0_retx_cell = %u\n", *WRX_BC0_RETX_CELL_NUM);
printk(" bc0_outofdate_cell = %u\n", *WRX_BC0_OUTOFDATE_CELL_NUM);
printk(" bc0_directup_cell = %u\n", *WRX_BC0_DIRECTUP_NUM);
printk(" bc0_to_pb_total_cell = %u\n", *WRX_BC0_PBW_TOTAL_NUM);
printk(" bc0_to_pb_succ_cell = %u\n", *WRX_BC0_PBW_SUCC_NUM);
printk(" bc0_to_pb_fail_cell = %u\n", *WRX_BC0_PBW_FAIL_NUM);
printk(" bc1_total_cell = %u\n", *WRX_BC1_CELL_NUM);
printk("\n");
printk("ATM Rx AAL5/OAM MIB:\n");
printk(" wrx_drophtu_cell = %u\n", WAN_MIB_TABLE->wrx_drophtu_cell);
printk(" wrx_dropdes_pdu = %u\n", WAN_MIB_TABLE->wrx_dropdes_pdu);
printk(" wrx_correct_pdu = %-10u ", WAN_MIB_TABLE->wrx_correct_pdu);
if ( WAN_MIB_TABLE->wrx_correct_pdu == 0 )
printk("\n");
else {
int i = 0;
printk("[ ");
for ( i = 0; i < 16; ++i ) {
if ( WRX_PER_PVC_CORRECT_PDU_BASE[i] )
printk("q%-2d = %-10u , ", i, WRX_PER_PVC_CORRECT_PDU_BASE[i]);
}
printk("]\n");
}
printk(" wrx_err_pdu = %-10u ", WAN_MIB_TABLE->wrx_err_pdu);
if ( WAN_MIB_TABLE->wrx_err_pdu == 0 )
printk("\n");
else {
int i = 0;
printk("[ ");
for ( i = 0; i < 16; ++i ) {
if ( WRX_PER_PVC_ERROR_PDU_BASE[i] )
printk("q%-2d = %-10u , ", i, WRX_PER_PVC_ERROR_PDU_BASE[i] );
}
printk("]\n");
}
printk(" wrx_dropdes_cell = %u\n", WAN_MIB_TABLE->wrx_dropdes_cell);
printk(" wrx_correct_cell = %u\n", WAN_MIB_TABLE->wrx_correct_cell);
printk(" wrx_err_cell = %u\n", WAN_MIB_TABLE->wrx_err_cell);
printk(" wrx_total_byte = %u\n", WAN_MIB_TABLE->wrx_total_byte);
printk("\n");
printk("ATM Tx MIB:\n");
printk(" wtx_total_pdu = %u\n", WAN_MIB_TABLE->wtx_total_pdu);
printk(" wtx_total_cell = %u\n", WAN_MIB_TABLE->wtx_total_cell);
printk(" wtx_total_byte = %u\n", WAN_MIB_TABLE->wtx_total_byte);
printk("\n");
printk("Debugging Info:\n");
printk(" Firmware version = %d.%d.%d.%d.%d.%d\n",
(int)FW_VER_ID->family, (int)FW_VER_ID->fwtype, (int)FW_VER_ID->interface,
(int)FW_VER_ID->fwmode, (int)FW_VER_ID->major, (int)FW_VER_ID->minor);
printk(" retx_alpha_switch_to_hunt_times = %u\n", *URETX_ALPHA_SWITCH_TO_HUNT_TIMES);
printk("\n");
*eof = 1;
return len;
}
static int proc_write_retx_mib(struct file *file, const char *buf, unsigned long count, void *data)
{
char str[2048];
char *p;
int len, rlen;
int i;
len = count < sizeof(str) ? count : sizeof(str) - 1;
rlen = len - copy_from_user(str, buf, len);
while ( rlen && str[rlen - 1] <= ' ' )
rlen--;
str[rlen] = 0;
for ( p = str; *p && *p <= ' '; p++, rlen-- );
if ( !*p )
return 0;
if ( stricmp(p, "clean") == 0 || stricmp(p, "clear") == 0 || stricmp(p, "clear_all") == 0) {
*URETX_RX_TOTAL_DTU = 0;
*URETX_RX_BAD_DTU = 0;
*URETX_RX_GOOD_DTU = 0;
*URETX_RX_CORRECTED_DTU = 0;
*URETX_RX_OUTOFDATE_DTU = 0;
*URETX_RX_DUPLICATE_DTU = 0;
*URETX_RX_TIMEOUT_DTU = 0;
*RxDTURetransmittedCNT = 0;
*WRX_BC0_CELL_NUM = 0;
*WRX_BC0_DROP_CELL_NUM = 0;
*WRX_BC0_NONRETX_CELL_NUM = 0;
*WRX_BC0_RETX_CELL_NUM = 0;
*WRX_BC0_OUTOFDATE_CELL_NUM = 0;
*WRX_BC0_DIRECTUP_NUM = 0;
*WRX_BC0_PBW_TOTAL_NUM = 0;
*WRX_BC0_PBW_SUCC_NUM = 0;
*WRX_BC0_PBW_FAIL_NUM = 0;
*WRX_BC1_CELL_NUM = 0;
for ( i = 0; i < 16; ++i ) {
WRX_PER_PVC_CORRECT_PDU_BASE[i] = 0;
WRX_PER_PVC_ERROR_PDU_BASE[i] = 0;
}
WAN_MIB_TABLE->wrx_drophtu_cell = 0;
WAN_MIB_TABLE->wrx_dropdes_pdu = 0;
WAN_MIB_TABLE->wrx_correct_pdu = 0;
WAN_MIB_TABLE->wrx_err_pdu = 0;
WAN_MIB_TABLE->wrx_dropdes_cell = 0;
WAN_MIB_TABLE->wrx_correct_cell = 0;
WAN_MIB_TABLE->wrx_err_cell = 0;
WAN_MIB_TABLE->wrx_total_byte = 0;
WAN_MIB_TABLE->wtx_total_pdu = 0;
WAN_MIB_TABLE->wtx_total_cell = 0;
WAN_MIB_TABLE->wtx_total_byte = 0;
*URETX_ALPHA_SWITCH_TO_HUNT_TIMES = 0;
if (stricmp(p, "clear_all") == 0) {
*RxLastEFBCNT = 0;
*RxDTUCorrectedCNT = 0;
*RxDTUCorruptedCNT = 0;
*RxRetxDTUUncorrectedCNT = 0;
}
}
return count;
}
#endif
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
static int proc_read_dbg(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
len += sprintf(page + off + len, "error print - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_ERR) ? "enabled" : "disabled");
len += sprintf(page + off + len, "debug print - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DEBUG_PRINT) ? "enabled" : "disabled");
len += sprintf(page + off + len, "assert - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_ASSERT) ? "enabled" : "disabled");
len += sprintf(page + off + len, "dump rx skb - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_SKB_RX) ? "enabled" : "disabled");
len += sprintf(page + off + len, "dump tx skb - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_SKB_TX) ? "enabled" : "disabled");
len += sprintf(page + off + len, "qos - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ? "enabled" : "disabled");
len += sprintf(page + off + len, "dump init - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_INIT) ? "enabled" : "disabled");
len += sprintf(page + off + len, "mac swap - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_MAC_SWAP) ? "enabled" : "disabled");
*eof = 1;
return len;
}
static int proc_write_dbg(struct file *file, const char *buf, unsigned long count, void *data)
{
static const char *dbg_enable_mask_str[] = {
" error print",
" err",
" debug print",
" dbg",
" assert",
" assert",
" dump rx skb",
" rx",
" dump tx skb",
" tx",
" dump qos",
" qos",
" dump init",
" init",
" mac swap",
" swap",
" all"
};
static const int dbg_enable_mask_str_len[] = {
12, 4,
12, 4,
7, 7,
12, 3,
12, 3,
9, 4,
10, 5,
9, 5,
4
};
unsigned int dbg_enable_mask[] = {
DBG_ENABLE_MASK_ERR,
DBG_ENABLE_MASK_DEBUG_PRINT,
DBG_ENABLE_MASK_ASSERT,
DBG_ENABLE_MASK_DUMP_SKB_RX,
DBG_ENABLE_MASK_DUMP_SKB_TX,
DBG_ENABLE_MASK_DUMP_QOS,
DBG_ENABLE_MASK_DUMP_INIT,
DBG_ENABLE_MASK_MAC_SWAP,
DBG_ENABLE_MASK_ALL
};
char *str;
int str_buff_len = 1024;
char *p;
int len, rlen;
int f_enable = 0;
int i;
str = vmalloc(str_buff_len);
if(!str){
return 0;
}
len = count < str_buff_len ? count : str_buff_len - 1;
rlen = len - copy_from_user(str, buf, len);
while ( rlen && str[rlen - 1] <= ' ' )
rlen--;
str[rlen] = 0;
for ( p = str; *p && *p <= ' '; p++, rlen-- );
if ( !*p ){
vfree(str);
return 0;
}
if ( strincmp(p, "enable", 6) == 0 ) {
p += 6;
f_enable = 1;
}
else if ( strincmp(p, "disable", 7) == 0 ) {
p += 7;
f_enable = -1;
}
else if ( strincmp(p, "help", 4) == 0 || *p == '?' ) {
printk("echo <enable/disable> [err/dbg/assert/rx/tx/init/all] > /proc/eth/dbg\n");
}
if ( f_enable ) {
if ( *p == 0 ) {
if ( f_enable > 0 )
ifx_atm_dbg_enable |= DBG_ENABLE_MASK_ALL & ~DBG_ENABLE_MASK_MAC_SWAP;
else
ifx_atm_dbg_enable &= ~DBG_ENABLE_MASK_ALL | DBG_ENABLE_MASK_MAC_SWAP;
}
else {
do {
for ( i = 0; i < NUM_ENTITY(dbg_enable_mask_str); i++ )
if ( strincmp(p, dbg_enable_mask_str[i], dbg_enable_mask_str_len[i]) == 0 ) {
if ( f_enable > 0 )
ifx_atm_dbg_enable |= dbg_enable_mask[i >> 1];
else
ifx_atm_dbg_enable &= ~dbg_enable_mask[i >> 1];
p += dbg_enable_mask_str_len[i];
break;
}
} while ( i < NUM_ENTITY(dbg_enable_mask_str) );
}
}
vfree(str);
return count;
}
static inline unsigned long sb_addr_to_fpi_addr_convert(unsigned long sb_addr)
{
#define PP32_SB_ADDR_END 0xFFFF
if ( sb_addr < PP32_SB_ADDR_END )
return (unsigned long)SB_BUFFER(sb_addr);
else
return sb_addr;
}
static int proc_write_mem(struct file *file, const char *buf, unsigned long count, void *data)
{
char *p1, *p2;
int len;
int colon;
unsigned long *p;
int i, n, l;
int local_buf_size = 1024;
char *local_buf = NULL;
local_buf = vmalloc(local_buf_size);
if ( !local_buf ){
return 0;
}
len = local_buf_size < count ? local_buf_size - 1 : count;
len = len - copy_from_user(local_buf, buf, len);
local_buf[len] = 0;
p1 = local_buf;
colon = 1;
while ( get_token(&p1, &p2, &len, &colon) ) {
if ( stricmp(p1, "w") == 0 || stricmp(p1, "write") == 0 || stricmp(p1, "r") == 0 || stricmp(p1, "read") == 0 )
break;
p1 = p2;
colon = 1;
}
if ( *p1 == 'w' ) {
ignore_space(&p2, &len);
p = (unsigned long *)get_number(&p2, &len, 1);
p = (unsigned long *)sb_addr_to_fpi_addr_convert((unsigned long)p);
if ( (unsigned int)p >= KSEG0 )
while ( 1 ) {
ignore_space(&p2, &len);
if ( !len || !((*p2 >= '0' && *p2 <= '9') || (*p2 >= 'a' && *p2 <= 'f') || (*p2 >= 'A' && *p2 <= 'F')) )
break;
*p++ = (unsigned int)get_number(&p2, &len, 1);
}
}
else if ( *p1 == 'r' ) {
ignore_space(&p2, &len);
p = (unsigned long *)get_number(&p2, &len, 1);
p = (unsigned long *)sb_addr_to_fpi_addr_convert((unsigned long)p);
if ( (unsigned int)p >= KSEG0 ) {
ignore_space(&p2, &len);
n = (int)get_number(&p2, &len, 0);
if ( n ) {
char str[32] = {0};
char *pch = str;
int k;
unsigned int data;
char c;
n += (l = ((int)p >> 2) & 0x03);
p = (unsigned long *)((unsigned int)p & ~0x0F);
for ( i = 0; i < n; i++ ) {
if ( (i & 0x03) == 0 ) {
printk("%08X:", (unsigned int)p);
pch = str;
}
if ( i < l ) {
printk(" ");
sprintf(pch, " ");
}
else {
data = (unsigned int)*p;
printk(" %08X", data);
for ( k = 0; k < 4; k++ ) {
c = ((char*)&data)[k];
pch[k] = c < ' ' ? '.' : c;
}
}
p++;
pch += 4;
if ( (i & 0x03) == 0x03 ) {
pch[0] = 0;
printk(" ; %s\n", str);
}
}
if ( (n & 0x03) != 0x00 ) {
for ( k = 4 - (n & 0x03); k > 0; k-- )
printk(" ");
pch[0] = 0;
printk(" ; %s\n", str);
}
}
}
}
vfree(local_buf);
return count;
}
#if defined(CONFIG_AR9) || defined(CONFIG_VR9)
static int proc_read_pp32(char *page, char **start, off_t off, int count, int *eof, void *data)
{
static const char *stron = " on";
static const char *stroff = "off";
int len = 0;
int cur_context;
int f_stopped;
char str[256];
char strlength;
int i, j;
int pp32;
for ( pp32 = 0; pp32 < NUM_OF_PP32; pp32++ ) {
f_stopped = 0;
len += sprintf(page + off + len, "===== pp32 core %d =====\n", pp32);
#ifdef CONFIG_VR9
if ( (*PP32_FREEZE & (1 << (pp32 << 4))) != 0 ) {
sprintf(str, "freezed");
f_stopped = 1;
}
#else
if ( 0 ) {
}
#endif
else if ( PP32_CPU_USER_STOPPED(pp32) || PP32_CPU_USER_BREAKIN_RCV(pp32) || PP32_CPU_USER_BREAKPOINT_MET(pp32) ) {
strlength = 0;
if ( PP32_CPU_USER_STOPPED(pp32) )
strlength += sprintf(str + strlength, "stopped");
if ( PP32_CPU_USER_BREAKPOINT_MET(pp32) )
strlength += sprintf(str + strlength, strlength ? " | breakpoint" : "breakpoint");
if ( PP32_CPU_USER_BREAKIN_RCV(pp32) )
strlength += sprintf(str + strlength, strlength ? " | breakin" : "breakin");
f_stopped = 1;
}
#if 0
else if ( PP32_CPU_CUR_PC(pp32) == PP32_CPU_CUR_PC(pp32) ) {
sprintf(str, "hang");
f_stopped = 1;
}
#endif
else
sprintf(str, "running");
cur_context = PP32_BRK_CUR_CONTEXT(pp32);
len += sprintf(page + off + len, "Context: %d, PC: 0x%04x, %s\n", cur_context, PP32_CPU_CUR_PC(pp32), str);
if ( PP32_CPU_USER_BREAKPOINT_MET(pp32) ) {
strlength = 0;
if ( PP32_BRK_PC_MET(pp32, 0) )
strlength += sprintf(str + strlength, "pc0");
if ( PP32_BRK_PC_MET(pp32, 1) )
strlength += sprintf(str + strlength, strlength ? " | pc1" : "pc1");
if ( PP32_BRK_DATA_ADDR_MET(pp32, 0) )
strlength += sprintf(str + strlength, strlength ? " | daddr0" : "daddr0");
if ( PP32_BRK_DATA_ADDR_MET(pp32, 1) )
strlength += sprintf(str + strlength, strlength ? " | daddr1" : "daddr1");
if ( PP32_BRK_DATA_VALUE_RD_MET(pp32, 0) ) {
strlength += sprintf(str + strlength, strlength ? " | rdval0" : "rdval0");
if ( PP32_BRK_DATA_VALUE_RD_LO_EQ(pp32, 0) ) {
if ( PP32_BRK_DATA_VALUE_RD_GT_EQ(pp32, 0) )
strlength += sprintf(str + strlength, " ==");
else
strlength += sprintf(str + strlength, " <=");
}
else if ( PP32_BRK_DATA_VALUE_RD_GT_EQ(pp32, 0) )
strlength += sprintf(str + strlength, " >=");
}
if ( PP32_BRK_DATA_VALUE_RD_MET(pp32, 1) ) {
strlength += sprintf(str + strlength, strlength ? " | rdval1" : "rdval1");
if ( PP32_BRK_DATA_VALUE_RD_LO_EQ(pp32, 1) ) {
if ( PP32_BRK_DATA_VALUE_RD_GT_EQ(pp32, 1) )
strlength += sprintf(str + strlength, " ==");
else
strlength += sprintf(str + strlength, " <=");
}
else if ( PP32_BRK_DATA_VALUE_RD_GT_EQ(pp32, 1) )
strlength += sprintf(str + strlength, " >=");
}
if ( PP32_BRK_DATA_VALUE_WR_MET(pp32, 0) ) {
strlength += sprintf(str + strlength, strlength ? " | wtval0" : "wtval0");
if ( PP32_BRK_DATA_VALUE_WR_LO_EQ(pp32, 0) ) {
if ( PP32_BRK_DATA_VALUE_WR_GT_EQ(pp32, 0) )
strlength += sprintf(str + strlength, " ==");
else
strlength += sprintf(str + strlength, " <=");
}
else if ( PP32_BRK_DATA_VALUE_WR_GT_EQ(pp32, 0) )
strlength += sprintf(str + strlength, " >=");
}
if ( PP32_BRK_DATA_VALUE_WR_MET(pp32, 1) ) {
strlength += sprintf(str + strlength, strlength ? " | wtval1" : "wtval1");
if ( PP32_BRK_DATA_VALUE_WR_LO_EQ(pp32, 1) ) {
if ( PP32_BRK_DATA_VALUE_WR_GT_EQ(pp32, 1) )
strlength += sprintf(str + strlength, " ==");
else
strlength += sprintf(str + strlength, " <=");
}
else if ( PP32_BRK_DATA_VALUE_WR_GT_EQ(pp32, 1) )
strlength += sprintf(str + strlength, " >=");
}
len += sprintf(page + off + len, "break reason: %s\n", str);
}
if ( f_stopped )
{
len += sprintf(page + off + len, "General Purpose Register (Context %d):\n", cur_context);
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ )
len += sprintf(page + off + len, " %2d: %08x", i + j * 4, *PP32_GP_CONTEXTi_REGn(pp32, cur_context, i + j * 4));
len += sprintf(page + off + len, "\n");
}
}
len += sprintf(page + off + len, "break out on: break in - %s, stop - %s\n",
PP32_CTRL_OPT_BREAKOUT_ON_BREAKIN(pp32) ? stron : stroff,
PP32_CTRL_OPT_BREAKOUT_ON_STOP(pp32) ? stron : stroff);
len += sprintf(page + off + len, " stop on: break in - %s, break point - %s\n",
PP32_CTRL_OPT_STOP_ON_BREAKIN(pp32) ? stron : stroff,
PP32_CTRL_OPT_STOP_ON_BREAKPOINT(pp32) ? stron : stroff);
len += sprintf(page + off + len, "breakpoint:\n");
len += sprintf(page + off + len, " pc0: 0x%08x, %s\n", *PP32_BRK_PC(pp32, 0), PP32_BRK_GRPi_PCn(pp32, 0, 0) ? "group 0" : "off");
len += sprintf(page + off + len, " pc1: 0x%08x, %s\n", *PP32_BRK_PC(pp32, 1), PP32_BRK_GRPi_PCn(pp32, 1, 1) ? "group 1" : "off");
len += sprintf(page + off + len, " daddr0: 0x%08x, %s\n", *PP32_BRK_DATA_ADDR(pp32, 0), PP32_BRK_GRPi_DATA_ADDRn(pp32, 0, 0) ? "group 0" : "off");
len += sprintf(page + off + len, " daddr1: 0x%08x, %s\n", *PP32_BRK_DATA_ADDR(pp32, 1), PP32_BRK_GRPi_DATA_ADDRn(pp32, 1, 1) ? "group 1" : "off");
len += sprintf(page + off + len, " rdval0: 0x%08x\n", *PP32_BRK_DATA_VALUE_RD(pp32, 0));
len += sprintf(page + off + len, " rdval1: 0x%08x\n", *PP32_BRK_DATA_VALUE_RD(pp32, 1));
len += sprintf(page + off + len, " wrval0: 0x%08x\n", *PP32_BRK_DATA_VALUE_WR(pp32, 0));
len += sprintf(page + off + len, " wrval1: 0x%08x\n", *PP32_BRK_DATA_VALUE_WR(pp32, 1));
}
*eof = 1;
return len;
}
static int proc_write_pp32(struct file *file, const char *buf, unsigned long count, void *data)
{
char *str = NULL;
char *p;
unsigned int addr;
int str_buff_len = 1024;
int len, rlen;
int pp32 = 0;
str = vmalloc(str_buff_len);
if (!str) {
return 0;
}
len = count < str_buff_len ? count : str_buff_len - 1;
rlen = len - copy_from_user(str, buf, len);
while ( rlen && str[rlen - 1] <= ' ' )
rlen--;
str[rlen] = 0;
for ( p = str; *p && *p <= ' '; p++, rlen-- );
if ( !*p ){
vfree(str);
return 0;
}
if ( strincmp(p, "pp32 ", 5) == 0 ) {
p += 5;
rlen -= 5;
while ( rlen > 0 && *p >= '0' && *p <= '9' ) {
pp32 += *p - '0';
p++;
rlen--;
}
while ( rlen > 0 && *p && *p <= ' ' ) {
p++;
rlen--;
}
if ( pp32 >= NUM_OF_PP32 ) {
err("incorrect pp32 index - %d", pp32);
vfree(str);
return count;
}
}
if ( stricmp(p, "start") == 0 )
*PP32_CTRL_CMD(pp32) = PP32_CTRL_CMD_RESTART;
else if ( stricmp(p, "stop") == 0 )
*PP32_CTRL_CMD(pp32) = PP32_CTRL_CMD_STOP;
else if ( stricmp(p, "step") == 0 )
*PP32_CTRL_CMD(pp32) = PP32_CTRL_CMD_STEP;
#ifdef CONFIG_VR9
else if ( stricmp(p, "restart") == 0 )
*PP32_FREEZE &= ~(1 << (pp32 << 4));
else if ( stricmp(p, "freeze") == 0 )
*PP32_FREEZE |= 1 << (pp32 << 4);
#endif
else if ( strincmp(p, "pc0 ", 4) == 0 ) {
p += 4;
rlen -= 4;
if ( stricmp(p, "off") == 0 ) {
*PP32_BRK_TRIG(pp32) = PP32_BRK_GRPi_PCn_OFF(0, 0);
*PP32_BRK_PC_MASK(pp32, 0) = PP32_BRK_CONTEXT_MASK_EN;
*PP32_BRK_PC(pp32, 0) = 0;
}
else {
addr = get_number(&p, &rlen, 1);
*PP32_BRK_PC(pp32, 0) = addr;
*PP32_BRK_PC_MASK(pp32, 0) = PP32_BRK_CONTEXT_MASK_EN | PP32_BRK_CONTEXT_MASK(0) | PP32_BRK_CONTEXT_MASK(1) | PP32_BRK_CONTEXT_MASK(2) | PP32_BRK_CONTEXT_MASK(3);
*PP32_BRK_TRIG(pp32) = PP32_BRK_GRPi_PCn_ON(0, 0);
}
}
else if ( strincmp(p, "pc1 ", 4) == 0 ) {
p += 4;
rlen -= 4;
if ( stricmp(p, "off") == 0 ) {
*PP32_BRK_TRIG(pp32) = PP32_BRK_GRPi_PCn_OFF(1, 1);
*PP32_BRK_PC_MASK(pp32, 1) = PP32_BRK_CONTEXT_MASK_EN;
*PP32_BRK_PC(pp32, 1) = 0;
}
else {
addr = get_number(&p, &rlen, 1);
*PP32_BRK_PC(pp32, 1) = addr;
*PP32_BRK_PC_MASK(pp32, 1) = PP32_BRK_CONTEXT_MASK_EN | PP32_BRK_CONTEXT_MASK(0) | PP32_BRK_CONTEXT_MASK(1) | PP32_BRK_CONTEXT_MASK(2) | PP32_BRK_CONTEXT_MASK(3);
*PP32_BRK_TRIG(pp32) = PP32_BRK_GRPi_PCn_ON(1, 1);
}
}
else if ( strincmp(p, "daddr0 ", 7) == 0 ) {
p += 7;
rlen -= 7;
if ( stricmp(p, "off") == 0 ) {
*PP32_BRK_TRIG(pp32) = PP32_BRK_GRPi_DATA_ADDRn_OFF(0, 0);
*PP32_BRK_DATA_ADDR_MASK(pp32, 0) = PP32_BRK_CONTEXT_MASK_EN;
*PP32_BRK_DATA_ADDR(pp32, 0) = 0;
}
else {
addr = get_number(&p, &rlen, 1);
*PP32_BRK_DATA_ADDR(pp32, 0) = addr;
*PP32_BRK_DATA_ADDR_MASK(pp32, 0) = PP32_BRK_CONTEXT_MASK_EN | PP32_BRK_CONTEXT_MASK(0) | PP32_BRK_CONTEXT_MASK(1) | PP32_BRK_CONTEXT_MASK(2) | PP32_BRK_CONTEXT_MASK(3);
*PP32_BRK_TRIG(pp32) = PP32_BRK_GRPi_DATA_ADDRn_ON(0, 0);
}
}
else if ( strincmp(p, "daddr1 ", 7) == 0 ) {
p += 7;
rlen -= 7;
if ( stricmp(p, "off") == 0 ) {
*PP32_BRK_TRIG(pp32) = PP32_BRK_GRPi_DATA_ADDRn_OFF(1, 1);
*PP32_BRK_DATA_ADDR_MASK(pp32, 1) = PP32_BRK_CONTEXT_MASK_EN;
*PP32_BRK_DATA_ADDR(pp32, 1) = 0;
}
else {
addr = get_number(&p, &rlen, 1);
*PP32_BRK_DATA_ADDR(pp32, 1) = addr;
*PP32_BRK_DATA_ADDR_MASK(pp32, 1) = PP32_BRK_CONTEXT_MASK_EN | PP32_BRK_CONTEXT_MASK(0) | PP32_BRK_CONTEXT_MASK(1) | PP32_BRK_CONTEXT_MASK(2) | PP32_BRK_CONTEXT_MASK(3);
*PP32_BRK_TRIG(pp32) = PP32_BRK_GRPi_DATA_ADDRn_ON(1, 1);
}
}
else {
printk("echo \"<command>\" > /proc/driver/ifx_ptm/pp32\n");
printk(" command:\n");
printk(" start - run pp32\n");
printk(" stop - stop pp32\n");
printk(" step - run pp32 with one step only\n");
printk(" pc0 - pc0 <addr>/off, set break point PC0\n");
printk(" pc1 - pc1 <addr>/off, set break point PC1\n");
printk(" daddr0 - daddr0 <addr>/off, set break point data address 0\n");
printk(" daddr0 - daddr1 <addr>/off, set break point data address 1\n");
printk(" help - print this screen\n");
}
if ( *PP32_BRK_TRIG(pp32) )
*PP32_CTRL_OPT(pp32) = PP32_CTRL_OPT_STOP_ON_BREAKPOINT_ON;
else
*PP32_CTRL_OPT(pp32) = PP32_CTRL_OPT_STOP_ON_BREAKPOINT_OFF;
vfree(str);
return count;
}
#elif defined(CONFIG_DANUBE)
static int proc_read_pp32(char *page, char **start, off_t off, int count, int *eof, void *data)
{
static const char *halt_stat[] = {
"reset",
"break in line",
"stop",
"step",
"code",
"data0",
"data1"
};
static const char *brk_src_data[] = {
"off",
"read",
"write",
"read/write",
"write_equal",
"N/A",
"N/A",
"N/A"
};
static const char *brk_src_code[] = {
"off",
"on"
};
int len = 0;
int i;
int k;
unsigned long bit;
int tsk;
tsk = *PP32_DBG_TASK_NO & 0x03;
len += sprintf(page + off + len, "Task No %d, PC %04x\n", tsk, *PP32_DBG_CUR_PC & 0xFFFF);
if ( !(*PP32_HALT_STAT & 0x01) )
len += sprintf(page + off + len, " Halt State: Running\n");
else {
len += sprintf(page + off + len, " Halt State: Stopped");
k = 0;
for ( bit = 2, i = 0; bit <= (1 << 7); bit <<= 1, i++ )
if ( (*PP32_HALT_STAT & bit) ) {
if ( !k ) {
len += sprintf(page + off + len, ", ");
k++;
}
else
len += sprintf(page + off + len, " | ");
len += sprintf(page + off + len, halt_stat[i]);
}
len += sprintf(page + off + len, "\n");
len += sprintf(page + off + len, " Regs (Task %d):\n", tsk);
for ( i = 0; i < 8; i++ )
len += sprintf(page + off + len, " %2d. %08x %2d. %08x\n", i, *PP32_DBG_REG_BASE(tsk, i), i + 8, *PP32_DBG_REG_BASE(tsk, i + 8));
}
len += sprintf(page + off + len, " Break Src: data1 - %s, data0 - %s, pc3 - %s, pc2 - %s, pc1 - %s, pc0 - %s\n",
brk_src_data[(*PP32_BRK_SRC >> 11) & 0x07],
brk_src_data[(*PP32_BRK_SRC >> 8) & 0x07],
brk_src_code[(*PP32_BRK_SRC >> 3) & 0x01],
brk_src_code[(*PP32_BRK_SRC >> 2) & 0x01],
brk_src_code[(*PP32_BRK_SRC >> 1) & 0x01],
brk_src_code[*PP32_BRK_SRC & 0x01]);
for ( i = 0; i < 4; i++ )
len += sprintf(page + off + len, " pc%d: %04x - %04x\n", i, *PP32_DBG_PC_MIN(i), *PP32_DBG_PC_MAX(i));
for ( i = 0; i < 2; i++ )
len += sprintf(page + off + len, " data%d: %04x - %04x (%08x)\n", i, *PP32_DBG_DATA_MIN(i), *PP32_DBG_DATA_MAX(i), *PP32_DBG_DATA_VAL(i));
*eof = 1;
return len;
}
static int proc_write_pp32(struct file *file, const char *buf, unsigned long count, void *data)
{
char *str;
char *p;
int len, rlen;
int str_buff_len = 2048;
str = vmalloc(str_buff_len);
if (!str){
return 0;
}
len = count < str_buff_len ? count : str_buff_len - 1;
rlen = len - copy_from_user(str, buf, len);
while ( rlen && str[rlen - 1] <= ' ' )
rlen--;
str[rlen] = 0;
for ( p = str; *p && *p <= ' '; p++, rlen-- );
if ( !*p )
vfree(str);
return 0;
if ( stricmp(p, "start") == 0 )
*PP32_DBG_CTRL = DBG_CTRL_START_SET(1);
else if ( stricmp(p, "stop") == 0 )
*PP32_DBG_CTRL = DBG_CTRL_STOP_SET(1);
else if ( stricmp(p, "step") == 0 )
*PP32_DBG_CTRL = DBG_CTRL_STEP_SET(1);
else if ( strincmp(p, "pc", 2) == 0 && p[2] >= '0' && p[2] <= '3' && p[3] <= ' ' ) {
int n = p[2] - '0';
int on_off_flag = -1;
int addr_min, addr_max;
p += 4;
rlen -= 4;
ignore_space(&p, &rlen);
if ( strincmp(p, "off", 3) == 0 && p[3] <= ' ' ) {
p += 3;
rlen -= 3;
on_off_flag = 0;
}
else if ( strincmp(p, "on", 2) == 0 && p[2] <= ' ' ) {
p += 2;
rlen -= 2;
on_off_flag = 1;
}
ignore_space(&p, &rlen);
if ( rlen ) {
addr_min = get_number(&p, &rlen, 1);
ignore_space(&p, &rlen);
if ( rlen )
addr_max = get_number(&p, &rlen, 1);
else
addr_max = addr_min;
*PP32_DBG_PC_MIN(n) = addr_min;
*PP32_DBG_PC_MAX(n) = addr_max;
}
if ( on_off_flag == 0 )
*PP32_BRK_SRC &= ~(1 << n);
else if ( on_off_flag > 0 )
*PP32_BRK_SRC |= 1 << n;
}
else if ( strincmp(p, "data", 4) == 0 && p[4] >= '0' && p[4] <= '1' && p[5] <= ' ' ) {
const static char *data_cmd_str[] = {"r", "w", "rw", "w=", "off", "min", "min addr", "max", "max addr", "val", "value"};
const static int data_cmd_len[] = {1, 1, 2, 2, 3, 3, 8, 3, 8, 3, 5};
const static int data_cmd_idx[] = {1, 2, 3, 4, 0, 5, 5, 6, 6, 7, 7};
int n = p[4] - '0';
int on_off_flag = -1, on_off_mask = 0;
int addr_min = -1, addr_max = -1;
int value = 0, f_got_value = 0;
int stat = 0;
int i;
int tmp;
p += 6;
rlen -= 6;
while ( 1 ) {
ignore_space(&p, &rlen);
if ( rlen <= 0 )
break;
for ( i = 0; i < NUM_ENTITY(data_cmd_str); i++ )
if ( strincmp(p, data_cmd_str[i], data_cmd_len[i]) == 0 && p[data_cmd_len[i]] <= ' ' ) {
p += data_cmd_len[i];
rlen -= data_cmd_len[i];
stat = data_cmd_idx[i];
if ( stat <= 4 ) {
on_off_mask = 7;
on_off_flag = stat;
}
break;
}
if ( i == NUM_ENTITY(data_cmd_str) ) {
if ( (*p >= '0' && *p <= '9') || (*p >= 'a' && *p <= 'f') || (*p >= 'A' && *p <= 'F') ) {
tmp = get_number(&p, &rlen, 1);
if ( stat <= 5 ) {
addr_min = tmp;
stat = 6;
}
else if ( stat >= 7 ) {
value = tmp;
f_got_value = 1;
}
else {
addr_max = tmp;
stat = 7;
}
}
else
for ( ; rlen && *p > ' '; rlen--, p++ );
}
}
if ( addr_min >= 0 )
*PP32_DBG_DATA_MIN(n) = *PP32_DBG_DATA_MAX(n) = addr_min;
if ( addr_max >= 0 )
*PP32_DBG_DATA_MAX(n) = addr_max;
if ( f_got_value )
*PP32_DBG_DATA_VAL(n) = value;
if ( on_off_mask && on_off_flag >= 0 ) {
on_off_flag <<= n ? 11 : 8;
on_off_mask <<= n ? 11 : 8;
*PP32_BRK_SRC = (*PP32_BRK_SRC & ~on_off_mask) | on_off_flag;
}
}
else {
printk("echo \"<command>\" > /proc/eth/etop\n");
printk(" command:\n");
printk(" start - run pp32\n");
printk(" stop - stop pp32\n");
printk(" step - run pp32 with one step only\n");
printk(" pc - pc? [on/off] [min addr] [max addr], set PC break point\n");
printk(" data - data? [r/w/rw/w=/off] [min <addr>] [max <addr>] [val <value>], set data break point\n");
printk(" help - print this screen\n");
}
vfree(str);
return count;
}
#elif defined(CONFIG_AMAZON_SE)
static int proc_read_pp32(char *page, char **start, off_t off, int count, int *eof, void *data)
{
static const char *halt_stat[] = {
"reset",
"break in line",
"stop",
"step",
"code",
"data0",
"data1"
};
static const char *brk_src_data[] = {
"off",
"read",
"write",
"read/write",
"write_equal",
"N/A",
"N/A",
"N/A"
};
static const char *brk_src_code[] = {
"off",
"on"
};
int len = 0;
int i;
int k;
unsigned long bit;
len += sprintf(page + off + len, "Task No %d, PC %04x\n", *PP32_DBG_TASK_NO & 0x03, *PP32_DBG_CUR_PC & 0xFFFF);
if ( !(*PP32_HALT_STAT & 0x01) )
len += sprintf(page + off + len, " Halt State: Running\n");
else
{
len += sprintf(page + off + len, " Halt State: Stopped");
k = 0;
for ( bit = 2, i = 0; bit <= (1 << 7); bit <<= 1, i++ )
if ( (*PP32_HALT_STAT & bit) )
{
if ( !k )
{
len += sprintf(page + off + len, ", ");
k++;
}
else
len += sprintf(page + off + len, " | ");
len += sprintf(page + off + len, halt_stat[i]);
}
len += sprintf(page + off + len, "\n");
}
len += sprintf(page + off + len, " Break Src: data1 - %s, data0 - %s, pc3 - %s, pc2 - %s, pc1 - %s, pc0 - %s\n",
brk_src_data[(*PP32_BRK_SRC >> 11) & 0x07], brk_src_data[(*PP32_BRK_SRC >> 8) & 0x07], brk_src_code[(*PP32_BRK_SRC >> 3) & 0x01], brk_src_code[(*PP32_BRK_SRC >> 2) & 0x01], brk_src_code[(*PP32_BRK_SRC >> 1) & 0x01], brk_src_code[*PP32_BRK_SRC & 0x01]);
// for ( i = 0; i < 4; i++ )
// len += sprintf(page + off + len, " pc%d: %04x - %04x\n", i, *PP32_DBG_PC_MIN(i), *PP32_DBG_PC_MAX(i));
// for ( i = 0; i < 2; i++ )
// len += sprintf(page + off + len, " data%d: %04x - %04x (%08x)\n", i, *PP32_DBG_DATA_MIN(i), *PP32_DBG_DATA_MAX(i), *PP32_DBG_DATA_VAL(i));
*eof = 1;
return len;
}
static int proc_write_pp32(struct file *file, const char *buf, unsigned long count, void *data)
{
char str[2048];
char *p;
int len, rlen;
len = count < sizeof(str) ? count : sizeof(str) - 1;
rlen = len - copy_from_user(str, buf, len);
while ( rlen && str[rlen - 1] <= ' ' )
rlen--;
str[rlen] = 0;
for ( p = str; *p && *p <= ' '; p++, rlen-- );
if ( !*p )
return 0;
if ( stricmp(str, "start") == 0 )
*PP32_DBG_CTRL = DBG_CTRL_RESTART;
else if ( stricmp(str, "stop") == 0 )
*PP32_DBG_CTRL = DBG_CTRL_STOP;
// else if ( stricmp(str, "step") == 0 )
// *PP32_DBG_CTRL = DBG_CTRL_STEP_SET(1);
else
{
printk("echo \"<command>\" > /proc/eth/etop\n");
printk(" command:\n");
printk(" start - run pp32\n");
printk(" stop - stop pp32\n");
// printk(" step - run pp32 with one step only\n");
printk(" help - print this screen\n");
}
return count;
}
#endif
#endif
#if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
static INLINE int print_htu(char *buf, int i)
{
int len = 0;
if ( HTU_ENTRY(i)->vld ) {
len += sprintf(buf + len, "%2d. valid\n", i);
len += sprintf(buf + len, " entry 0x%08x - pid %01x vpi %02x vci %04x pti %01x\n", *(unsigned int*)HTU_ENTRY(i), HTU_ENTRY(i)->pid, HTU_ENTRY(i)->vpi, HTU_ENTRY(i)->vci, HTU_ENTRY(i)->pti);
len += sprintf(buf + len, " mask 0x%08x - pid %01x vpi %02x vci %04x pti %01x\n", *(unsigned int*)HTU_MASK(i), HTU_MASK(i)->pid_mask, HTU_MASK(i)->vpi_mask, HTU_MASK(i)->vci_mask, HTU_MASK(i)->pti_mask);
len += sprintf(buf + len, " result 0x%08x - type: %s, qid: %d", *(unsigned int*)HTU_RESULT(i), HTU_RESULT(i)->type ? "cell" : "AAL5", HTU_RESULT(i)->qid);
if ( HTU_RESULT(i)->type )
len += sprintf(buf + len, ", cell id: %d, verification: %s", HTU_RESULT(i)->cellid, HTU_RESULT(i)->ven ? "on" : "off");
len += sprintf(buf + len, "\n");
}
else
len += sprintf(buf + len, "%2d. invalid\n", i);
return len;
}
static int proc_read_htu(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
int len_max = off + count;
char *pstr;
int llen;
char *str;
int htuts = *CFG_WRX_HTUTS;
int i;
str = vmalloc (1024);
if (!str)
return 0;
pstr = *start = page;
llen = sprintf(pstr, "HTU Table (Max %d):\n", htuts);
pstr += llen;
len += llen;
for ( i = 0; i < htuts; i++ ) {
llen = print_htu(str, i);
if ( len <= off && len + llen > off ) {
memcpy(pstr, str + off - len, len + llen - off);
pstr += len + llen - off;
}
else if ( len > off ) {
memcpy(pstr, str, llen);
pstr += llen;
}
len += llen;
if ( len >= len_max )
goto PROC_READ_HTU_OVERRUN_END;
}
*eof = 1;
vfree(str);
return len - off;
PROC_READ_HTU_OVERRUN_END:
return len - llen - off;
}
static INLINE int print_tx_queue(char *buf, int i)
{
int len = 0;
if ( (*WTX_DMACH_ON & (1 << i)) ) {
len += sprintf(buf + len, "%2d. valid\n", i);
len += sprintf(buf + len, " queue 0x%08x - sbid %u, qsb vcid %u, qsb %s\n", (unsigned int)WTX_QUEUE_CONFIG(i), (unsigned int)WTX_QUEUE_CONFIG(i)->sbid, (unsigned int)WTX_QUEUE_CONFIG(i)->qsb_vcid, WTX_QUEUE_CONFIG(i)->qsben ? "enable" : "disable");
len += sprintf(buf + len, " dma 0x%08x - base %08x, len %u, vlddes %u\n", (unsigned int)WTX_DMA_CHANNEL_CONFIG(i), WTX_DMA_CHANNEL_CONFIG(i)->desba, WTX_DMA_CHANNEL_CONFIG(i)->deslen, WTX_DMA_CHANNEL_CONFIG(i)->vlddes);
}
else
len += sprintf(buf + len, "%2d. invalid\n", i);
return len;
}
static int proc_read_txq(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
int len_max = off + count;
char *pstr;
int llen;
int str_buff_len = 1024;
char *str;
int i;
str = vmalloc(str_buff_len);
if (!str){
return 0;
}
pstr = *start = page;
llen = sprintf(pstr, "TX Queue Config (Max %d):\n", *CFG_WTX_DCHNUM);
pstr += llen;
len += llen;
for ( i = 0; i < 16; i++ ) {
llen = print_tx_queue(str, i);
if ( len <= off && len + llen > off ) {
memcpy(pstr, str + off - len, len + llen - off);
pstr += len + llen - off;
}
else if ( len > off ) {
memcpy(pstr, str, llen);
pstr += llen;
}
len += llen;
if ( len >= len_max )
goto PROC_READ_HTU_OVERRUN_END;
}
*eof = 1;
vfree(str);
return len - off;
PROC_READ_HTU_OVERRUN_END:
return len - llen - off;
}
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
static int proc_read_retx_fw(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
unsigned int next_dtu_sid_out, last_dtu_sid_in, next_cell_sid_out, isr_cell_id;
unsigned int curr_time, sec_counter, curr_efb;
struct Retx_adsl_ppe_intf adsl_ppe_intf;
adsl_ppe_intf = *RETX_ADSL_PPE_INTF;
next_dtu_sid_out = *NEXT_DTU_SID_OUT;
last_dtu_sid_in = *LAST_DTU_SID_IN;
next_cell_sid_out = *NEXT_CELL_SID_OUT;
isr_cell_id = *ISR_CELL_ID;
curr_time = *URetx_curr_time;
sec_counter = *URetx_sec_counter;
curr_efb = *RxCURR_EFB;
len += sprintf(page + off + len, "Adsl-PPE Interface:\n");
len += sprintf(page + off + len, " dtu_sid = 0x%02x [%3u]\n", adsl_ppe_intf.dtu_sid, adsl_ppe_intf.dtu_sid);
len += sprintf(page + off + len, " dtu_timestamp = 0x%02x\n", adsl_ppe_intf.dtu_timestamp);
len += sprintf(page + off + len, " local_time = 0x%02x\n", adsl_ppe_intf.local_time);
len += sprintf(page + off + len, " is_last_cw = %u\n", adsl_ppe_intf.is_last_cw);
len += sprintf(page + off + len, " reinit_flag = %u\n", adsl_ppe_intf.reinit_flag);
len += sprintf(page + off + len, " is_bad_cw = %u\n", adsl_ppe_intf.is_bad_cw);
len += sprintf(page + off + len, "\n");
len += sprintf(page + off + len, "Retx Firmware Context:\n");
len += sprintf(page + off + len, " next_dtu_sid_out (0x%08x) = 0x%02x [%3u]\n", (unsigned int )NEXT_DTU_SID_OUT, next_dtu_sid_out, next_dtu_sid_out);
len += sprintf(page + off + len, " last_dtu_sid_in (0x%08x) = 0x%02x [%3u]\n", (unsigned int )LAST_DTU_SID_IN, last_dtu_sid_in, last_dtu_sid_in);
len += sprintf(page + off + len, " next_cell_sid_out (0x%08x) = %u\n", (unsigned int )NEXT_CELL_SID_OUT, next_cell_sid_out);
len += sprintf(page + off + len, " isr_cell_id (0x%08x) = %u\n", (unsigned int )ISR_CELL_ID, isr_cell_id);
len += sprintf(page + off + len, " pb_cell_search_idx (0x%08x) = %u\n", (unsigned int )PB_CELL_SEARCH_IDX, *PB_CELL_SEARCH_IDX);
len += sprintf(page + off + len, " pb_read_pend_flag (0x%08x) = %u\n", (unsigned int )PB_READ_PEND_FLAG, *PB_READ_PEND_FLAG);
len += sprintf(page + off + len, " rfbi_first_cw (0x%08x) = %u\n", (unsigned int )RFBI_FIRST_CW, *RFBI_FIRST_CW);
len += sprintf(page + off + len, " rfbi_bad_cw (0x%08x) = %u\n", (unsigned int )RFBI_BAD_CW, *RFBI_BAD_CW);
len += sprintf(page + off + len, " rfbi_invalid_cw (0x%08x) = %u\n", (unsigned int )RFBI_INVALID_CW, *RFBI_INVALID_CW);
len += sprintf(page + off + len, " rfbi_retx_cw (0x%08x) = %u\n", (unsigned int )RFBI_RETX_CW, *RFBI_RETX_CW);
len += sprintf(page + off + len, " rfbi_chk_dtu_status (0x%08x) = %u\n", (unsigned int )RFBI_CHK_DTU_STATUS,*RFBI_CHK_DTU_STATUS);
len += sprintf(page + off + len, "\n");
len += sprintf(page + off + len, "SFSM Status: bc0 bc1 \n\n");
len += sprintf(page + off + len, " state = %-22s , %s\n",
(*__WRXCTXT_PortState(0) & 3) == 0 ? "Hunt" :
(*__WRXCTXT_PortState(0) & 3) == 1 ? "Pre_sync" :
(*__WRXCTXT_PortState(0) & 3) == 2 ? "Sync" :
"Unknown(error)",
(*__WRXCTXT_PortState(1) & 3) == 0 ? "Hunt" :
(*__WRXCTXT_PortState(1) & 3) == 1 ? "Pre_sync" :
(*__WRXCTXT_PortState(1) & 3) == 2 ? "Sync" :
"Unknown(error)" );
len += sprintf(page + off + len, " dbase = 0x%04x ( 0x%08x ) , 0x%04x ( 0x%08x )\n",
SFSM_DBA(0)->dbase, (unsigned int)PPM_INT_UNIT_ADDR(SFSM_DBA(0)->dbase + 0x2000),
SFSM_DBA(1)->dbase, (unsigned int)PPM_INT_UNIT_ADDR(SFSM_DBA(1)->dbase + 0x2000));
len += sprintf(page + off + len, " cbase = 0x%04x ( 0x%08x ) , 0x%04x ( 0x%08x )\n",
SFSM_CBA(0)->cbase, (unsigned int)PPM_INT_UNIT_ADDR(SFSM_CBA(0)->cbase + 0x2000),
SFSM_CBA(1)->cbase, (unsigned int)PPM_INT_UNIT_ADDR(SFSM_CBA(1)->cbase + 0x2000));
len += sprintf(page + off + len, " sen = %-22d , %d\n", SFSM_CFG(0)->sen, SFSM_CFG(1)->sen );
len += sprintf(page + off + len, " idlekeep = %-22d , %d\n", SFSM_CFG(0)->idlekeep, SFSM_CFG(1)->idlekeep );
len += sprintf(page + off + len, " pnum = %-22d , %d\n", SFSM_CFG(0)->pnum, SFSM_CFG(1)->pnum );
len += sprintf(page + off + len, " pptr = %-22d , %d\n", SFSM_PGCNT(0)->pptr, SFSM_PGCNT(1)->pptr);
len += sprintf(page + off + len, " upage = %-22d , %d\n", SFSM_PGCNT(0)->upage, SFSM_PGCNT(1)->upage);
len += sprintf(page + off + len, " l2_rdptr = %-22d , %d\n", *__WRXCTXT_L2_RdPtr(0), *__WRXCTXT_L2_RdPtr(1) );
len += sprintf(page + off + len, " l2_page = %-22d , %d\n", *__WRXCTXT_L2Pages(0), *__WRXCTXT_L2Pages(1) );
len += sprintf(page + off + len, "\n");
len += sprintf(page + off + len, "FFSM Status: bc0 bc1 \n\n");
len += sprintf(page + off + len, " dbase = 0x%04x ( 0x%08x ) , 0x%04x ( 0x%08x )\n",
FFSM_DBA(0)->dbase, (unsigned int)PPM_INT_UNIT_ADDR(FFSM_DBA(0)->dbase + 0x2000),
FFSM_DBA(1)->dbase, (unsigned int)PPM_INT_UNIT_ADDR(FFSM_DBA(1)->dbase + 0x2000));
len += sprintf(page + off + len, " pnum = %-22d , %d\n", FFSM_CFG(0)->pnum, FFSM_CFG(1)->pnum);
len += sprintf(page + off + len, " vpage = %-22d , %d\n", FFSM_PGCNT(0)->vpage, FFSM_PGCNT(1)->vpage);
len += sprintf(page + off + len, " ival = %-22d , %d\n", FFSM_PGCNT(0)->ival, FFSM_PGCNT(1)->ival);
len += sprintf(page + off + len, " tc_wrptr = %-22d , %d\n", *__WTXCTXT_TC_WRPTR(0), *__WTXCTXT_TC_WRPTR(1));
len += sprintf(page + off + len, "\n");
len += sprintf(page + off + len, "Misc: \n\n");
len += sprintf(page + off + len, " curr_time = %08x\n", curr_time );
len += sprintf(page + off + len, " sec_counter = %d\n", sec_counter );
len += sprintf(page + off + len, " curr_efb = %d\n", curr_efb );
len += sprintf(page + off + len, "\n");
*eof = 1;
return len;
}
static inline int is_valid(unsigned int * dtu_vld_stat, int dtu_sid)
{
int dw_idx = (dtu_sid / 32) & 7;
int bit_pos = dtu_sid % 32;
return dtu_vld_stat[dw_idx] & (0x80000000 >> bit_pos);
}
static int proc_read_retx_stats(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int i;
int len = 0;
int len_max = off + count;
char *pstr;
char str[2048];
int llen = 0;
unsigned int next_dtu_sid_out, last_dtu_sid_in, next_cell_sid_out;
unsigned int dtu_vld_stat[8];
struct DTU_stat_info dtu_stat_info[256];
struct Retx_adsl_ppe_intf adsl_ppe_intf;
pstr = *start = page;
__sync();
// capture a snapshot of internal status
next_dtu_sid_out = *NEXT_DTU_SID_OUT;
last_dtu_sid_in = *LAST_DTU_SID_IN;
next_cell_sid_out = *NEXT_CELL_SID_OUT;
adsl_ppe_intf = *RETX_ADSL_PPE_INTF;
memcpy(&dtu_vld_stat, (void *)DTU_VLD_STAT, sizeof(dtu_vld_stat));
memcpy(&dtu_stat_info, (void *)DTU_STAT_INFO, sizeof(dtu_stat_info));
llen += sprintf(str + llen, "Adsl-PPE Interface:\n");
llen += sprintf(str + llen, " dtu_sid = 0x%02x [%3u]\n", adsl_ppe_intf.dtu_sid, adsl_ppe_intf.dtu_sid);
llen += sprintf(str + llen, " dtu_timestamp = 0x%02x\n", adsl_ppe_intf.dtu_timestamp);
llen += sprintf(str + llen, " local_time = 0x%02x\n", adsl_ppe_intf.local_time);
llen += sprintf(str + llen, " is_last_cw = %u\n", adsl_ppe_intf.is_last_cw);
llen += sprintf(str + llen, " reinit_flag = %u\n", adsl_ppe_intf.reinit_flag);
llen += sprintf(str + llen, " is_bad_cw = %u\n", adsl_ppe_intf.is_bad_cw);
llen += sprintf(str + llen, "\n");
llen += sprintf(str + llen, "Retx Internal State:\n");
llen += sprintf(str + llen, " next_dtu_sid_out (0x%08x) = 0x%02x [%3u]\n", (unsigned int )NEXT_DTU_SID_OUT, next_dtu_sid_out, next_dtu_sid_out);
llen += sprintf(str + llen, " last_dtu_sid_in (0x%08x) = 0x%02x [%3u]\n", (unsigned int )LAST_DTU_SID_IN, last_dtu_sid_in, last_dtu_sid_in);
llen += sprintf(str + llen, " next_cell_sid_out (0x%08x) = %u\n", (unsigned int )NEXT_CELL_SID_OUT, next_cell_sid_out);
llen += sprintf(str + llen, " dtu_valid_stat (0x%08x)\n", (unsigned int )DTU_VLD_STAT);
llen += sprintf(str + llen, " dtu_stat_info (0x%08x)\n", (unsigned int )DTU_STAT_INFO);
llen += sprintf(str + llen, " pb_buffer_usage (0x%08x)\n", (unsigned int )PB_BUFFER_USAGE);
if ( len <= off && len + llen > off ) {
memcpy(pstr, str + off - len, len + llen - off);
pstr += len + llen - off;
}
else if ( len > off ) {
memcpy(pstr, str, llen);
pstr += llen;
}
len += llen;
if ( len >= len_max )
goto PROC_READ_RETX_STATS_OVERRUN_END;
llen = 0;
llen += sprintf(str + llen, "\n");
llen += sprintf(str + llen, "DTU_VALID_STAT: [0x%08x]:\n", (unsigned int)DTU_VLD_STAT);
llen += sprintf(str + llen, "%08X: %08X %08X %08X %08X %08X %08X %08X %08X\n",
(unsigned int)DTU_VLD_STAT,
dtu_vld_stat[0], dtu_vld_stat[1], dtu_vld_stat[2], dtu_vld_stat[3],
dtu_vld_stat[4], dtu_vld_stat[5], dtu_vld_stat[6], dtu_vld_stat[7]);
if ( len <= off && len + llen > off ) {
memcpy(pstr, str + off - len, len + llen - off);
pstr += len + llen - off;
}
else if ( len > off ) {
memcpy(pstr, str, llen);
pstr += llen;
}
len += llen;
if ( len >= len_max )
goto PROC_READ_RETX_STATS_OVERRUN_END;
llen = 0;
llen += sprintf(str + llen, "\n");
llen += sprintf(str + llen, "DTU_STAT_INFO: [0x%08x]:\n", (unsigned int)DTU_STAT_INFO);
llen += sprintf(str + llen, "dtu_id ts complete bad cell_cnt dtu_rd_ptr dtu_wr_ptr\n");
llen += sprintf(str + llen, "---------------------------------------------------------------------\n");
for ( i = 0; i < 256; i++ ) {
if ( !is_valid(dtu_vld_stat, i) )
continue;
llen += sprintf(str + llen, "0x%02x [%3u] 0x%02x %d %d %3d %5d %5d\n",
i, i,
DTU_STAT_INFO[i].time_stamp,
DTU_STAT_INFO[i].complete,
DTU_STAT_INFO[i].bad,
DTU_STAT_INFO[i].cell_cnt,
DTU_STAT_INFO[i].dtu_rd_ptr,
DTU_STAT_INFO[i].dtu_wr_ptr );
if ( len <= off && len + llen > off ) {
memcpy(pstr, str + off - len, len + llen - off);
pstr += len + llen - off;
}
else if ( len > off )
{
memcpy(pstr, str, llen);
pstr += llen;
}
len += llen;
if ( len >= len_max )
goto PROC_READ_RETX_STATS_OVERRUN_END;
llen = 0;
}
llen += sprintf(str + llen, "\n");
llen += sprintf(str + llen, "Playout buffer status --- valid status [0x%08x]:\n", (unsigned int)PB_BUFFER_USAGE);
for( i = 0; i < RETX_MODE_CFG->buff_size; i += 8 ) {
llen += sprintf(str + llen, "%08X: %08X %08X %08X %08X %08X %08X %08X %08X\n",
(unsigned int)PB_BUFFER_USAGE + i * sizeof(unsigned int),
PB_BUFFER_USAGE[i], PB_BUFFER_USAGE[i+1], PB_BUFFER_USAGE[i+2], PB_BUFFER_USAGE[i+3],
PB_BUFFER_USAGE[i+4], PB_BUFFER_USAGE[i+5], PB_BUFFER_USAGE[i+6], PB_BUFFER_USAGE[i+7]);
}
if ( len <= off && len + llen > off ) {
memcpy(pstr, str + off - len, len + llen - off);
pstr += len + llen - off;
}
else if ( len > off ) {
memcpy(pstr, str, llen);
pstr += llen;
}
len += llen;
if ( len >= len_max )
goto PROC_READ_RETX_STATS_OVERRUN_END;
llen = 0;
*eof = 1;
return len - off;
PROC_READ_RETX_STATS_OVERRUN_END:
return len - llen - off;
}
static int proc_write_retx_stats(struct file *file, const char *buf, unsigned long count, void *data)
{
char str[2048];
char *p;
int len, rlen;
len = count < sizeof(str) ? count : sizeof(str) - 1;
rlen = len - copy_from_user(str, buf, len);
while ( rlen && str[rlen - 1] <= ' ' )
rlen--;
str[rlen] = 0;
for ( p = str; *p && *p <= ' '; p++, rlen-- );
if ( !*p )
return 0;
if ( stricmp(p, "help") == 0 ) {
printk("echo clear_pb > /proc/driver/ifx_atm/retx_stats \n");
printk(" :clear context in playout buffer\n\n");
printk("echo read_pb <pb_index> <cell_num> > /proc/driver/ifx_atm/retx_stats\n");
printk(" : read playout buffer contents\n\n");
printk("echo read_[r|t]x_cb > /proc/driver/ifx_atm/retx_stats\n");
printk(" : read cell buffer\n\n");
printk("echo clear_[r|t]x_cb > /proc/driver/ifx_atm/retx_stats\n");
printk(" : clear cell buffer\n\n");
printk("echo read_bad_dtu_intf_rec > /proc/driver/ifx_atm/retx_stats\n");
printk(" : read bad dtu intrface information record\n\n");
printk("echo clear_bad_dtu_intf_rec > /proc/driver/ifx_atm/retx_stats\n");
printk(" : clear bad dtu interface information record\n\n");
printk("echo read_wrx_context [i] > /proc/driver/ifx_atm/retx_stats\n");
printk(" : clear bad dtu interface information record\n\n");
printk("echo read_intf_rec > /proc/driver/ifx_atm/retx_stats\n");
printk(" : read interface info record buffer\n\n");
printk("echo reinit_intf_rec > /proc/driver/ifx_atm/retx_stats\n");
printk(" : reinit intf record, must be called before showtime\n\n");
}
else if ( stricmp(p, "reinit_intf_rec") == 0 ) {
int i = 0;
struct Retx_adsl_ppe_intf_rec rec[16];
*DBG_DTU_INTF_WRPTR = 0;
*DBG_INTF_FCW_DUP_CNT = 0;
*DBG_INTF_SID_CHANGE_IN_DTU_CNT = 0;
*DBG_INTF_LCW_DUP_CNT = 0;
*DBG_RFBI_DONE_INT_CNT = 0;
*DBG_RFBI_INTV0 = 0;
*DBG_RFBI_INTV1 = 0;
*DBG_RFBI_BC0_INVALID_CNT = 0;
*DBG_RFBI_LAST_T = 0;
*DBG_DREG_BEG_END = 0;
memset((void *) DBG_INTF_INFO(0), 0, sizeof(rec));
for( i = 0; i < 16; i++ )
DBG_INTF_INFO(i)->res1_1 = 1;
DBG_INTF_INFO(15)->dtu_sid = 255;
}
else if ( stricmp(p, "read_intf_rec") == 0 ) {
int i, cnt;
unsigned int dtu_intf_wrptr, fcw_dup_cnt, sid_change_in_dtu_cnt, lcw_dup_cnt ;
unsigned int rfbi_done_int_cnt, rfbi_intv0, rfbi_intv1, rfbi_bc0_invalid_cnt, dreg_beg_end;
struct Retx_adsl_ppe_intf_rec rec[16];
memcpy((void *) rec, (void *) DBG_INTF_INFO(0), sizeof(rec));
dtu_intf_wrptr = *DBG_DTU_INTF_WRPTR;
fcw_dup_cnt = *DBG_INTF_FCW_DUP_CNT;
sid_change_in_dtu_cnt = *DBG_INTF_SID_CHANGE_IN_DTU_CNT;
lcw_dup_cnt = *DBG_INTF_LCW_DUP_CNT;
rfbi_done_int_cnt = *DBG_RFBI_DONE_INT_CNT;
rfbi_intv0 = *DBG_RFBI_INTV0;
rfbi_intv1 = *DBG_RFBI_INTV1;
rfbi_bc0_invalid_cnt = *DBG_RFBI_BC0_INVALID_CNT;
dreg_beg_end = *DBG_DREG_BEG_END;
printk("PPE-Adsl Interface recrod [addr 0x23F0]:\n\n");
printk(" rfbi_done_int_cnt = %d [0x%x] \n", rfbi_done_int_cnt, rfbi_done_int_cnt);
printk(" rfbi_intv = 0x%08x 0x%08x [%d, %d, %d, %d, %d, %d, %d, %d]\n",
rfbi_intv0, rfbi_intv1,
rfbi_intv0 >> 24, (rfbi_intv0>>16) & 0xff, (rfbi_intv0>>8) & 0xff, rfbi_intv0 & 0xff,
rfbi_intv1 >> 24, (rfbi_intv1>>16) & 0xff, (rfbi_intv1>>8) & 0xff, rfbi_intv1 & 0xff
);
printk(" rfbi_bc0_invld_cnt = %d\n", rfbi_bc0_invalid_cnt);
printk(" dreg_beg_end = %d, %d\n\n", dreg_beg_end >> 16, dreg_beg_end & 0xffff);
printk(" wrptr = %d [0x%x] \n", dtu_intf_wrptr, dtu_intf_wrptr);
printk(" fcw_dup_cnt = %d\n", fcw_dup_cnt);
printk(" sid_chg_cnt = %d\n", sid_change_in_dtu_cnt);
printk(" lcw_dup_cnt = %d\n\n", lcw_dup_cnt);
printk(" idx itf_dw0 itf_dw1 dtu_sid timestamp local_time res1 last_cw bad_flag reinit\n");
printk(" -------------------------------------------------------------------------------------\n");
for ( i = (dtu_intf_wrptr + 1) % 16, cnt = 0; cnt < 16; cnt ++, i = (i + 1) % 16 ) {
if(cnt < 15)
printk(" ");
else
printk(" *");
printk("%3d %04x %04x %3d[%02x] %3d[%02x] %3d[%02x] 0x%02x %d %d %d\n",
i,
(*(unsigned int *)&rec[i]) & 0xffff,
(*(unsigned int *)&rec[i]) >> 16,
rec[i].dtu_sid, rec[i].dtu_sid,
rec[i].dtu_timestamp, rec[i].dtu_timestamp,
rec[i].local_time, rec[i].local_time,
rec[i].res1_1,
rec[i].is_last_cw,
rec[i].is_bad_cw,
rec[i].reinit_flag );
}
}
else if ( stricmp(p, "read_wrx_context") == 0 ) {
int i = 0;
int flag = 0;
for( i = 0; i < 8; ++i ) {
if ( !WRX_QUEUE_CONTEXT(i)->curr_des0 || !WRX_QUEUE_CONTEXT(i)->curr_des1 )
continue;
flag = 1;
printk("WRX queue context [ %d ]: \n", i);
printk(" curr_len = %4d, mfs = %d, ec = %d, clp1 = %d, aal5dp = %d\n",
WRX_QUEUE_CONTEXT(i)->curr_len, WRX_QUEUE_CONTEXT(i)->mfs,
WRX_QUEUE_CONTEXT(i)->ec, WRX_QUEUE_CONTEXT(i)->clp1,
WRX_QUEUE_CONTEXT(i)->aal5dp);
printk(" initcrc = %08x\n", WRX_QUEUE_CONTEXT(i)->intcrc);
printk(" currdes = %08x %08x\n",
WRX_QUEUE_CONTEXT(i)->curr_des0, WRX_QUEUE_CONTEXT(i)->curr_des1);
printk(" last_dw = %08x\n\n", WRX_QUEUE_CONTEXT(i)->last_dword);
if( WRX_QUEUE_CONTEXT(i)->curr_len ) {
int j = 0;
unsigned char *p_char;
struct rx_descriptor *desc = (struct rx_descriptor *)&(WRX_QUEUE_CONTEXT(i)->curr_des0);
p_char = (unsigned char *)(((unsigned int)desc->dataptr << 2) | KSEG1);
printk(" Data in SDRAM:\n ");
for ( j = 0 ; j < WRX_QUEUE_CONTEXT(i)->curr_len; ++j ) {
printk ("%02x", p_char[j]);
if ( j % 16 == 15 )
printk("\n ");
else if ( j % 4 == 3 )
printk (" ");
}
printk("\n\n");
}
}
if ( !flag ) {
printk("No active wrx queue context\n");
}
}
else if ( stricmp(p, "clear_pb") == 0 ) {
if ( g_retx_playout_buffer )
memset((void *)g_retx_playout_buffer, 0, RETX_PLAYOUT_BUFFER_SIZE);
}
else if ( stricmp(p, "read_bad_dtu_intf_rec") == 0 ) {
struct Retx_adsl_ppe_intf first_dtu_intf, last_dtu_intf;
first_dtu_intf = *FIRST_BAD_REC_RETX_ADSL_PPE_INTF;
last_dtu_intf = *BAD_REC_RETX_ADSL_PPE_INTF;
printk("\nAdsl-PPE Interface for first and last DTU of recent noise:\n\n");
printk(" dtu_sid = 0x%02x [%3u], 0x%02x [%3u]\n",
first_dtu_intf.dtu_sid, first_dtu_intf.dtu_sid,
last_dtu_intf.dtu_sid, last_dtu_intf.dtu_sid);
printk(" dtu_timestamp = 0x%02x , 0x%02x\n",
first_dtu_intf.dtu_timestamp, last_dtu_intf.dtu_timestamp);
printk(" local_time = 0x%02x , 0x%02x\n",
first_dtu_intf.local_time, last_dtu_intf.local_time);
printk(" is_last_cw = %u , %u\n",
first_dtu_intf.is_last_cw, last_dtu_intf.is_last_cw);
printk(" reinit_flag = %u , %u\n",
first_dtu_intf.reinit_flag, last_dtu_intf.reinit_flag);
printk(" is_bad_cw = %u , %u\n\n",
first_dtu_intf.is_bad_cw, last_dtu_intf.is_bad_cw);
}
else if ( stricmp(p, "clear_bad_dtu_intf_rec") == 0 ) {
memset((void *)BAD_REC_RETX_ADSL_PPE_INTF, 0, sizeof(struct Retx_adsl_ppe_intf));
memset((void *)FIRST_BAD_REC_RETX_ADSL_PPE_INTF, 0, sizeof(struct Retx_adsl_ppe_intf));
}
else if ( stricmp(p, "clear_tx_cb") == 0 ) {
unsigned int *dbase0;
unsigned int pnum0;
dbase0 = (unsigned int *)PPM_INT_UNIT_ADDR( FFSM_DBA(0)->dbase + 0x2000);
pnum0 = FFSM_CFG(0)->pnum;
memset(dbase0, 0, 14 * sizeof(unsigned int ) * pnum0);
}
else if ( stricmp(p, "clear_rx_cb") == 0 ) {
unsigned int *dbase0, *cbase0, *dbase1, *cbase1;
unsigned int pnum0;
dbase0 = (unsigned int *)PPM_INT_UNIT_ADDR( SFSM_DBA(0)->dbase + 0x2000);
cbase0 = (unsigned int *)PPM_INT_UNIT_ADDR( SFSM_CBA(0)->cbase + 0x2000);
dbase1 = (unsigned int *)PPM_INT_UNIT_ADDR( SFSM_DBA(1)->dbase + 0x2000);
cbase1 = (unsigned int *)PPM_INT_UNIT_ADDR( SFSM_CBA(1)->cbase + 0x2000);
pnum0 = SFSM_CFG(0)->pnum;
memset(dbase0, 0, 14 * sizeof(unsigned int ) * pnum0);
memset(cbase0, 0, sizeof(unsigned int ) * pnum0);
memset(dbase1, 0, 14 * sizeof(unsigned int ));
memset(cbase1, 0, sizeof(unsigned int ));
}
else if ( strnicmp(p, "read_tx_cb", 10) == 0 ) {
unsigned int *dbase0;
unsigned int pnum0, i;
unsigned int * cell;
dbase0 = (unsigned int *)PPM_INT_UNIT_ADDR( FFSM_DBA(0)->dbase + 0x2000);
pnum0 = FFSM_CFG(0)->pnum;
printk("ATM TX BC 0 CELL data/ctrl buffer:\n\n");
for(i = 0; i < pnum0 ; ++ i) {
cell = dbase0 + i * 14;
printk("cell %2d: %08x %08x\n", i, cell[0], cell[1]);
printk(" %08x %08x %08x %08x\n", cell[2], cell[3], cell[4], cell[5]);
printk(" %08x %08x %08x %08x\n", cell[6], cell[7], cell[8], cell[9]);
printk(" %08x %08x %08x %08x\n", cell[10], cell[11], cell[12], cell[13]);
}
}
else if ( strnicmp(p, "read_rx_cb", 10) == 0 ) {
unsigned int *dbase0, *cbase0, *dbase1, *cbase1;
unsigned int pnum0, i;
unsigned int * cell;
dbase0 = (unsigned int *)PPM_INT_UNIT_ADDR( SFSM_DBA(0)->dbase + 0x2000);
cbase0 = (unsigned int *)PPM_INT_UNIT_ADDR( SFSM_CBA(0)->cbase + 0x2000);
dbase1 = (unsigned int *)PPM_INT_UNIT_ADDR( SFSM_DBA(1)->dbase + 0x2000);
cbase1 = (unsigned int *)PPM_INT_UNIT_ADDR( SFSM_CBA(1)->cbase + 0x2000);
pnum0 = SFSM_CFG(0)->pnum;
printk("ATM RX BC 0 CELL data/ctrl buffer:\n\n");
for(i = 0; i < pnum0 ; ++ i) {
struct Retx_ctrl_field * p_ctrl;
cell = dbase0 + i * 14;
p_ctrl = (struct Retx_ctrl_field *) ( &cbase0[i]);
printk("cell %2d: %08x %08x -- [%08x]:", i, cell[0], cell[1], cbase0[i]);
printk("l2_drop: %d, retx: %d", p_ctrl->l2_drop, p_ctrl->retx);
if ( p_ctrl->retx ) {
printk(", dtu_sid = %u, cell_sid = %u", p_ctrl->dtu_sid, p_ctrl->cell_sid);
}
printk("\n");
printk(" %08x %08x %08x %08x\n", cell[2], cell[3], cell[4], cell[5]);
printk(" %08x %08x %08x %08x\n", cell[6], cell[7], cell[8], cell[9]);
printk(" %08x %08x %08x %08x\n", cell[10], cell[11], cell[12], cell[13]);
}
printk("\n");
printk("ATM RX BC 1 CELL data/ctrl buffer:\n\n");
cell = dbase1;
printk("cell %2d: %08x %08x -- [%08x]: dtu_sid:%3d, cell_sid:%3d, next_ptr: %4d\n",
0, cell[0], cell[1], cbase0[i], ( cell[1] >> 16) & 0xff, (cell[1] >> 24) & 0xff, cell[1] & 0xffff );
printk(" %08x %08x %08x %08x\n", cell[2], cell[3], cell[4], cell[5]);
printk(" %08x %08x %08x %08x\n", cell[6], cell[7], cell[8], cell[9]);
printk(" %08x %08x %08x %08x\n", cell[10], cell[11], cell[12], cell[13]);
}
else if ( strnicmp(p, "read_pb ", 8) == 0 )
{
int start_cell_idx = 0;
int cell_num = 0;
unsigned int *cell;
unsigned int pb_buff_size = RETX_MODE_CFG->buff_size * 32;
p += 8;
rlen -= 8;
ignore_space(&p, &rlen);
start_cell_idx = get_number(&p, &rlen, 0);
ignore_space(&p, &rlen);
cell_num = get_number(&p, &rlen, 0);
if ( start_cell_idx >= pb_buff_size ) {
printk(" Invalid cell index\n");
}
else {
int i;
if ( cell_num < 0 )
cell_num = 1;
if ( cell_num + start_cell_idx > pb_buff_size )
cell_num = pb_buff_size - start_cell_idx;
for ( i = 0; i < cell_num ; ++i ) {
cell = (unsigned int *)((unsigned int *)g_retx_playout_buffer + (14 * (start_cell_idx + i)));
printk("cell %4d: %08x %08x [next_ptr = %4u, dtu_sid = %3u, cell_sid = %3u]\n",
start_cell_idx + i, cell[0], cell[1], cell[1] & 0xffff, (cell[1] >> 16) & 0xff, (cell[1] >> 24) & 0xff);
printk(" %08x %08x %08x %08x\n", cell[2], cell[3], cell[4], cell[5]);
printk(" %08x %08x %08x %08x\n", cell[6], cell[7], cell[8], cell[9]);
printk(" %08x %08x %08x %08x\n", cell[10], cell[11], cell[12], cell[13]);
}
}
}
return count;
}
static int proc_read_retx_cfg(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
len += sprintf(page + off + len, "ReTX FW Config:\n");
len += sprintf(page + off + len, " RETX_MODE_CFG = 0x%08x, invld_range=%u, buff_size=%u, retx=%u\n", *(volatile unsigned int *)RETX_MODE_CFG, (unsigned int)RETX_MODE_CFG->invld_range, (unsigned int)RETX_MODE_CFG->buff_size * 32, (unsigned int)RETX_MODE_CFG->retx_en);
len += sprintf(page + off + len, " RETX_TSYNC_CFG = 0x%08x, fw_alpha=%u, sync_inp=%u\n", *(volatile unsigned int *)RETX_TSYNC_CFG, (unsigned int)RETX_TSYNC_CFG->fw_alpha, (unsigned int)RETX_TSYNC_CFG->sync_inp);
len += sprintf(page + off + len, " RETX_TD_CFG = 0x%08x, td_max=%u, td_min=%u\n", *(volatile unsigned int *)RETX_TD_CFG, (unsigned int)RETX_TD_CFG->td_max, (unsigned int)RETX_TD_CFG->td_min);
len += sprintf(page + off + len, " RETX_PLAYOUT_BUFFER_BASE = 0x%08x\n", *RETX_PLAYOUT_BUFFER_BASE);
len += sprintf(page + off + len, " RETX_SERVICE_HEADER_CFG = 0x%08x\n", *RETX_SERVICE_HEADER_CFG);
len += sprintf(page + off + len, " RETX_MASK_HEADER_CFG = 0x%08x\n", *RETX_MASK_HEADER_CFG);
len += sprintf(page + off + len, " RETX_MIB_TIMER_CFG = 0x%08x, tick_cycle = %d, ticks_per_sec = %d\n",
*(unsigned int *)RETX_MIB_TIMER_CFG, RETX_MIB_TIMER_CFG->tick_cycle, RETX_MIB_TIMER_CFG->ticks_per_sec);
*eof = 1;
return len;
}
static int proc_write_retx_cfg(struct file *file, const char *buf, unsigned long count, void *data)
{
char *p1, *p2;
int len;
int colon;
char local_buf[1024];
char *tokens[4] = {0};
unsigned int token_num = 0;
len = sizeof(local_buf) < count ? sizeof(local_buf) - 1 : count;
len = len - copy_from_user(local_buf, buf, len);
local_buf[len] = 0;
p1 = local_buf;
colon = 0;
while ( token_num < NUM_ENTITY(tokens) && get_token(&p1, &p2, &len, &colon) ) {
tokens[token_num++] = p1;
p1 = p2;
}
if ( token_num > 0 ) {
if ( stricmp(tokens[0], "help") == 0 ) {
printk("echo help > /proc/driver/ifx_atm/retx_cfg ==> \n\tprint this help message\n\n");
printk("echo set retx <enable|disable|0|1|on|off> > /proc/driver/ifx_atm/retx_cfg\n");
printk("\t:enable or disable retx feature\n\n");
printk("echo set <td_max|td_min|fw_alpha|sync_inp|invld_range|buff_size> <number> > /proc/driver/ifx_atm/retx_cfg\n");
printk("\t: set td_max, td_min, fw_alpha, sync_inp, invalid_range, buff_size\n\n");
printk("echo set <service_header|service_mask> <hex_number> /proc/driver/ifx_atm/retx_cfg \n");
printk("\t: set service_header, service_mask\n\n");
}
else if ( stricmp(tokens[0], "set") == 0 && token_num >= 3 ) {
if ( stricmp(tokens[1], "retx") == 0 ) {
if ( stricmp(tokens[2], "enable") == 0 ||
stricmp(tokens[2], "on") == 0 ||
stricmp(tokens[2], "1") == 0 )
RETX_MODE_CFG->retx_en = 1;
else if ( stricmp(tokens[2], "disable") == 0 ||
stricmp(tokens[2], "off") == 0 ||
stricmp(tokens[2], "0") == 0 )
RETX_MODE_CFG->retx_en = 0;
printk("RETX_MODE_CFG->retx_en - %d\n", RETX_MODE_CFG->retx_en);
}
else {
unsigned int dec_val, hex_val;
p1 = tokens[2];
dec_val = (unsigned int)get_number(&p1, NULL, 0);
p2 = tokens[2];
hex_val = (unsigned int)get_number(&p2, NULL, 1);
if ( *p2 == 0 ) {
if ( stricmp(tokens[1], "service_header") == 0 ) {
*RETX_SERVICE_HEADER_CFG = hex_val;
printk("RETX_SERVICE_HEADER_CFG - 0x%08x\n", *RETX_SERVICE_HEADER_CFG);
}
else if ( stricmp(tokens[1], "service_mask") == 0 ) {
*RETX_MASK_HEADER_CFG = hex_val;
printk("RETX_MASK_HEADER_CFG - 0x%08x\n", *RETX_MASK_HEADER_CFG);
}
}
if ( *p1 == 0 ) {
if ( stricmp(tokens[1], "td_max") == 0 ) {
(unsigned int)RETX_TD_CFG->td_max = (dec_val >= 0xff ? 0Xff : dec_val);
printk("RETX_TD_CFG->td_max - %d\n", RETX_TD_CFG->td_max);
}
else if ( stricmp(tokens[1], "td_min") == 0 ) {
(unsigned int)RETX_TD_CFG->td_min = (dec_val >= 0xff ? 0Xff : dec_val);
printk("RETX_TD_CFG->td_min - %d\n", RETX_TD_CFG->td_min);
}
else if ( stricmp(tokens[1], "fw_alpha") == 0 ) {
RETX_TSYNC_CFG->fw_alpha = dec_val >= 0x7FFE ? 0X7EEE : dec_val;
printk("RETX_TSYNC_CFG->fw_alpha - %d\n", RETX_TSYNC_CFG->fw_alpha);
}
else if ( stricmp(tokens[1], "sync_inp") == 0 ) {
RETX_TSYNC_CFG->sync_inp = dec_val >= 0x7FFE ? 0X7EEE : dec_val;
printk("RETX_TSYNC_CFG->sync_inp - %d\n", RETX_TSYNC_CFG->sync_inp);
}
else if ( stricmp(tokens[1], "invld_range") == 0 ) {
RETX_MODE_CFG->invld_range = dec_val >= 250 ? 250 : dec_val;
printk("RETX_MODE_CFG->invld_range - %d\n", RETX_MODE_CFG->invld_range);
}
else if ( stricmp(tokens[1], "buff_size") == 0 ) {
dec_val = (dec_val + 31) / 32;
RETX_MODE_CFG->buff_size = dec_val >= 4096 / 32 ? 4096 / 32 : dec_val;
printk("RETX_MODE_CFG->buff_size - %d\n", RETX_MODE_CFG->buff_size);
}
}
}
}
}
return count;
}
static int proc_read_retx_dsl_param(char *page, char **start, off_t off, int count, int *eof, void *data)
{
int len = 0;
len += sprintf(page + off + len, "DSL Param [timestamp %ld.%ld]:\n", g_retx_polling_start.tv_sec, g_retx_polling_start.tv_usec);
if ( g_xdata_addr == NULL )
len += sprintf(page + off + len, " DSL parameters not available !\n");
else {
volatile struct dsl_param *p_dsl_param = (volatile struct dsl_param *)g_xdata_addr;
len += sprintf(page + off + len, " update_flag = %u\n", p_dsl_param->update_flag);
len += sprintf(page + off + len, " MinDelayrt = %u\n", p_dsl_param->MinDelayrt);
len += sprintf(page + off + len, " MaxDelayrt = %u\n", p_dsl_param->MaxDelayrt);
len += sprintf(page + off + len, " RetxEnable = %u\n", p_dsl_param->RetxEnable);
len += sprintf(page + off + len, " ServiceSpecificReTx = %u\n", p_dsl_param->ServiceSpecificReTx);
len += sprintf(page + off + len, " ReTxPVC = 0x%08x\n", p_dsl_param->ReTxPVC);
len += sprintf(page + off + len, " RxDtuCorruptedCNT = %u\n", p_dsl_param->RxDtuCorruptedCNT);
len += sprintf(page + off + len, " RxRetxDtuUnCorrectedCNT = %u\n", p_dsl_param->RxRetxDtuUnCorrectedCNT);
len += sprintf(page + off + len, " RxLastEFB = %u\n", p_dsl_param->RxLastEFB);
len += sprintf(page + off + len, " RxDtuCorrectedCNT = %u\n", p_dsl_param->RxDtuCorrectedCNT);
}
if ( g_retx_polling_end.tv_sec != 0 || g_retx_polling_end.tv_usec != 0 ) {
unsigned long polling_time_usec;
polling_time_usec = (g_retx_polling_end.tv_sec - g_retx_polling_start.tv_sec) * 1000000 + (g_retx_polling_end.tv_usec - g_retx_polling_start.tv_usec);
len += sprintf(page + off + len, "DSL Param Update Time: %lu.%03lums\n", polling_time_usec / 1000, polling_time_usec % 1000);
}
return len;
}
#endif
#endif
static int stricmp(const char *p1, const char *p2)
{
int c1, c2;
while ( *p1 && *p2 ) {
c1 = *p1 >= 'A' && *p1 <= 'Z' ? *p1 + 'a' - 'A' : *p1;
c2 = *p2 >= 'A' && *p2 <= 'Z' ? *p2 + 'a' - 'A' : *p2;
if ( (c1 -= c2) )
return c1;
p1++;
p2++;
}
return *p1 - *p2;
}
#if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
static int strincmp(const char *p1, const char *p2, int n)
{
int c1 = 0, c2;
while ( n && *p1 && *p2 ) {
c1 = *p1 >= 'A' && *p1 <= 'Z' ? *p1 + 'a' - 'A' : *p1;
c2 = *p2 >= 'A' && *p2 <= 'Z' ? *p2 + 'a' - 'A' : *p2;
if ( (c1 -= c2) )
return c1;
p1++;
p2++;
n--;
}
return n ? *p1 - *p2 : c1;
}
static int get_token(char **p1, char **p2, int *len, int *colon)
{
int tlen = 0;
while ( *len && !((**p1 >= 'A' && **p1 <= 'Z') || (**p1 >= 'a' && **p1<= 'z') || (**p1 >= '0' && **p1<= '9')) )
{
(*p1)++;
(*len)--;
}
if ( !*len )
return 0;
if ( *colon )
{
*colon = 0;
*p2 = *p1;
while ( *len && **p2 > ' ' && **p2 != ',' )
{
if ( **p2 == ':' )
{
*colon = 1;
break;
}
(*p2)++;
(*len)--;
tlen++;
}
**p2 = 0;
}
else
{
*p2 = *p1;
while ( *len && **p2 > ' ' && **p2 != ',' )
{
(*p2)++;
(*len)--;
tlen++;
}
**p2 = 0;
}
return tlen;
}
static unsigned int get_number(char **p, int *len, int is_hex)
{
unsigned int ret = 0;
unsigned int n = 0;
if ( (*p)[0] == '0' && (*p)[1] == 'x' )
{
is_hex = 1;
(*p) += 2;
if ( len )
(*len) -= 2;
}
if ( is_hex )
{
while ( (!len || *len) && ((**p >= '0' && **p <= '9') || (**p >= 'a' && **p <= 'f') || (**p >= 'A' && **p <= 'F')) )
{
if ( **p >= '0' && **p <= '9' )
n = **p - '0';
else if ( **p >= 'a' && **p <= 'f' )
n = **p - 'a' + 10;
else if ( **p >= 'A' && **p <= 'F' )
n = **p - 'A' + 10;
ret = (ret << 4) | n;
(*p)++;
if ( len )
(*len)--;
}
}
else
{
while ( (!len || *len) && **p >= '0' && **p <= '9' )
{
n = **p - '0';
ret = ret * 10 + n;
(*p)++;
if ( len )
(*len)--;
}
}
return ret;
}
static void ignore_space(char **p, int *len)
{
while ( *len && (**p <= ' ' || **p == ':' || **p == '.' || **p == ',') )
{
(*p)++;
(*len)--;
}
}
#endif
static INLINE int ifx_atm_version(char *buf)
{
int len = 0;
unsigned int major, minor;
ifx_atm_get_fw_ver(&major, &minor);
len += sprintf(buf + len, " ATM (A1) firmware version %d.%d.%d\n", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID,IFX_ATM_VER_MINOR);
return len;
}
static INLINE void check_parameters(void)
{
/* Please refer to Amazon spec 15.4 for setting these values. */
if ( qsb_tau < 1 )
qsb_tau = 1;
if ( qsb_tstep < 1 )
qsb_tstep = 1;
else if ( qsb_tstep > 4 )
qsb_tstep = 4;
else if ( qsb_tstep == 3 )
qsb_tstep = 2;
/* There is a delay between PPE write descriptor and descriptor is */
/* really stored in memory. Host also has this delay when writing */
/* descriptor. So PPE will use this value to determine if the write */
/* operation makes effect. */
if ( write_descriptor_delay < 0 )
write_descriptor_delay = 0;
if ( aal5_fill_pattern < 0 )
aal5_fill_pattern = 0;
else
aal5_fill_pattern &= 0xFF;
/* Because of the limitation of length field in descriptors, the packet */
/* size could not be larger than 64K minus overhead size. */
if ( aal5r_max_packet_size < 0 )
aal5r_max_packet_size = 0;
else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
if ( aal5r_min_packet_size < 0 )
aal5r_min_packet_size = 0;
else if ( aal5r_min_packet_size > aal5r_max_packet_size )
aal5r_min_packet_size = aal5r_max_packet_size;
if ( aal5s_max_packet_size < 0 )
aal5s_max_packet_size = 0;
else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
if ( aal5s_min_packet_size < 0 )
aal5s_min_packet_size = 0;
else if ( aal5s_min_packet_size > aal5s_max_packet_size )
aal5s_min_packet_size = aal5s_max_packet_size;
if ( dma_rx_descriptor_length < 2 )
dma_rx_descriptor_length = 2;
if ( dma_tx_descriptor_length < 2 )
dma_tx_descriptor_length = 2;
if ( dma_rx_clp1_descriptor_threshold < 0 )
dma_rx_clp1_descriptor_threshold = 0;
else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
if ( dma_tx_descriptor_length < 2 )
dma_tx_descriptor_length = 2;
}
static INLINE int init_priv_data(void)
{
void *p;
int i;
struct rx_descriptor rx_desc = {0};
struct sk_buff *skb;
volatile struct tx_descriptor *p_tx_desc;
struct sk_buff **ppskb;
// clear atm private data structure
memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));
// allocate memory for RX (AAL) descriptors
p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return IFX_ERROR;
dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
g_atm_priv_data.aal_desc_base = p;
p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;
// allocate memory for RX (OAM) descriptors
p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return IFX_ERROR;
dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
g_atm_priv_data.oam_desc_base = p;
p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;
// allocate memory for RX (OAM) buffer
p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return IFX_ERROR;
dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
g_atm_priv_data.oam_buf_base = p;
p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
g_atm_priv_data.oam_buf = p;
// allocate memory for TX descriptors
p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return IFX_ERROR;
dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
g_atm_priv_data.tx_desc_base = p;
// allocate memory for TX skb pointers
p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
if ( p == NULL )
return IFX_ERROR;
dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
g_atm_priv_data.tx_skb_base = p;
// setup RX (AAL) descriptors
rx_desc.own = 1;
rx_desc.c = 0;
rx_desc.sop = 1;
rx_desc.eop = 1;
rx_desc.byteoff = 0;
rx_desc.id = 0;
rx_desc.err = 0;
rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
skb = alloc_skb_rx();
if ( skb == NULL )
return IFX_ERROR;
rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
g_atm_priv_data.aal_desc[i] = rx_desc;
}
// setup RX (OAM) descriptors
p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
rx_desc.own = 1;
rx_desc.c = 0;
rx_desc.sop = 1;
rx_desc.eop = 1;
rx_desc.byteoff = 0;
rx_desc.id = 0;
rx_desc.err = 0;
rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
g_atm_priv_data.oam_desc[i] = rx_desc;
p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
}
// setup TX descriptors and skb pointers
p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
g_atm_priv_data.conn[i].tx_skb = &ppskb[i * dma_tx_descriptor_length];
}
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;
return IFX_SUCCESS;
}
static INLINE void clear_priv_data(void)
{
int i, j;
struct sk_buff *skb;
for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
for ( j = 0; j < dma_tx_descriptor_length; j++ )
if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
}
}
if ( g_atm_priv_data.tx_skb_base != NULL )
kfree(g_atm_priv_data.tx_skb_base);
if ( g_atm_priv_data.tx_desc_base != NULL )
kfree(g_atm_priv_data.tx_desc_base);
if ( g_atm_priv_data.oam_buf_base != NULL )
kfree(g_atm_priv_data.oam_buf_base);
if ( g_atm_priv_data.oam_desc_base != NULL )
kfree(g_atm_priv_data.oam_desc_base);
if ( g_atm_priv_data.aal_desc_base != NULL ) {
for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { // descriptor initialized
skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
dev_kfree_skb_any(skb);
}
}
kfree(g_atm_priv_data.aal_desc_base);
}
}
static INLINE void init_rx_tables(void)
{
int i;
struct wrx_queue_config wrx_queue_config = {0};
struct wrx_dma_channel_config wrx_dma_channel_config = {0};
struct htu_entry htu_entry = {0};
struct htu_result htu_result = {0};
struct htu_mask htu_mask = { set: 0x01,
clp: 0x01,
pid_mask: 0x00,
vpi_mask: 0x00,
vci_mask: 0x00,
pti_mask: 0x00,
clear: 0x00};
/*
* General Registers
*/
*CFG_WRX_HTUTS = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
#ifndef CONFIG_AMAZON_SE
*CFG_WRX_QNUM = MAX_QUEUE_NUMBER;
#endif
*CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
*WRX_DMACH_ON = (1 << RX_DMA_CH_TOTAL) - 1;
*WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
/*
* WRX Queue Configuration Table
*/
wrx_queue_config.uumask = 0;
wrx_queue_config.cpimask = 0;
wrx_queue_config.uuexp = 0;
wrx_queue_config.cpiexp = 0;
wrx_queue_config.mfs = aal5r_max_packet_size;
wrx_queue_config.oversize = aal5r_max_packet_size;
wrx_queue_config.undersize = aal5r_min_packet_size;
wrx_queue_config.errdp = aal5r_drop_error_packet;
wrx_queue_config.dmach = RX_DMA_CH_AAL;
for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
*WRX_QUEUE_CONFIG(i) = wrx_queue_config;
WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;
/*
* WRX DMA Channel Configuration Table
*/
wrx_dma_channel_config.chrl = 0;
wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
wrx_dma_channel_config.mode = 0;
wrx_dma_channel_config.rlcfg = 0;
wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
*WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;
wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
*WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;
/*
* HTU Tables
*/
for ( i = 0; i < MAX_PVC_NUMBER; i++ )
{
htu_result.qid = (unsigned int)i;
*HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
*HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
*HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
}
/* OAM HTU Entry */
htu_entry.vci = 0x03;
htu_mask.pid_mask = 0x03;
htu_mask.vpi_mask = 0xFF;
htu_mask.vci_mask = 0x0000;
htu_mask.pti_mask = 0x07;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
htu_entry.vci = 0x04;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
htu_entry.vci = 0x00;
htu_entry.pti = 0x04;
htu_mask.vci_mask = 0xFFFF;
htu_mask.pti_mask = 0x01;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
htu_entry.pid = 0x0;
htu_entry.vpi = 0x01;
htu_entry.vci = 0x0001;
htu_entry.pti = 0x00;
htu_mask.pid_mask = 0x0;
htu_mask.vpi_mask = 0x00;
htu_mask.vci_mask = 0x0000;
htu_mask.pti_mask = 0x3;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_ARQ_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_ARQ_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_ARQ_HTU_ENTRY) = htu_entry;
#endif
}
static INLINE void init_tx_tables(void)
{
int i;
struct wtx_queue_config wtx_queue_config = {0};
struct wtx_dma_channel_config wtx_dma_channel_config = {0};
struct wtx_port_config wtx_port_config = { res1: 0,
qid: 0,
qsben: 1};
/*
* General Registers
*/
*CFG_WTX_DCHNUM = MAX_TX_DMA_CHANNEL_NUMBER;
*WTX_DMACH_ON = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
*CFG_WRDES_DELAY = write_descriptor_delay;
/*
* WTX Port Configuration Table
*/
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
*WTX_PORT_CONFIG(i) = wtx_port_config;
/*
* WTX Queue Configuration Table
*/
wtx_queue_config.qsben = 1;
wtx_queue_config.sbid = 0;
for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ ) {
wtx_queue_config.qsb_vcid = i;
*WTX_QUEUE_CONFIG(i) = wtx_queue_config;
}
/*
* WTX DMA Channel Configuration Table
*/
wtx_dma_channel_config.mode = 0;
wtx_dma_channel_config.deslen = 0;
wtx_dma_channel_config.desba = 0;
for ( i = 0; i < FIRST_QSB_QID; i++ )
*WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
/* normal connection */
wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
*WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
}
}
/*
* ####################################
* Global Function
* ####################################
*/
static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
{
int i, j;
ASSERT(port_cell != NULL, "port_cell is NULL");
ASSERT(xdata_addr != NULL, "xdata_addr is NULL");
for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
if ( port_cell->tx_link_rate[j] > 0 )
break;
for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
g_atm_priv_data.port[i].tx_max_cell_rate = port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];
qsb_global_set();
for ( i = 0; i < MAX_PVC_NUMBER; i++ )
if ( g_atm_priv_data.conn[i].vcc != NULL )
set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);
// TODO: ReTX set xdata_addr
g_xdata_addr = xdata_addr;
g_showtime = 1;
#if defined(CONFIG_VR9)
IFX_REG_W32(0x0F, UTP_CFG);
#endif
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
if ( !timer_pending(&g_retx_polling_timer) ) {
g_retx_polling_cnt = HZ;
g_retx_polling_timer.expires = jiffies + RETX_POLLING_INTERVAL;
add_timer(&g_retx_polling_timer);
}
#endif
//printk("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n", g_atm_priv_data.port[0].tx_max_cell_rate, g_atm_priv_data.port[1].tx_max_cell_rate, (unsigned int)g_xdata_addr);
return IFX_SUCCESS;
}
static int atm_showtime_exit(void)
{
if ( !g_showtime )
return IFX_ERROR;
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
RETX_MODE_CFG->retx_en = 0; // disable ReTX
del_timer(&g_retx_polling_timer);
#endif
#if defined(CONFIG_VR9)
IFX_REG_W32(0x00, UTP_CFG);
#endif
g_showtime = 0;
// TODO: ReTX clean state
g_xdata_addr = NULL;
printk("leave showtime\n");
return IFX_SUCCESS;
}
/*
* ####################################
* Init/Cleanup API
* ####################################
*/
/*
* Description:
* Initialize global variables, PP32, comunication structures, register IRQ
* and register device.
* Input:
* none
* Output:
* 0 --- successful
* else --- failure, usually it is negative value of error code
*/
static int __devinit ifx_atm_init(void)
{
int ret;
int port_num;
struct port_cell_info port_cell = {0};
int i, j;
char ver_str[256];
check_parameters();
ret = init_priv_data();
if ( ret != IFX_SUCCESS ) {
err("INIT_PRIV_DATA_FAIL");
goto INIT_PRIV_DATA_FAIL;
}
ifx_atm_init_chip();
init_rx_tables();
init_tx_tables();
/* create devices */
for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,33))
g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", &g_ifx_atm_ops, -1, NULL);
#else
g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", NULL, &g_ifx_atm_ops, -1, NULL);
#endif
if ( !g_atm_priv_data.port[port_num].dev ) {
err("failed to register atm device %d!", port_num);
ret = -EIO;
goto ATM_DEV_REGISTER_FAIL;
}
else {
g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
}
}
/* register interrupt handler */
ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
if ( ret ) {
if ( ret == -EBUSY ) {
err("IRQ may be occupied by other driver, please reconfig to disable it.");
}
else {
err("request_irq fail");
}
goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
}
disable_irq(PPE_MAILBOX_IGU1_INT);
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
init_atm_tc_retrans_param();
init_timer(&g_retx_polling_timer);
g_retx_polling_timer.function = retx_polling_func;
#endif
ret = ifx_pp32_start(0);
if ( ret ) {
err("ifx_pp32_start fail!");
goto PP32_START_FAIL;
}
port_cell.port_num = ATM_PORT_NUMBER;
if( !IS_ERR(&ifx_mei_atm_showtime_check) && &ifx_mei_atm_showtime_check)
ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
if ( g_showtime ) {
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( port_cell.tx_link_rate[i] != 0 )
break;
for ( j = 0; j < ATM_PORT_NUMBER; j++ )
g_atm_priv_data.port[j].tx_max_cell_rate = port_cell.tx_link_rate[j] != 0 ? port_cell.tx_link_rate[j] : port_cell.tx_link_rate[i];
}
qsb_global_set();
validate_oam_htu_entry();
#if 0 /*defined(ENABLE_LED_FRAMEWORK) && ENABLE_LED_FRAMEWORK*/
ifx_led_trigger_register("dsl_data", &g_data_led_trigger);
#endif
/* create proc file */
proc_file_create();
if( !IS_ERR(&ifx_mei_atm_showtime_enter) && &ifx_mei_atm_showtime_enter )
ifx_mei_atm_showtime_enter = atm_showtime_enter;
if( !IS_ERR(&ifx_mei_atm_showtime_exit) && !ifx_mei_atm_showtime_exit )
ifx_mei_atm_showtime_exit = atm_showtime_exit;
ifx_atm_version(ver_str);
printk(KERN_INFO "%s", ver_str);
printk("ifxmips_atm: ATM init succeed\n");
return IFX_SUCCESS;
PP32_START_FAIL:
free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
ATM_DEV_REGISTER_FAIL:
while ( port_num-- > 0 )
atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
INIT_PRIV_DATA_FAIL:
clear_priv_data();
printk("ifxmips_atm: ATM init failed\n");
return ret;
}
/*
* Description:
* Release memory, free IRQ, and deregister device.
* Input:
* none
* Output:
* none
*/
static void __exit ifx_atm_exit(void)
{
int port_num;
if( !IS_ERR(&ifx_mei_atm_showtime_enter) && &ifx_mei_atm_showtime_enter )
ifx_mei_atm_showtime_enter = NULL;
if( !IS_ERR(&ifx_mei_atm_showtime_exit) && !ifx_mei_atm_showtime_exit )
ifx_mei_atm_showtime_exit = NULL;
proc_file_delete();
#if 0 /*defined(ENABLE_LED_FRAMEWORK) && ENABLE_LED_FRAMEWORK*/
ifx_led_trigger_deregister(g_data_led_trigger);
g_data_led_trigger = NULL;
#endif
invalidate_oam_htu_entry();
ifx_pp32_stop(0);
#if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
del_timer(&g_retx_polling_timer);
clear_atm_tc_retrans_param();
#endif
free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
ifx_atm_uninit_chip();
clear_priv_data();
}
module_init(ifx_atm_init);
module_exit(ifx_atm_exit);
MODULE_LICENSE("Dual BSD/GPL");