openwrt-owl/target/linux/cns3xxx/files/drivers/usb/dwc/otg_hcd.c

2899 lines
87 KiB
C

/* ==========================================================================
* $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $
* $Revision: #75 $
* $Date: 2008/07/15 $
* $Change: 1064940 $
*
* Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
* "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
* otherwise expressly agreed to in writing between Synopsys and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product under
* any End User Software License Agreement or Agreement for Licensed Product
* with Synopsys or any supplement thereto. You are permitted to use and
* redistribute this Software in source and binary forms, with or without
* modification, provided that redistributions of source code must retain this
* notice. You may not view, use, disclose, copy or distribute this file or
* any information contained herein except pursuant to this license grant from
* Synopsys. If you do not agree with this notice, including the disclaimer
* below, then you are not authorized to use the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
* ========================================================================== */
#ifndef DWC_DEVICE_ONLY
/**
* @file
*
* This file contains the implementation of the HCD. In Linux, the HCD
* implements the hc_driver API.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/version.h>
#include "otg_driver.h"
#include "otg_hcd.h"
#include "otg_regs.h"
static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
static const struct hc_driver dwc_otg_hc_driver = {
.description = dwc_otg_hcd_name,
.product_desc = "DWC OTG Controller",
.hcd_priv_size = sizeof(dwc_otg_hcd_t),
.irq = dwc_otg_hcd_irq,
.flags = HCD_MEMORY | HCD_USB2,
.start = dwc_otg_hcd_start,
.stop = dwc_otg_hcd_stop,
.urb_enqueue = dwc_otg_hcd_urb_enqueue,
.urb_dequeue = dwc_otg_hcd_urb_dequeue,
.endpoint_disable = dwc_otg_hcd_endpoint_disable,
.get_frame_number = dwc_otg_hcd_get_frame_number,
.hub_status_data = dwc_otg_hcd_hub_status_data,
.hub_control = dwc_otg_hcd_hub_control,
};
/**
* Work queue function for starting the HCD when A-Cable is connected.
* The dwc_otg_hcd_start() must be called in a process context.
*/
static void hcd_start_func(struct work_struct *_work)
{
struct delayed_work *dw = container_of(_work, struct delayed_work, work);
struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work);
struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv);
DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
if (usb_hcd) {
dwc_otg_hcd_start(usb_hcd);
}
}
/**
* HCD Callback function for starting the HCD when A-Cable is
* connected.
*
* @param p void pointer to the <code>struct usb_hcd</code>
*/
static int32_t dwc_otg_hcd_start_cb(void *p)
{
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
hprt0_data_t hprt0;
if (core_if->op_state == B_HOST) {
/*
* Reset the port. During a HNP mode switch the reset
* needs to occur within 1ms and have a duration of at
* least 50ms.
*/
hprt0.d32 = dwc_otg_read_hprt0(core_if);
hprt0.b.prtrst = 1;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
((struct usb_hcd *)p)->self.is_b_host = 1;
} else {
((struct usb_hcd *)p)->self.is_b_host = 0;
}
/* Need to start the HCD in a non-interrupt context. */
// INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
// schedule_work(&dwc_otg_hcd->start_work);
queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000);
return 1;
}
/**
* HCD Callback function for stopping the HCD.
*
* @param p void pointer to the <code>struct usb_hcd</code>
*/
static int32_t dwc_otg_hcd_stop_cb(void *p)
{
struct usb_hcd *usb_hcd = (struct usb_hcd *)p;
DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
dwc_otg_hcd_stop(usb_hcd);
return 1;
}
static void del_xfer_timers(dwc_otg_hcd_t *hcd)
{
#ifdef DEBUG
int i;
int num_channels = hcd->core_if->core_params->host_channels;
for (i = 0; i < num_channels; i++) {
del_timer(&hcd->core_if->hc_xfer_timer[i]);
}
#endif
}
static void del_timers(dwc_otg_hcd_t *hcd)
{
del_xfer_timers(hcd);
del_timer(&hcd->conn_timer);
}
/**
* Processes all the URBs in a single list of QHs. Completes them with
* -ETIMEDOUT and frees the QTD.
*/
static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
{
struct list_head *qh_item;
dwc_otg_qh_t *qh;
struct list_head *qtd_item;
dwc_otg_qtd_t *qtd;
unsigned long flags;
SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
list_for_each(qh_item, qh_list) {
qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
for (qtd_item = qh->qtd_list.next;
qtd_item != &qh->qtd_list;
qtd_item = qh->qtd_list.next) {
qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
if (qtd->urb != NULL) {
SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
dwc_otg_hcd_complete_urb(hcd, qtd->urb,
-ETIMEDOUT);
SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
}
dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
}
}
SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
}
/**
* Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
* and periodic schedules. The QTD associated with each URB is removed from
* the schedule and freed. This function may be called when a disconnect is
* detected or when the HCD is being stopped.
*/
static void kill_all_urbs(dwc_otg_hcd_t *hcd)
{
kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
}
/**
* HCD Callback function for disconnect of the HCD.
*
* @param p void pointer to the <code>struct usb_hcd</code>
*/
static int32_t dwc_otg_hcd_disconnect_cb(void *p)
{
gintsts_data_t intr;
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
//DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
/*
* Set status flags for the hub driver.
*/
dwc_otg_hcd->flags.b.port_connect_status_change = 1;
dwc_otg_hcd->flags.b.port_connect_status = 0;
/*
* Shutdown any transfers in process by clearing the Tx FIFO Empty
* interrupt mask and status bits and disabling subsequent host
* channel interrupts.
*/
intr.d32 = 0;
intr.b.nptxfempty = 1;
intr.b.ptxfempty = 1;
intr.b.hcintr = 1;
dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
del_timers(dwc_otg_hcd);
/*
* Turn off the vbus power only if the core has transitioned to device
* mode. If still in host mode, need to keep power on to detect a
* reconnection.
*/
if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
hprt0_data_t hprt0 = { .d32=0 };
DWC_PRINT("Disconnect: PortPower off\n");
hprt0.b.prtpwr = 0;
dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
}
dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
}
/* Respond with an error status to all URBs in the schedule. */
kill_all_urbs(dwc_otg_hcd);
if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
/* Clean up any host channels that were in use. */
int num_channels;
int i;
dwc_hc_t *channel;
dwc_otg_hc_regs_t *hc_regs;
hcchar_data_t hcchar;
num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
if (!dwc_otg_hcd->core_if->dma_enable) {
/* Flush out any channel requests in slave mode. */
for (i = 0; i < num_channels; i++) {
channel = dwc_otg_hcd->hc_ptr_array[i];
if (list_empty(&channel->hc_list_entry)) {
hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
if (hcchar.b.chen) {
hcchar.b.chen = 0;
hcchar.b.chdis = 1;
hcchar.b.epdir = 0;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
}
}
}
}
for (i = 0; i < num_channels; i++) {
channel = dwc_otg_hcd->hc_ptr_array[i];
if (list_empty(&channel->hc_list_entry)) {
hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
if (hcchar.b.chen) {
/* Halt the channel. */
hcchar.b.chdis = 1;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
}
dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
list_add_tail(&channel->hc_list_entry,
&dwc_otg_hcd->free_hc_list);
}
}
}
/* A disconnect will end the session so the B-Device is no
* longer a B-host. */
((struct usb_hcd *)p)->self.is_b_host = 0;
return 1;
}
/**
* Connection timeout function. An OTG host is required to display a
* message if the device does not connect within 10 seconds.
*/
void dwc_otg_hcd_connect_timeout(unsigned long ptr)
{
DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr);
DWC_PRINT("Connect Timeout\n");
DWC_ERROR("Device Not Connected/Responding\n");
}
/**
* Start the connection timer. An OTG host is required to display a
* message if the device does not connect within 10 seconds. The
* timer is deleted if a port connect interrupt occurs before the
* timer expires.
*/
static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd)
{
init_timer(&hcd->conn_timer);
hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
hcd->conn_timer.data = 0;
hcd->conn_timer.expires = jiffies + (HZ * 10);
add_timer(&hcd->conn_timer);
}
/**
* HCD Callback function for disconnect of the HCD.
*
* @param p void pointer to the <code>struct usb_hcd</code>
*/
static int32_t dwc_otg_hcd_session_start_cb(void *p)
{
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
return 1;
}
/**
* HCD Callback structure for handling mode switching.
*/
static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
.start = dwc_otg_hcd_start_cb,
.stop = dwc_otg_hcd_stop_cb,
.disconnect = dwc_otg_hcd_disconnect_cb,
.session_start = dwc_otg_hcd_session_start_cb,
.p = 0,
};
/**
* Reset tasklet function
*/
static void reset_tasklet_func(unsigned long data)
{
dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data;
dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
hprt0_data_t hprt0;
DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
hprt0.d32 = dwc_otg_read_hprt0(core_if);
hprt0.b.prtrst = 1;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
mdelay(60);
hprt0.b.prtrst = 0;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
dwc_otg_hcd->flags.b.port_reset_change = 1;
}
static struct tasklet_struct reset_tasklet = {
.next = NULL,
.state = 0,
.count = ATOMIC_INIT(0),
.func = reset_tasklet_func,
.data = 0,
};
/**
* Initializes the HCD. This function allocates memory for and initializes the
* static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
* USB bus with the core and calls the hc_driver->start() function. It returns
* a negative error on failure.
*/
int dwc_otg_hcd_init(struct platform_device *pdev)
{
struct usb_hcd *hcd = NULL;
dwc_otg_hcd_t *dwc_otg_hcd = NULL;
dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
int num_channels;
int i;
dwc_hc_t *channel;
int retval = 0;
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
/* Set device flags indicating whether the HCD supports DMA. */
if (otg_dev->core_if->dma_enable) {
DWC_PRINT("Using DMA mode\n");
if (otg_dev->core_if->dma_desc_enable) {
DWC_PRINT("Device using Descriptor DMA mode\n");
} else {
DWC_PRINT("Device using Buffer DMA mode\n");
}
}
/*
* Allocate memory for the base HCD plus the DWC OTG HCD.
* Initialize the base HCD.
*/
hcd = usb_create_hcd(&dwc_otg_hc_driver, &pdev->dev, "gadget");
if (!hcd) {
retval = -ENOMEM;
goto error1;
}
hcd->regs = otg_dev->base;
hcd->self.otg_port = 1;
/* Integrate TT in root hub, by default this is disbled. */
hcd->has_tt = 1;
/* Initialize the DWC OTG HCD. */
dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
dwc_otg_hcd->core_if = otg_dev->core_if;
otg_dev->hcd = dwc_otg_hcd;
init_hcd_usecs(dwc_otg_hcd);
/* */
spin_lock_init(&dwc_otg_hcd->lock);
/* Register the HCD CIL Callbacks */
dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
&hcd_cil_callbacks, hcd);
/* Initialize the non-periodic schedule. */
INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
/* Initialize the periodic schedule. */
INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
/*
* Create a host channel descriptor for each host channel implemented
* in the controller. Initialize the channel descriptor array.
*/
INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array));
for (i = 0; i < num_channels; i++) {
channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
if (channel == NULL) {
retval = -ENOMEM;
DWC_ERROR("%s: host channel allocation failed\n", __func__);
goto error2;
}
memset(channel, 0, sizeof(dwc_hc_t));
channel->hc_num = i;
dwc_otg_hcd->hc_ptr_array[i] = channel;
#ifdef DEBUG
init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
#endif
DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
}
/* Initialize the Connection timeout timer. */
init_timer(&dwc_otg_hcd->conn_timer);
/* Initialize reset tasklet. */
reset_tasklet.data = (unsigned long) dwc_otg_hcd;
dwc_otg_hcd->reset_tasklet = &reset_tasklet;
/*
* Finish generic HCD initialization and start the HCD. This function
* allocates the DMA buffer pool, registers the USB bus, requests the
* IRQ line, and calls dwc_otg_hcd_start method.
*/
retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
if (retval < 0) {
goto error2;
}
/*
* Allocate space for storing data on status transactions. Normally no
* data is sent, but this space acts as a bit bucket. This must be
* done after usb_add_hcd since that function allocates the DMA buffer
* pool.
*/
if (otg_dev->core_if->dma_enable) {
dwc_otg_hcd->status_buf =
dma_alloc_coherent(&pdev->dev,
DWC_OTG_HCD_STATUS_BUF_SIZE,
&dwc_otg_hcd->status_buf_dma,
GFP_KERNEL | GFP_DMA);
} else {
dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
GFP_KERNEL);
}
if (!dwc_otg_hcd->status_buf) {
retval = -ENOMEM;
DWC_ERROR("%s: status_buf allocation failed\n", __func__);
goto error3;
}
dwc_otg_hcd->otg_dev = otg_dev;
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
hcd->self.busnum);
return 0;
/* Error conditions */
error3:
usb_remove_hcd(hcd);
error2:
dwc_otg_hcd_free(hcd);
usb_put_hcd(hcd);
error1:
return retval;
}
/**
* Removes the HCD.
* Frees memory and resources associated with the HCD and deregisters the bus.
*/
void dwc_otg_hcd_remove(struct platform_device *pdev)
{
dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
dwc_otg_hcd_t *dwc_otg_hcd;
struct usb_hcd *hcd;
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
if (!otg_dev) {
DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
return;
}
dwc_otg_hcd = otg_dev->hcd;
if (!dwc_otg_hcd) {
DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
return;
}
hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
if (!hcd) {
DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__);
return;
}
/* Turn off all interrupts */
dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
usb_remove_hcd(hcd);
dwc_otg_hcd_free(hcd);
usb_put_hcd(hcd);
}
/* =========================================================================
* Linux HC Driver Functions
* ========================================================================= */
/**
* Initializes dynamic portions of the DWC_otg HCD state.
*/
static void hcd_reinit(dwc_otg_hcd_t *hcd)
{
struct list_head *item;
int num_channels;
int i;
dwc_hc_t *channel;
hcd->flags.d32 = 0;
hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
hcd->non_periodic_channels = 0;
hcd->periodic_channels = 0;
hcd->nakking_channels = 0;
/*
* Put all channels in the free channel list and clean up channel
* states.
*/
item = hcd->free_hc_list.next;
while (item != &hcd->free_hc_list) {
list_del(item);
item = hcd->free_hc_list.next;
}
num_channels = hcd->core_if->core_params->host_channels;
for (i = 0; i < num_channels; i++) {
channel = hcd->hc_ptr_array[i];
list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
dwc_otg_hc_cleanup(hcd->core_if, channel);
}
/* Initialize the DWC core for host mode operation. */
dwc_otg_core_host_init(hcd->core_if);
}
/** Initializes the DWC_otg controller and its root hub and prepares it for host
* mode operation. Activates the root port. Returns 0 on success and a negative
* error code on failure. */
int dwc_otg_hcd_start(struct usb_hcd *hcd)
{
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
struct usb_bus *bus;
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
bus = hcd_to_bus(hcd);
/* Initialize the bus state. If the core is in Device Mode
* HALT the USB bus and return. */
if (dwc_otg_is_device_mode(core_if)) {
hcd->state = HC_STATE_RUNNING;
return 0;
}
hcd->state = HC_STATE_RUNNING;
/* Initialize and connect root hub if one is not already attached */
if (bus->root_hub) {
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
/* Inform the HUB driver to resume. */
usb_hcd_resume_root_hub(hcd);
}
else {
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n");
}
hcd_reinit(dwc_otg_hcd);
return 0;
}
static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
{
struct list_head *item;
dwc_otg_qh_t *qh;
unsigned long flags;
if (!qh_list->next) {
/* The list hasn't been initialized yet. */
return;
}
/* Ensure there are no QTDs or URBs left. */
kill_urbs_in_qh_list(hcd, qh_list);
SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
for (item = qh_list->next; item != qh_list; item = qh_list->next) {
qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
dwc_otg_hcd_qh_remove_and_free(hcd, qh);
}
SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
}
/**
* Halts the DWC_otg host mode operations in a clean manner. USB transfers are
* stopped.
*/
void dwc_otg_hcd_stop(struct usb_hcd *hcd)
{
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
hprt0_data_t hprt0 = { .d32=0 };
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
/* Turn off all host-specific interrupts. */
dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
/*
* The root hub should be disconnected before this function is called.
* The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
* and the QH lists (via ..._hcd_endpoint_disable).
*/
/* Turn off the vbus power */
DWC_PRINT("PortPower off\n");
hprt0.b.prtpwr = 0;
dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
}
/** Returns the current frame number. */
int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
{
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
hfnum_data_t hfnum;
hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
host_if->host_global_regs->hfnum);
#ifdef DEBUG_SOF
DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
#endif
return hfnum.b.frnum;
}
/**
* Frees secondary storage associated with the dwc_otg_hcd structure contained
* in the struct usb_hcd field.
*/
void dwc_otg_hcd_free(struct usb_hcd *hcd)
{
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
int i;
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
del_timers(dwc_otg_hcd);
/* Free memory for QH/QTD lists */
qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
/* Free memory for the host channels. */
for (i = 0; i < MAX_EPS_CHANNELS; i++) {
dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
if (hc != NULL) {
DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
kfree(hc);
}
}
if (dwc_otg_hcd->core_if->dma_enable) {
if (dwc_otg_hcd->status_buf_dma) {
dma_free_coherent(hcd->self.controller,
DWC_OTG_HCD_STATUS_BUF_SIZE,
dwc_otg_hcd->status_buf,
dwc_otg_hcd->status_buf_dma);
}
} else if (dwc_otg_hcd->status_buf != NULL) {
kfree(dwc_otg_hcd->status_buf);
}
}
#ifdef DEBUG
static void dump_urb_info(struct urb *urb, char* fn_name)
{
DWC_PRINT("%s, urb %p\n", fn_name, urb);
DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe));
DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
(usb_pipein(urb->pipe) ? "IN" : "OUT"));
DWC_PRINT(" Endpoint type: %s\n",
({char *pipetype;
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL: pipetype = "CONTROL"; break;
case PIPE_BULK: pipetype = "BULK"; break;
case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
default: pipetype = "UNKNOWN"; break;
}; pipetype;}));
DWC_PRINT(" Speed: %s\n",
({char *speed;
switch (urb->dev->speed) {
case USB_SPEED_HIGH: speed = "HIGH"; break;
case USB_SPEED_FULL: speed = "FULL"; break;
case USB_SPEED_LOW: speed = "LOW"; break;
default: speed = "UNKNOWN"; break;
}; speed;}));
DWC_PRINT(" Max packet size: %d\n",
usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length);
DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
urb->transfer_buffer, (void *)urb->transfer_dma);
DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
urb->setup_packet, (void *)urb->setup_dma);
DWC_PRINT(" Interval: %d\n", urb->interval);
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
int i;
for (i = 0; i < urb->number_of_packets; i++) {
DWC_PRINT(" ISO Desc %d:\n", i);
DWC_PRINT(" offset: %d, length %d\n",
urb->iso_frame_desc[i].offset,
urb->iso_frame_desc[i].length);
}
}
}
static void dump_channel_info(dwc_otg_hcd_t *hcd,
dwc_otg_qh_t *qh)
{
if (qh->channel != NULL) {
dwc_hc_t *hc = qh->channel;
struct list_head *item;
dwc_otg_qh_t *qh_item;
int num_channels = hcd->core_if->core_params->host_channels;
int i;
dwc_otg_hc_regs_t *hc_regs;
hcchar_data_t hcchar;
hcsplt_data_t hcsplt;
hctsiz_data_t hctsiz;
uint32_t hcdma;
hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
hcdma = dwc_read_reg32(&hc_regs->hcdma);
DWC_PRINT(" Assigned to channel %p:\n", hc);
DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
hc->dev_addr, hc->ep_num, hc->ep_is_in);
DWC_PRINT(" ep_type: %d\n", hc->ep_type);
DWC_PRINT(" max_packet: %d\n", hc->max_packet);
DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
DWC_PRINT(" halt_status: %d\n", hc->halt_status);
DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
DWC_PRINT(" qh: %p\n", hc->qh);
DWC_PRINT(" NP inactive sched:\n");
list_for_each(item, &hcd->non_periodic_sched_inactive) {
qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
DWC_PRINT(" %p\n", qh_item);
}
DWC_PRINT(" NP active sched:\n");
list_for_each(item, &hcd->non_periodic_sched_active) {
qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
DWC_PRINT(" %p\n", qh_item);
}
DWC_PRINT(" Channels: \n");
for (i = 0; i < num_channels; i++) {
dwc_hc_t *hc = hcd->hc_ptr_array[i];
DWC_PRINT(" %2d: %p\n", i, hc);
}
}
}
#endif
//OTG host require the DMA addr is DWORD-aligned,
//patch it if the buffer is not DWORD-aligned
inline
int hcd_check_and_patch_dma_addr(struct urb *urb){
if((!urb->transfer_buffer)||!urb->transfer_dma||urb->transfer_dma==0xffffffff)
return 0;
if(((u32)urb->transfer_buffer)& 0x3){
/*
printk("%s: "
"urb(%.8x) "
"transfer_buffer=%.8x, "
"transfer_dma=%.8x, "
"transfer_buffer_length=%d, "
"actual_length=%d(%x), "
"\n",
((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT)?"OUT":"IN",
urb,
urb->transfer_buffer,
urb->transfer_dma,
urb->transfer_buffer_length,
urb->actual_length,urb->actual_length
);
*/
if(!urb->aligned_transfer_buffer||urb->aligned_transfer_buffer_length<urb->transfer_buffer_length){
urb->aligned_transfer_buffer_length=urb->transfer_buffer_length;
if(urb->aligned_transfer_buffer) {
kfree(urb->aligned_transfer_buffer);
}
urb->aligned_transfer_buffer=kmalloc(urb->aligned_transfer_buffer_length,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
if(!urb->aligned_transfer_buffer){
DWC_ERROR("Cannot alloc required buffer!!\n");
//BUG();
return -1;
}
urb->aligned_transfer_dma=dma_map_single(NULL,(void *)(urb->aligned_transfer_buffer),(urb->aligned_transfer_buffer_length),DMA_FROM_DEVICE);
//printk(" new allocated aligned_buf=%.8x aligned_buf_len=%d\n", (u32)urb->aligned_transfer_buffer, urb->aligned_transfer_buffer_length);
}
urb->transfer_dma=urb->aligned_transfer_dma;
if((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT) {
memcpy(urb->aligned_transfer_buffer,urb->transfer_buffer,urb->transfer_buffer_length);
dma_sync_single_for_device(NULL,urb->transfer_dma,urb->transfer_buffer_length,DMA_TO_DEVICE);
}
}
return 0;
}
/** Starts processing a USB transfer request specified by a USB Request Block
* (URB). mem_flags indicates the type of memory allocation to use while
* processing this URB. */
int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
// struct usb_host_endpoint *ep,
struct urb *urb,
gfp_t mem_flags
)
{
int retval = 0;
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
dwc_otg_qtd_t *qtd;
unsigned long flags;
SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
if (urb->hcpriv != NULL) {
SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
return -ENOMEM;
}
#ifdef DEBUG
if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
}
#endif
if (!dwc_otg_hcd->flags.b.port_connect_status) {
/* No longer connected. */
SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
return -ENODEV;
}
if (hcd_check_and_patch_dma_addr(urb)) {
DWC_ERROR("Unable to check and patch dma addr\n");
SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
return -ENOMEM;
}
qtd = dwc_otg_hcd_qtd_create(urb);
if (qtd == NULL) {
DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
return -ENOMEM;
}
retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
if (retval < 0) {
DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
"Error status %d\n", retval);
dwc_otg_hcd_qtd_free(qtd);
}
SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
return retval;
}
/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
* success. */
int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
struct urb *urb, int status)
{
unsigned long flags;
dwc_otg_hcd_t *dwc_otg_hcd;
dwc_otg_qtd_t *urb_qtd;
dwc_otg_qh_t *qh;
struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
int rc;
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv;
qh = (dwc_otg_qh_t *)ep->hcpriv;
#ifdef DEBUG
if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
if (urb_qtd == qh->qtd_in_process) {
dump_channel_info(dwc_otg_hcd, qh);
}
}
#endif
if (qh && urb_qtd == qh->qtd_in_process) {
/* The QTD is in process (it has been assigned to a channel). */
if (dwc_otg_hcd->flags.b.port_connect_status) {
/*
* If still connected (i.e. in host mode), halt the
* channel so it can be used for other transfers. If
* no longer connected, the host registers can't be
* written to halt the channel since the core is in
* device mode.
*/
dwc_otg_hc_halt(dwc_otg_hcd, qh->channel,
DWC_OTG_HC_XFER_URB_DEQUEUE);
}
}
/*
* Free the QTD and clean up the associated QH. Leave the QH in the
* schedule if it has any remaining QTDs.
*/
dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd);
if (qh && urb_qtd == qh->qtd_in_process) {
dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
qh->channel = NULL;
qh->qtd_in_process = NULL;
} else {
if (qh && list_empty(&qh->qtd_list)) {
dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
}
}
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
if (!rc) {
usb_hcd_unlink_urb_from_ep(hcd, urb);
}
urb->hcpriv = NULL;
SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
if (!rc) {
usb_hcd_giveback_urb(hcd, urb, status);
}
if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
DWC_PRINT("Called usb_hcd_giveback_urb()\n");
DWC_PRINT(" urb->status = %d\n", urb->status);
}
return 0;
}
/** Frees resources in the DWC_otg controller related to a given endpoint. Also
* clears state in the HCD related to the endpoint. Any URBs for the endpoint
* must already be dequeued. */
void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
dwc_otg_qh_t *qh;
unsigned long flags;
int retry = 0;
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
"endpoint=%d\n", ep->desc.bEndpointAddress,
dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress));
rescan:
SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
qh = (dwc_otg_qh_t *)(ep->hcpriv);
if (!qh)
goto done;
/** Check that the QTD list is really empty */
if (!list_empty(&qh->qtd_list)) {
if (retry++ < 250) {
SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
schedule_timeout_uninterruptible(1);
goto rescan;
}
DWC_WARN("DWC OTG HCD EP DISABLE:"
" QTD List for this endpoint is not empty\n");
}
dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
ep->hcpriv = NULL;
done:
SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
}
/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
* there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
* interrupt.
*
* This function is called by the USB core when an interrupt occurs */
irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
{
int retVal = 0;
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
retVal = dwc_otg_hcd_handle_intr(dwc_otg_hcd);
if (dwc_otg_hcd->flags.b.port_connect_status_change == 1)
usb_hcd_poll_rh_status(hcd);
return IRQ_RETVAL(retVal);
}
/** Creates Status Change bitmap for the root hub and root port. The bitmap is
* returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
* is the status change indicator for the single root port. Returns 1 if either
* change indicator is 1, otherwise returns 0. */
int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
{
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
buf[0] = 0;
buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
dwc_otg_hcd->flags.b.port_reset_change ||
dwc_otg_hcd->flags.b.port_enable_change ||
dwc_otg_hcd->flags.b.port_suspend_change ||
dwc_otg_hcd->flags.b.port_over_current_change) << 1;
#ifdef DEBUG
if (buf[0]) {
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
" Root port status changed\n");
DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
dwc_otg_hcd->flags.b.port_connect_status_change);
DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
dwc_otg_hcd->flags.b.port_reset_change);
DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
dwc_otg_hcd->flags.b.port_enable_change);
DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
dwc_otg_hcd->flags.b.port_suspend_change);
DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
dwc_otg_hcd->flags.b.port_over_current_change);
}
#endif
return (buf[0] != 0);
}
#ifdef DWC_HS_ELECT_TST
/*
* Quick and dirty hack to implement the HS Electrical Test
* SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
*
* This code was copied from our userspace app "hset". It sends a
* Get Device Descriptor control sequence in two parts, first the
* Setup packet by itself, followed some time later by the In and
* Ack packets. Rather than trying to figure out how to add this
* functionality to the normal driver code, we just hijack the
* hardware, using these two function to drive the hardware
* directly.
*/
dwc_otg_core_global_regs_t *global_regs;
dwc_otg_host_global_regs_t *hc_global_regs;
dwc_otg_hc_regs_t *hc_regs;
uint32_t *data_fifo;
static void do_setup(void)
{
gintsts_data_t gintsts;
hctsiz_data_t hctsiz;
hcchar_data_t hcchar;
haint_data_t haint;
hcint_data_t hcint;
/* Enable HAINTs */
dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
/* Enable HCINTs */
dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
/* Read HAINT */
haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
//fprintf(stderr, "HAINT: %08x\n", haint.d32);
/* Read HCINT */
hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
/* Read HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
/* Clear HCINT */
dwc_write_reg32(&hc_regs->hcint, hcint.d32);
/* Clear HAINT */
dwc_write_reg32(&hc_global_regs->haint, haint.d32);
/* Clear GINTSTS */
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
/*
* Send Setup packet (Get Device Descriptor)
*/
/* Make sure channel is disabled */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
if (hcchar.b.chen) {
//fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
hcchar.b.chdis = 1;
// hcchar.b.chen = 1;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
//sleep(1);
mdelay(1000);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
/* Read HAINT */
haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
//fprintf(stderr, "HAINT: %08x\n", haint.d32);
/* Read HCINT */
hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
/* Read HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
/* Clear HCINT */
dwc_write_reg32(&hc_regs->hcint, hcint.d32);
/* Clear HAINT */
dwc_write_reg32(&hc_global_regs->haint, haint.d32);
/* Clear GINTSTS */
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//if (hcchar.b.chen) {
// fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
//}
}
/* Set HCTSIZ */
hctsiz.d32 = 0;
hctsiz.b.xfersize = 8;
hctsiz.b.pktcnt = 1;
hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
/* Set HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
hcchar.b.epdir = 0;
hcchar.b.epnum = 0;
hcchar.b.mps = 8;
hcchar.b.chen = 1;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
/* Fill FIFO with Setup data for Get Device Descriptor */
data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
dwc_write_reg32(data_fifo++, 0x01000680);
dwc_write_reg32(data_fifo++, 0x00080000);
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
/* Wait for host channel interrupt */
do {
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
} while (gintsts.b.hcintr == 0);
//fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
/* Disable HCINTs */
dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
/* Disable HAINTs */
dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
/* Read HAINT */
haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
//fprintf(stderr, "HAINT: %08x\n", haint.d32);
/* Read HCINT */
hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
/* Read HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
/* Clear HCINT */
dwc_write_reg32(&hc_regs->hcint, hcint.d32);
/* Clear HAINT */
dwc_write_reg32(&hc_global_regs->haint, haint.d32);
/* Clear GINTSTS */
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
}
static void do_in_ack(void)
{
gintsts_data_t gintsts;
hctsiz_data_t hctsiz;
hcchar_data_t hcchar;
haint_data_t haint;
hcint_data_t hcint;
host_grxsts_data_t grxsts;
/* Enable HAINTs */
dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
/* Enable HCINTs */
dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
/* Read HAINT */
haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
//fprintf(stderr, "HAINT: %08x\n", haint.d32);
/* Read HCINT */
hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
/* Read HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
/* Clear HCINT */
dwc_write_reg32(&hc_regs->hcint, hcint.d32);
/* Clear HAINT */
dwc_write_reg32(&hc_global_regs->haint, haint.d32);
/* Clear GINTSTS */
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
/*
* Receive Control In packet
*/
/* Make sure channel is disabled */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
if (hcchar.b.chen) {
//fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
hcchar.b.chdis = 1;
hcchar.b.chen = 1;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
//sleep(1);
mdelay(1000);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
/* Read HAINT */
haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
//fprintf(stderr, "HAINT: %08x\n", haint.d32);
/* Read HCINT */
hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
/* Read HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
/* Clear HCINT */
dwc_write_reg32(&hc_regs->hcint, hcint.d32);
/* Clear HAINT */
dwc_write_reg32(&hc_global_regs->haint, haint.d32);
/* Clear GINTSTS */
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//if (hcchar.b.chen) {
// fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
//}
}
/* Set HCTSIZ */
hctsiz.d32 = 0;
hctsiz.b.xfersize = 8;
hctsiz.b.pktcnt = 1;
hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
/* Set HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
hcchar.b.epdir = 1;
hcchar.b.epnum = 0;
hcchar.b.mps = 8;
hcchar.b.chen = 1;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
/* Wait for receive status queue interrupt */
do {
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
} while (gintsts.b.rxstsqlvl == 0);
//fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
/* Read RXSTS */
grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
//fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
/* Clear RXSTSQLVL in GINTSTS */
gintsts.d32 = 0;
gintsts.b.rxstsqlvl = 1;
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
switch (grxsts.b.pktsts) {
case DWC_GRXSTS_PKTSTS_IN:
/* Read the data into the host buffer */
if (grxsts.b.bcnt > 0) {
int i;
int word_count = (grxsts.b.bcnt + 3) / 4;
data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
for (i = 0; i < word_count; i++) {
(void)dwc_read_reg32(data_fifo++);
}
}
//fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
break;
default:
//fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
break;
}
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
/* Wait for receive status queue interrupt */
do {
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
} while (gintsts.b.rxstsqlvl == 0);
//fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
/* Read RXSTS */
grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
//fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
/* Clear RXSTSQLVL in GINTSTS */
gintsts.d32 = 0;
gintsts.b.rxstsqlvl = 1;
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
switch (grxsts.b.pktsts) {
case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
break;
default:
//fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
break;
}
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
/* Wait for host channel interrupt */
do {
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
} while (gintsts.b.hcintr == 0);
//fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
/* Read HAINT */
haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
//fprintf(stderr, "HAINT: %08x\n", haint.d32);
/* Read HCINT */
hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
/* Read HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
/* Clear HCINT */
dwc_write_reg32(&hc_regs->hcint, hcint.d32);
/* Clear HAINT */
dwc_write_reg32(&hc_global_regs->haint, haint.d32);
/* Clear GINTSTS */
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
// usleep(100000);
// mdelay(100);
mdelay(1);
/*
* Send handshake packet
*/
/* Read HAINT */
haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
//fprintf(stderr, "HAINT: %08x\n", haint.d32);
/* Read HCINT */
hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
/* Read HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
/* Clear HCINT */
dwc_write_reg32(&hc_regs->hcint, hcint.d32);
/* Clear HAINT */
dwc_write_reg32(&hc_global_regs->haint, haint.d32);
/* Clear GINTSTS */
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
/* Make sure channel is disabled */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
if (hcchar.b.chen) {
//fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
hcchar.b.chdis = 1;
hcchar.b.chen = 1;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
//sleep(1);
mdelay(1000);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
/* Read HAINT */
haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
//fprintf(stderr, "HAINT: %08x\n", haint.d32);
/* Read HCINT */
hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
/* Read HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
/* Clear HCINT */
dwc_write_reg32(&hc_regs->hcint, hcint.d32);
/* Clear HAINT */
dwc_write_reg32(&hc_global_regs->haint, haint.d32);
/* Clear GINTSTS */
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//if (hcchar.b.chen) {
// fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
//}
}
/* Set HCTSIZ */
hctsiz.d32 = 0;
hctsiz.b.xfersize = 0;
hctsiz.b.pktcnt = 1;
hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
/* Set HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
hcchar.b.epdir = 0;
hcchar.b.epnum = 0;
hcchar.b.mps = 8;
hcchar.b.chen = 1;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
/* Wait for host channel interrupt */
do {
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
} while (gintsts.b.hcintr == 0);
//fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
/* Disable HCINTs */
dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
/* Disable HAINTs */
dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
/* Read HAINT */
haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
//fprintf(stderr, "HAINT: %08x\n", haint.d32);
/* Read HCINT */
hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
//fprintf(stderr, "HCINT: %08x\n", hcint.d32);
/* Read HCCHAR */
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
//fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
/* Clear HCINT */
dwc_write_reg32(&hc_regs->hcint, hcint.d32);
/* Clear HAINT */
dwc_write_reg32(&hc_global_regs->haint, haint.d32);
/* Clear GINTSTS */
dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
/* Read GINTSTS */
gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
//fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
}
#endif /* DWC_HS_ELECT_TST */
/** Handles hub class-specific requests. */
int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
u16 typeReq,
u16 wValue,
u16 wIndex,
char *buf,
u16 wLength)
{
int retval = 0;
dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
struct usb_hub_descriptor *desc;
hprt0_data_t hprt0 = {.d32 = 0};
uint32_t port_status;
switch (typeReq) {
case ClearHubFeature:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"ClearHubFeature 0x%x\n", wValue);
switch (wValue) {
case C_HUB_LOCAL_POWER:
case C_HUB_OVER_CURRENT:
/* Nothing required here */
break;
default:
retval = -EINVAL;
DWC_ERROR("DWC OTG HCD - "
"ClearHubFeature request %xh unknown\n", wValue);
}
break;
case ClearPortFeature:
if (!wIndex || wIndex > 1)
goto error;
switch (wValue) {
case USB_PORT_FEAT_ENABLE:
DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
hprt0.d32 = dwc_otg_read_hprt0(core_if);
hprt0.b.prtena = 1;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
break;
case USB_PORT_FEAT_SUSPEND:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
hprt0.d32 = dwc_otg_read_hprt0(core_if);
hprt0.b.prtres = 1;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
/* Clear Resume bit */
mdelay(100);
hprt0.b.prtres = 0;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
break;
case USB_PORT_FEAT_POWER:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"ClearPortFeature USB_PORT_FEAT_POWER\n");
hprt0.d32 = dwc_otg_read_hprt0(core_if);
hprt0.b.prtpwr = 0;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
break;
case USB_PORT_FEAT_INDICATOR:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
/* Port inidicator not supported */
break;
case USB_PORT_FEAT_C_CONNECTION:
/* Clears drivers internal connect status change
* flag */
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
dwc_otg_hcd->flags.b.port_connect_status_change = 0;
break;
case USB_PORT_FEAT_C_RESET:
/* Clears the driver's internal Port Reset Change
* flag */
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
dwc_otg_hcd->flags.b.port_reset_change = 0;
break;
case USB_PORT_FEAT_C_ENABLE:
/* Clears the driver's internal Port
* Enable/Disable Change flag */
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
dwc_otg_hcd->flags.b.port_enable_change = 0;
break;
case USB_PORT_FEAT_C_SUSPEND:
/* Clears the driver's internal Port Suspend
* Change flag, which is set when resume signaling on
* the host port is complete */
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
dwc_otg_hcd->flags.b.port_suspend_change = 0;
break;
case USB_PORT_FEAT_C_OVER_CURRENT:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
dwc_otg_hcd->flags.b.port_over_current_change = 0;
break;
default:
retval = -EINVAL;
DWC_ERROR("DWC OTG HCD - "
"ClearPortFeature request %xh "
"unknown or unsupported\n", wValue);
}
break;
case GetHubDescriptor:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"GetHubDescriptor\n");
desc = (struct usb_hub_descriptor *)buf;
desc->bDescLength = 9;
desc->bDescriptorType = 0x29;
desc->bNbrPorts = 1;
desc->wHubCharacteristics = 0x08;
desc->bPwrOn2PwrGood = 1;
desc->bHubContrCurrent = 0;
desc->u.hs.DeviceRemovable[0] = 0;
desc->u.hs.DeviceRemovable[1] = 0xff;
break;
case GetHubStatus:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"GetHubStatus\n");
memset(buf, 0, 4);
break;
case GetPortStatus:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"GetPortStatus\n");
if (!wIndex || wIndex > 1)
goto error;
port_status = 0;
if (dwc_otg_hcd->flags.b.port_connect_status_change)
port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
if (dwc_otg_hcd->flags.b.port_enable_change)
port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
if (dwc_otg_hcd->flags.b.port_suspend_change)
port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
if (dwc_otg_hcd->flags.b.port_reset_change)
port_status |= (1 << USB_PORT_FEAT_C_RESET);
if (dwc_otg_hcd->flags.b.port_over_current_change) {
DWC_ERROR("Device Not Supported\n");
port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
}
if (!dwc_otg_hcd->flags.b.port_connect_status) {
/*
* The port is disconnected, which means the core is
* either in device mode or it soon will be. Just
* return 0's for the remainder of the port status
* since the port register can't be read if the core
* is in device mode.
*/
*((__le32 *) buf) = cpu_to_le32(port_status);
break;
}
hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
if (hprt0.b.prtconnsts)
port_status |= (1 << USB_PORT_FEAT_CONNECTION);
if (hprt0.b.prtena)
port_status |= (1 << USB_PORT_FEAT_ENABLE);
if (hprt0.b.prtsusp)
port_status |= (1 << USB_PORT_FEAT_SUSPEND);
if (hprt0.b.prtovrcurract)
port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
if (hprt0.b.prtrst)
port_status |= (1 << USB_PORT_FEAT_RESET);
if (hprt0.b.prtpwr)
port_status |= (1 << USB_PORT_FEAT_POWER);
if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
port_status |= (USB_PORT_STAT_HIGH_SPEED);
else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
port_status |= (USB_PORT_STAT_LOW_SPEED);
if (hprt0.b.prttstctl)
port_status |= (1 << USB_PORT_FEAT_TEST);
/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
*((__le32 *) buf) = cpu_to_le32(port_status);
break;
case SetHubFeature:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"SetHubFeature\n");
/* No HUB features supported */
break;
case SetPortFeature:
if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1))
goto error;
if (!dwc_otg_hcd->flags.b.port_connect_status) {
/*
* The port is disconnected, which means the core is
* either in device mode or it soon will be. Just
* return without doing anything since the port
* register can't be written if the core is in device
* mode.
*/
break;
}
switch (wValue) {
case USB_PORT_FEAT_SUSPEND:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
if (hcd->self.otg_port == wIndex &&
hcd->self.b_hnp_enable) {
gotgctl_data_t gotgctl = {.d32=0};
gotgctl.b.hstsethnpen = 1;
dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
0, gotgctl.d32);
core_if->op_state = A_SUSPEND;
}
hprt0.d32 = dwc_otg_read_hprt0(core_if);
hprt0.b.prtsusp = 1;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
//DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32);
/* Suspend the Phy Clock */
{
pcgcctl_data_t pcgcctl = {.d32=0};
pcgcctl.b.stoppclk = 1;
dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
}
/* For HNP the bus must be suspended for at least 200ms. */
if (hcd->self.b_hnp_enable) {
mdelay(200);
//DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state);
}
break;
case USB_PORT_FEAT_POWER:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"SetPortFeature - USB_PORT_FEAT_POWER\n");
hprt0.d32 = dwc_otg_read_hprt0(core_if);
hprt0.b.prtpwr = 1;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
break;
case USB_PORT_FEAT_RESET:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"SetPortFeature - USB_PORT_FEAT_RESET\n");
hprt0.d32 = dwc_otg_read_hprt0(core_if);
/* When B-Host the Port reset bit is set in
* the Start HCD Callback function, so that
* the reset is started within 1ms of the HNP
* success interrupt. */
if (!hcd->self.is_b_host) {
hprt0.b.prtrst = 1;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
}
/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
MDELAY(60);
hprt0.b.prtrst = 0;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
break;
#ifdef DWC_HS_ELECT_TST
case USB_PORT_FEAT_TEST:
{
uint32_t t;
gintmsk_data_t gintmsk;
t = (wIndex >> 8); /* MSB wIndex USB */
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
warn("USB_PORT_FEAT_TEST %d\n", t);
if (t < 6) {
hprt0.d32 = dwc_otg_read_hprt0(core_if);
hprt0.b.prttstctl = t;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
} else {
/* Setup global vars with reg addresses (quick and
* dirty hack, should be cleaned up)
*/
global_regs = core_if->core_global_regs;
hc_global_regs = core_if->host_if->host_global_regs;
hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
/* Save current interrupt mask */
gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
/* Disable all interrupts while we muck with
* the hardware directly
*/
dwc_write_reg32(&global_regs->gintmsk, 0);
/* 15 second delay per the test spec */
mdelay(15000);
/* Drive suspend on the root port */
hprt0.d32 = dwc_otg_read_hprt0(core_if);
hprt0.b.prtsusp = 1;
hprt0.b.prtres = 0;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
/* 15 second delay per the test spec */
mdelay(15000);
/* Drive resume on the root port */
hprt0.d32 = dwc_otg_read_hprt0(core_if);
hprt0.b.prtsusp = 0;
hprt0.b.prtres = 1;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
mdelay(100);
/* Clear the resume bit */
hprt0.b.prtres = 0;
dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
/* Restore interrupts */
dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
} else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
/* Save current interrupt mask */
gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
/* Disable all interrupts while we muck with
* the hardware directly
*/
dwc_write_reg32(&global_regs->gintmsk, 0);
/* 15 second delay per the test spec */
mdelay(15000);
/* Send the Setup packet */
do_setup();
/* 15 second delay so nothing else happens for awhile */
mdelay(15000);
/* Restore interrupts */
dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
} else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
/* Save current interrupt mask */
gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
/* Disable all interrupts while we muck with
* the hardware directly
*/
dwc_write_reg32(&global_regs->gintmsk, 0);
/* Send the Setup packet */
do_setup();
/* 15 second delay so nothing else happens for awhile */
mdelay(15000);
/* Send the In and Ack packets */
do_in_ack();
/* 15 second delay so nothing else happens for awhile */
mdelay(15000);
/* Restore interrupts */
dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
}
}
break;
}
#endif /* DWC_HS_ELECT_TST */
case USB_PORT_FEAT_INDICATOR:
DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
/* Not supported */
break;
default:
retval = -EINVAL;
DWC_ERROR("DWC OTG HCD - "
"SetPortFeature request %xh "
"unknown or unsupported\n", wValue);
break;
}
break;
default:
error:
retval = -EINVAL;
DWC_WARN("DWC OTG HCD - "
"Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
typeReq, wIndex, wValue);
break;
}
return retval;
}
/**
* Assigns transactions from a QTD to a free host channel and initializes the
* host channel to perform the transactions. The host channel is removed from
* the free list.
*
* @param hcd The HCD state structure.
* @param qh Transactions from the first QTD for this QH are selected and
* assigned to a free host channel.
*/
static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
{
dwc_hc_t *hc;
dwc_otg_qtd_t *qtd;
struct urb *urb;
DWC_DEBUGPL(DBG_HCD_FLOOD, "%s(%p,%p)\n", __func__, hcd, qh);
hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
urb = qtd->urb;
if (!urb){
return;
}
/* Remove the host channel from the free list. */
list_del_init(&hc->hc_list_entry);
qh->channel = hc;
qh->qtd_in_process = qtd;
/*
* Use usb_pipedevice to determine device address. This address is
* 0 before the SET_ADDRESS command and the correct address afterward.
*/
hc->dev_addr = usb_pipedevice(urb->pipe);
hc->ep_num = usb_pipeendpoint(urb->pipe);
if (urb->dev->speed == USB_SPEED_LOW) {
hc->speed = DWC_OTG_EP_SPEED_LOW;
} else if (urb->dev->speed == USB_SPEED_FULL) {
hc->speed = DWC_OTG_EP_SPEED_FULL;
} else {
hc->speed = DWC_OTG_EP_SPEED_HIGH;
}
hc->max_packet = dwc_max_packet(qh->maxp);
hc->xfer_started = 0;
hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
hc->error_state = (qtd->error_count > 0);
hc->halt_on_queue = 0;
hc->halt_pending = 0;
hc->requests = 0;
/*
* The following values may be modified in the transfer type section
* below. The xfer_len value may be reduced when the transfer is
* started to accommodate the max widths of the XferSize and PktCnt
* fields in the HCTSIZn register.
*/
hc->do_ping = qh->ping_state;
hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
hc->data_pid_start = qh->data_toggle;
hc->multi_count = 1;
if (hcd->core_if->dma_enable) {
hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length;
} else {
hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
}
hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
hc->xfer_count = 0;
/*
* Set the split attributes
*/
hc->do_split = 0;
if (qh->do_split) {
hc->do_split = 1;
hc->xact_pos = qtd->isoc_split_pos;
hc->complete_split = qtd->complete_split;
hc->hub_addr = urb->dev->tt->hub->devnum;
hc->port_addr = urb->dev->ttport;
}
switch (usb_pipetype(urb->pipe)) {
case PIPE_CONTROL:
hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
switch (qtd->control_phase) {
case DWC_OTG_CONTROL_SETUP:
DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
hc->do_ping = 0;
hc->ep_is_in = 0;
hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
if (hcd->core_if->dma_enable) {
hc->xfer_buff = (uint8_t *)urb->setup_dma;
} else {
hc->xfer_buff = (uint8_t *)urb->setup_packet;
}
hc->xfer_len = 8;
break;
case DWC_OTG_CONTROL_DATA:
DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
hc->data_pid_start = qtd->data_toggle;
break;
case DWC_OTG_CONTROL_STATUS:
/*
* Direction is opposite of data direction or IN if no
* data.
*/
DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
if (urb->transfer_buffer_length == 0) {
hc->ep_is_in = 1;
} else {
hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
}
if (hc->ep_is_in) {
hc->do_ping = 0;
}
hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
hc->xfer_len = 0;
if (hcd->core_if->dma_enable) {
hc->xfer_buff = (uint8_t *)hcd->status_buf_dma;
} else {
hc->xfer_buff = (uint8_t *)hcd->status_buf;
}
break;
}
break;
case PIPE_BULK:
hc->ep_type = DWC_OTG_EP_TYPE_BULK;
break;
case PIPE_INTERRUPT:
hc->ep_type = DWC_OTG_EP_TYPE_INTR;
break;
case PIPE_ISOCHRONOUS:
{
struct usb_iso_packet_descriptor *frame_desc;
frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
if (hcd->core_if->dma_enable) {
hc->xfer_buff = (uint8_t *)urb->transfer_dma;
} else {
hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
}
hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
if (hc->xfer_len <= 188) {
hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
}
else {
hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
}
}
}
break;
}
if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
/*
* This value may be modified when the transfer is started to
* reflect the actual transfer length.
*/
hc->multi_count = dwc_hb_mult(qh->maxp);
}
dwc_otg_hc_init(hcd->core_if, hc);
hc->qh = qh;
}
/**
* This function selects transactions from the HCD transfer schedule and
* assigns them to available host channels. It is called from HCD interrupt
* handler functions.
*
* @param hcd The HCD state structure.
*
* @return The types of new transactions that were assigned to host channels.
*/
dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd)
{
struct list_head *qh_ptr;
dwc_otg_qh_t *qh = NULL;
int num_channels;
dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
uint16_t cur_frame = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
unsigned long flags;
int include_nakd, channels_full;
/* This condition has once been observed, but the cause was
* never determined. Check for it here, to collect debug data if
* it occurs again. */
WARN_ON_ONCE(hcd->non_periodic_channels < 0);
check_nakking(hcd, __FUNCTION__, "start");
#ifdef DEBUG_SOF
DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
#endif
SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
/* Process entries in the periodic ready list. */
qh_ptr = hcd->periodic_sched_ready.next;
while (qh_ptr != &hcd->periodic_sched_ready &&
!list_empty(&hcd->free_hc_list)) {
qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
assign_and_init_hc(hcd, qh);
/*
* Move the QH from the periodic ready schedule to the
* periodic assigned schedule.
*/
qh_ptr = qh_ptr->next;
list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
ret_val = DWC_OTG_TRANSACTION_PERIODIC;
}
/*
* Process entries in the inactive portion of the non-periodic
* schedule. Some free host channels may not be used if they are
* reserved for periodic transfers.
*/
num_channels = hcd->core_if->core_params->host_channels;
/* Go over the queue twice: Once while not including nak'd
* entries, one while including them. This is so a retransmit of
* an entry that has received a nak is scheduled only after all
* new entries.
*/
channels_full = 0;
for (include_nakd = 0; include_nakd < 2 && !channels_full; ++include_nakd) {
qh_ptr = hcd->non_periodic_sched_inactive.next;
while (qh_ptr != &hcd->non_periodic_sched_inactive) {
qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
qh_ptr = qh_ptr->next;
/* If a nak'd frame is in the queue for 100ms, forget
* about its nak status, to prevent the situation where
* a nak'd frame never gets resubmitted because there
* are continously non-nakking tranfsfers available.
*/
if (qh->nak_frame != 0xffff &&
dwc_frame_num_gt(cur_frame, qh->nak_frame + 800))
qh->nak_frame = 0xffff;
/* In the first pass, ignore NAK'd retransmit
* alltogether, to give them lower priority. */
if (!include_nakd && qh->nak_frame != 0xffff)
continue;
/*
* Check to see if this is a NAK'd retransmit, in which case ignore for retransmission
* we hold off on bulk retransmissions to reduce NAK interrupt overhead for
* cheeky devices that just hold off using NAKs
*/
if (dwc_full_frame_num(qh->nak_frame) == dwc_full_frame_num(dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd))))
continue;
/* Ok, we found a candidate for scheduling. Is there a
* free channel? */
if (hcd->non_periodic_channels >=
num_channels - hcd->periodic_channels ||
list_empty(&hcd->free_hc_list)) {
channels_full = 1;
break;
}
/* When retrying a NAK'd transfer, we give it a fair
* chance of completing again. */
qh->nak_frame = 0xffff;
assign_and_init_hc(hcd, qh);
/*
* Move the QH from the non-periodic inactive schedule to the
* non-periodic active schedule.
*/
list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
if (ret_val == DWC_OTG_TRANSACTION_NONE) {
ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
} else {
ret_val = DWC_OTG_TRANSACTION_ALL;
}
hcd->non_periodic_channels++;
}
if (hcd->core_if->dma_enable && channels_full &&
hcd->periodic_channels + hcd->nakking_channels >= num_channels) {
/* There are items queued, but all channels are either
* reserved for periodic or have received NAKs. This
* means that it could take an indefinite amount of time
* before a channel is actually freed (since in DMA
* mode, the hardware takes care of retries), so we take
* action here by forcing a nakking channel to halt to
* give other transfers a chance to run. */
dwc_otg_qtd_t *qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
struct urb *urb = qtd->urb;
dwc_hc_t *hc = dwc_otg_halt_nakking_channel(hcd);
if (hc)
DWC_DEBUGPL(DBG_HCD "Out of Host Channels for non-periodic transfer - Halting channel %d (dev %d ep%d%s) to service qh %p (dev %d ep%d%s)\n", hc->hc_num, hc->dev_addr, hc->ep_num, (hc->ep_is_in ? "in" : "out"), qh, usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), (usb_pipein(urb->pipe) != 0) ? "in" : "out");
}
}
SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
return ret_val;
}
/**
* Halt a bulk channel that is blocking on NAKs to free up space.
*
* This will decrement hcd->nakking_channels immediately, but
* hcd->non_periodic_channels is not decremented until the channel is
* actually halted.
*
* Returns the halted channel.
*/
dwc_hc_t *dwc_otg_halt_nakking_channel(dwc_otg_hcd_t *hcd) {
int num_channels, i;
uint16_t cur_frame;
cur_frame = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
num_channels = hcd->core_if->core_params->host_channels;
for (i = 0; i < num_channels; i++) {
int channel = (hcd->last_channel_halted + 1 + i) % num_channels;
dwc_hc_t *hc = hcd->hc_ptr_array[channel];
if (hc->xfer_started
&& !hc->halt_on_queue
&& !hc->halt_pending
&& hc->qh->nak_frame != 0xffff) {
dwc_otg_hc_halt(hcd, hc, DWC_OTG_HC_XFER_NAK);
/* Store the last channel halted to
* fairly rotate the channel to halt.
* This prevent the scenario where there
* are three blocking endpoints and only
* two free host channels, where the
* blocking endpoint that gets hc 3 will
* never be halted, while the other two
* endpoints will be fighting over the
* other host channel. */
hcd->last_channel_halted = channel;
/* Update nak_frame, so this frame is
* kept at low priority for a period of
* time starting now. */
hc->qh->nak_frame = cur_frame;
return hc;
}
}
dwc_otg_hcd_dump_state(hcd);
return NULL;
}
/**
* Attempts to queue a single transaction request for a host channel
* associated with either a periodic or non-periodic transfer. This function
* assumes that there is space available in the appropriate request queue. For
* an OUT transfer or SETUP transaction in Slave mode, it checks whether space
* is available in the appropriate Tx FIFO.
*
* @param hcd The HCD state structure.
* @param hc Host channel descriptor associated with either a periodic or
* non-periodic transfer.
* @param fifo_dwords_avail Number of DWORDs available in the periodic Tx
* FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
* transfers.
*
* @return 1 if a request is queued and more requests may be needed to
* complete the transfer, 0 if no more requests are required for this
* transfer, -1 if there is insufficient space in the Tx FIFO.
*/
static int queue_transaction(dwc_otg_hcd_t *hcd,
dwc_hc_t *hc,
uint16_t fifo_dwords_avail)
{
int retval;
if (hcd->core_if->dma_enable) {
if (!hc->xfer_started) {
dwc_otg_hc_start_transfer(hcd->core_if, hc);
hc->qh->ping_state = 0;
}
retval = 0;
} else if (hc->halt_pending) {
/* Don't queue a request if the channel has been halted. */
retval = 0;
} else if (hc->halt_on_queue) {
dwc_otg_hc_halt(hcd, hc, hc->halt_status);
retval = 0;
} else if (hc->do_ping) {
if (!hc->xfer_started) {
dwc_otg_hc_start_transfer(hcd->core_if, hc);
}
retval = 0;
} else if (!hc->ep_is_in ||
hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
if ((fifo_dwords_avail * 4) >= hc->max_packet) {
if (!hc->xfer_started) {
dwc_otg_hc_start_transfer(hcd->core_if, hc);
retval = 1;
} else {
retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
}
} else {
retval = -1;
}
} else {
if (!hc->xfer_started) {
dwc_otg_hc_start_transfer(hcd->core_if, hc);
retval = 1;
} else {
retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
}
}
return retval;
}
/**
* Processes active non-periodic channels and queues transactions for these
* channels to the DWC_otg controller. After queueing transactions, the NP Tx
* FIFO Empty interrupt is enabled if there are more transactions to queue as
* NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
* FIFO Empty interrupt is disabled.
*/
static void process_non_periodic_channels(dwc_otg_hcd_t *hcd)
{
gnptxsts_data_t tx_status;
struct list_head *orig_qh_ptr;
dwc_otg_qh_t *qh;
int status;
int no_queue_space = 0;
int no_fifo_space = 0;
int more_to_do = 0;
dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs;
DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
#ifdef DEBUG
tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n",
tx_status.b.nptxqspcavail);
DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
tx_status.b.nptxfspcavail);
#endif
/*
* Keep track of the starting point. Skip over the start-of-list
* entry.
*/
if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
}
orig_qh_ptr = hcd->non_periodic_qh_ptr;
/*
* Process once through the active list or until no more space is
* available in the request queue or the Tx FIFO.
*/
do {
tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
no_queue_space = 1;
break;
}
qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail);
if (status > 0) {
more_to_do = 1;
} else if (status < 0) {
no_fifo_space = 1;
break;
}
/* Advance to next QH, skipping start-of-list entry. */
hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
}
} while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
if (!hcd->core_if->dma_enable) {
gintmsk_data_t intr_mask = {.d32 = 0};
intr_mask.b.nptxfempty = 1;
#ifdef DEBUG
tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n",
tx_status.b.nptxqspcavail);
DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n",
tx_status.b.nptxfspcavail);
#endif
if (more_to_do || no_queue_space || no_fifo_space) {
/*
* May need to queue more transactions as the request
* queue or Tx FIFO empties. Enable the non-periodic
* Tx FIFO empty interrupt. (Always use the half-empty
* level to ensure that new requests are loaded as
* soon as possible.)
*/
dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
} else {
/*
* Disable the Tx FIFO empty interrupt since there are
* no more transactions that need to be queued right
* now. This function is called from interrupt
* handlers to queue more transactions as transfer
* states change.
*/
dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
}
}
}
/**
* Processes periodic channels for the next frame and queues transactions for
* these channels to the DWC_otg controller. After queueing transactions, the
* Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
* to queue as Periodic Tx FIFO or request queue space becomes available.
* Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
*/
static void process_periodic_channels(dwc_otg_hcd_t *hcd)
{
hptxsts_data_t tx_status;
struct list_head *qh_ptr;
dwc_otg_qh_t *qh;
int status;
int no_queue_space = 0;
int no_fifo_space = 0;
dwc_otg_host_global_regs_t *host_regs;
host_regs = hcd->core_if->host_if->host_global_regs;
DWC_DEBUGPL(DBG_HCD_FLOOD, "Queue periodic transactions\n");
#ifdef DEBUG
tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
DWC_DEBUGPL(DBG_HCD_FLOOD, " P Tx Req Queue Space Avail (before queue): %d\n",
tx_status.b.ptxqspcavail);
DWC_DEBUGPL(DBG_HCD_FLOOD, " P Tx FIFO Space Avail (before queue): %d\n",
tx_status.b.ptxfspcavail);
#endif
qh_ptr = hcd->periodic_sched_assigned.next;
while (qh_ptr != &hcd->periodic_sched_assigned) {
tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
if (tx_status.b.ptxqspcavail == 0) {
no_queue_space = 1;
break;
}
qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
/*
* Set a flag if we're queuing high-bandwidth in slave mode.
* The flag prevents any halts to get into the request queue in
* the middle of multiple high-bandwidth packets getting queued.
*/
if (!hcd->core_if->dma_enable &&
qh->channel->multi_count > 1)
{
hcd->core_if->queuing_high_bandwidth = 1;
}
status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail);
if (status < 0) {
no_fifo_space = 1;
break;
}
/*
* In Slave mode, stay on the current transfer until there is
* nothing more to do or the high-bandwidth request count is
* reached. In DMA mode, only need to queue one request. The
* controller automatically handles multiple packets for
* high-bandwidth transfers.
*/
if (hcd->core_if->dma_enable || status == 0 ||
qh->channel->requests == qh->channel->multi_count) {
qh_ptr = qh_ptr->next;
/*
* Move the QH from the periodic assigned schedule to
* the periodic queued schedule.
*/
list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued);
/* done queuing high bandwidth */
hcd->core_if->queuing_high_bandwidth = 0;
}
}
if (!hcd->core_if->dma_enable) {
dwc_otg_core_global_regs_t *global_regs;
gintmsk_data_t intr_mask = {.d32 = 0};
global_regs = hcd->core_if->core_global_regs;
intr_mask.b.ptxfempty = 1;
#ifdef DEBUG
tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n",
tx_status.b.ptxqspcavail);
DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n",
tx_status.b.ptxfspcavail);
#endif
if (!list_empty(&hcd->periodic_sched_assigned) ||
no_queue_space || no_fifo_space) {
/*
* May need to queue more transactions as the request
* queue or Tx FIFO empties. Enable the periodic Tx
* FIFO empty interrupt. (Always use the half-empty
* level to ensure that new requests are loaded as
* soon as possible.)
*/
dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
} else {
/*
* Disable the Tx FIFO empty interrupt since there are
* no more transactions that need to be queued right
* now. This function is called from interrupt
* handlers to queue more transactions as transfer
* states change.
*/
dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
}
}
}
/**
* This function processes the currently active host channels and queues
* transactions for these channels to the DWC_otg controller. It is called
* from HCD interrupt handler functions.
*
* @param hcd The HCD state structure.
* @param tr_type The type(s) of transactions to queue (non-periodic,
* periodic, or both).
*/
void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
dwc_otg_transaction_type_e tr_type)
{
#ifdef DEBUG_SOF
DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
#endif
/* Process host channels associated with periodic transfers. */
if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
tr_type == DWC_OTG_TRANSACTION_ALL) &&
!list_empty(&hcd->periodic_sched_assigned)) {
process_periodic_channels(hcd);
}
/* Process host channels associated with non-periodic transfers. */
if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
tr_type == DWC_OTG_TRANSACTION_ALL) {
if (!list_empty(&hcd->non_periodic_sched_active)) {
process_non_periodic_channels(hcd);
} else {
/*
* Ensure NP Tx FIFO empty interrupt is disabled when
* there are no non-periodic transfers to process.
*/
gintmsk_data_t gintmsk = {.d32 = 0};
gintmsk.b.nptxfempty = 1;
dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
gintmsk.d32, 0);
}
}
}
/**
* Sets the final status of an URB and returns it to the device driver. Any
* required cleanup of the URB is performed.
*/
void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status)
{
unsigned long flags;
SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
#ifdef DEBUG
if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
__func__, urb, usb_pipedevice(urb->pipe),
usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "IN" : "OUT", status);
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
int i;
for (i = 0; i < urb->number_of_packets; i++) {
DWC_PRINT(" ISO Desc %d status: %d\n",
i, urb->iso_frame_desc[i].status);
}
}
}
#endif
//if we use the aligned buffer instead of the original unaligned buffer,
//for IN data, we have to move the data to the original buffer
if((urb->transfer_dma==urb->aligned_transfer_dma)&&((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_IN)){
dma_sync_single_for_device(NULL,urb->transfer_dma,urb->actual_length,DMA_FROM_DEVICE);
memcpy(urb->transfer_buffer,urb->aligned_transfer_buffer,urb->actual_length);
}
usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(hcd), urb);
urb->status = status;
urb->hcpriv = NULL;
SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
}
/*
* Returns the Queue Head for an URB.
*/
dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb)
{
struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
return (dwc_otg_qh_t *)ep->hcpriv;
}
#ifdef DEBUG
void dwc_print_setup_data(uint8_t *setup)
{
int i;
if (CHK_DEBUG_LEVEL(DBG_HCD)){
DWC_PRINT("Setup Data = MSB ");
for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]);
DWC_PRINT("\n");
DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device");
DWC_PRINT(" bmRequestType Type = ");
switch ((setup[0] & 0x60) >> 5) {
case 0: DWC_PRINT("Standard\n"); break;
case 1: DWC_PRINT("Class\n"); break;
case 2: DWC_PRINT("Vendor\n"); break;
case 3: DWC_PRINT("Reserved\n"); break;
}
DWC_PRINT(" bmRequestType Recipient = ");
switch (setup[0] & 0x1f) {
case 0: DWC_PRINT("Device\n"); break;
case 1: DWC_PRINT("Interface\n"); break;
case 2: DWC_PRINT("Endpoint\n"); break;
case 3: DWC_PRINT("Other\n"); break;
default: DWC_PRINT("Reserved\n"); break;
}
DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
}
}
#endif
void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) {
}
void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd)
{
#ifdef DEBUG
int num_channels;
int i;
gnptxsts_data_t np_tx_status;
hptxsts_data_t p_tx_status;
num_channels = hcd->core_if->core_params->host_channels;
DWC_PRINT("\n");
DWC_PRINT("************************************************************\n");
DWC_PRINT("HCD State:\n");
DWC_PRINT(" Num channels: %d\n", num_channels);
for (i = 0; i < num_channels; i++) {
dwc_hc_t *hc = hcd->hc_ptr_array[i];
DWC_PRINT(" Channel %d: %p\n", i, hc);
DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
hc->dev_addr, hc->ep_num, hc->ep_is_in);
DWC_PRINT(" speed: %d\n", hc->speed);
DWC_PRINT(" ep_type: %d\n", hc->ep_type);
DWC_PRINT(" max_packet: %d\n", hc->max_packet);
DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
DWC_PRINT(" multi_count: %d\n", hc->multi_count);
DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
DWC_PRINT(" halt_status: %d\n", hc->halt_status);
DWC_PRINT(" do_split: %d\n", hc->do_split);
DWC_PRINT(" complete_split: %d\n", hc->complete_split);
DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
DWC_PRINT(" port_addr: %d\n", hc->port_addr);
DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
DWC_PRINT(" requests: %d\n", hc->requests);
DWC_PRINT(" qh: %p\n", hc->qh);
if (hc->qh)
DWC_PRINT(" nak_frame: %x\n", hc->qh->nak_frame);
if (hc->xfer_started) {
hfnum_data_t hfnum;
hcchar_data_t hcchar;
hctsiz_data_t hctsiz;
hcint_data_t hcint;
hcintmsk_data_t hcintmsk;
hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar);
hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz);
hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint);
hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk);
DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
}
if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) {
dwc_otg_qtd_t *qtd;
struct urb *urb;
qtd = hc->qh->qtd_in_process;
urb = qtd->urb;
DWC_PRINT(" URB Info:\n");
DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
if (urb) {
DWC_PRINT(" Dev: %d, EP: %d %s\n",
usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
usb_pipein(urb->pipe) ? "IN" : "OUT");
DWC_PRINT(" Max packet size: %d\n",
usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer);
DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma);
DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length);
DWC_PRINT(" actual_length: %d\n", urb->actual_length);
}
}
}
DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels);
DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels);
DWC_PRINT(" nakking_channels: %d\n", hcd->nakking_channels);
DWC_PRINT(" last_channel_halted: %d\n", hcd->last_channel_halted);
DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs);
np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
dwc_otg_hcd_dump_frrem(hcd);
dwc_otg_dump_global_registers(hcd->core_if);
dwc_otg_dump_host_registers(hcd->core_if);
DWC_PRINT("************************************************************\n");
DWC_PRINT("\n");
#endif
}
#endif /* DWC_DEVICE_ONLY */