openwrt-owl/target/linux/generic/files/crypto/ocf/ixp4xx/ixp4xx.c

1340 lines
34 KiB
C

/*
* An OCF module that uses Intels IXP CryptACC API to do the crypto.
* This driver requires the IXP400 Access Library that is available
* from Intel in order to operate (or compile).
*
* Written by David McCullough <david_mccullough@mcafee.com>
* Copyright (C) 2006-2011 David McCullough
* Copyright (C) 2004-2005 Intel Corporation.
*
* LICENSE TERMS
*
* The free distribution and use of this software in both source and binary
* form is allowed (with or without changes) provided that:
*
* 1. distributions of this source code include the above copyright
* notice, this list of conditions and the following disclaimer;
*
* 2. distributions in binary form include the above copyright
* notice, this list of conditions and the following disclaimer
* in the documentation and/or other associated materials;
*
* 3. the copyright holder's name is not used to endorse products
* built using this software without specific written permission.
*
* ALTERNATIVELY, provided that this notice is retained in full, this product
* may be distributed under the terms of the GNU General Public License (GPL),
* in which case the provisions of the GPL apply INSTEAD OF those given above.
*
* DISCLAIMER
*
* This software is provided 'as is' with no explicit or implied warranties
* in respect of its properties, including, but not limited to, correctness
* and/or fitness for purpose.
*/
#include <linux/version.h>
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED)
#include <linux/config.h>
#endif
#include <linux/module.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/crypto.h>
#include <linux/interrupt.h>
#include <asm/scatterlist.h>
#include <IxTypes.h>
#include <IxOsBuffMgt.h>
#include <IxNpeDl.h>
#include <IxCryptoAcc.h>
#include <IxQMgr.h>
#include <IxOsServices.h>
#include <IxOsCacheMMU.h>
#include <cryptodev.h>
#include <uio.h>
#ifndef IX_MBUF_PRIV
#define IX_MBUF_PRIV(x) ((x)->priv)
#endif
struct ixp_data;
struct ixp_q {
struct list_head ixp_q_list;
struct ixp_data *ixp_q_data;
struct cryptop *ixp_q_crp;
struct cryptodesc *ixp_q_ccrd;
struct cryptodesc *ixp_q_acrd;
IX_MBUF ixp_q_mbuf;
UINT8 *ixp_hash_dest; /* Location for hash in client buffer */
UINT8 *ixp_hash_src; /* Location of hash in internal buffer */
unsigned char ixp_q_iv_data[IX_CRYPTO_ACC_MAX_CIPHER_IV_LENGTH];
unsigned char *ixp_q_iv;
};
struct ixp_data {
int ixp_registered; /* is the context registered */
int ixp_crd_flags; /* detect direction changes */
int ixp_cipher_alg;
int ixp_auth_alg;
UINT32 ixp_ctx_id;
UINT32 ixp_hash_key_id; /* used when hashing */
IxCryptoAccCtx ixp_ctx;
IX_MBUF ixp_pri_mbuf;
IX_MBUF ixp_sec_mbuf;
struct work_struct ixp_pending_work;
struct work_struct ixp_registration_work;
struct list_head ixp_q; /* unprocessed requests */
};
#ifdef __ixp46X
#define MAX_IOP_SIZE 64 /* words */
#define MAX_OOP_SIZE 128
#define MAX_PARAMS 3
struct ixp_pkq {
struct list_head pkq_list;
struct cryptkop *pkq_krp;
IxCryptoAccPkeEauInOperands pkq_op;
IxCryptoAccPkeEauOpResult pkq_result;
UINT32 pkq_ibuf0[MAX_IOP_SIZE];
UINT32 pkq_ibuf1[MAX_IOP_SIZE];
UINT32 pkq_ibuf2[MAX_IOP_SIZE];
UINT32 pkq_obuf[MAX_OOP_SIZE];
};
static LIST_HEAD(ixp_pkq); /* current PK wait list */
static struct ixp_pkq *ixp_pk_cur;
static spinlock_t ixp_pkq_lock;
#endif /* __ixp46X */
static int ixp_blocked = 0;
static int32_t ixp_id = -1;
static struct ixp_data **ixp_sessions = NULL;
static u_int32_t ixp_sesnum = 0;
static int ixp_process(device_t, struct cryptop *, int);
static int ixp_newsession(device_t, u_int32_t *, struct cryptoini *);
static int ixp_freesession(device_t, u_int64_t);
#ifdef __ixp46X
static int ixp_kprocess(device_t, struct cryptkop *krp, int hint);
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
static kmem_cache_t *qcache;
#else
static struct kmem_cache *qcache;
#endif
#define debug ixp_debug
static int ixp_debug = 0;
module_param(ixp_debug, int, 0644);
MODULE_PARM_DESC(ixp_debug, "Enable debug");
static int ixp_init_crypto = 1;
module_param(ixp_init_crypto, int, 0444); /* RO after load/boot */
MODULE_PARM_DESC(ixp_init_crypto, "Call ixCryptoAccInit (default is 1)");
static void ixp_process_pending(void *arg);
static void ixp_registration(void *arg);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
static void ixp_process_pending_wq(struct work_struct *work);
static void ixp_registration_wq(struct work_struct *work);
#endif
/*
* dummy device structure
*/
static struct {
softc_device_decl sc_dev;
} ixpdev;
static device_method_t ixp_methods = {
/* crypto device methods */
DEVMETHOD(cryptodev_newsession, ixp_newsession),
DEVMETHOD(cryptodev_freesession,ixp_freesession),
DEVMETHOD(cryptodev_process, ixp_process),
#ifdef __ixp46X
DEVMETHOD(cryptodev_kprocess, ixp_kprocess),
#endif
};
/*
* Generate a new software session.
*/
static int
ixp_newsession(device_t dev, u_int32_t *sid, struct cryptoini *cri)
{
struct ixp_data *ixp;
u_int32_t i;
#define AUTH_LEN(cri, def) \
(cri->cri_mlen ? cri->cri_mlen : (def))
dprintk("%s():alg %d\n", __FUNCTION__,cri->cri_alg);
if (sid == NULL || cri == NULL) {
dprintk("%s,%d - EINVAL\n", __FILE__, __LINE__);
return EINVAL;
}
if (ixp_sessions) {
for (i = 1; i < ixp_sesnum; i++)
if (ixp_sessions[i] == NULL)
break;
} else
i = 1; /* NB: to silence compiler warning */
if (ixp_sessions == NULL || i == ixp_sesnum) {
struct ixp_data **ixpd;
if (ixp_sessions == NULL) {
i = 1; /* We leave ixp_sessions[0] empty */
ixp_sesnum = CRYPTO_SW_SESSIONS;
} else
ixp_sesnum *= 2;
ixpd = kmalloc(ixp_sesnum * sizeof(struct ixp_data *), SLAB_ATOMIC);
if (ixpd == NULL) {
/* Reset session number */
if (ixp_sesnum == CRYPTO_SW_SESSIONS)
ixp_sesnum = 0;
else
ixp_sesnum /= 2;
dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
return ENOBUFS;
}
memset(ixpd, 0, ixp_sesnum * sizeof(struct ixp_data *));
/* Copy existing sessions */
if (ixp_sessions) {
memcpy(ixpd, ixp_sessions,
(ixp_sesnum / 2) * sizeof(struct ixp_data *));
kfree(ixp_sessions);
}
ixp_sessions = ixpd;
}
ixp_sessions[i] = (struct ixp_data *) kmalloc(sizeof(struct ixp_data),
SLAB_ATOMIC);
if (ixp_sessions[i] == NULL) {
ixp_freesession(NULL, i);
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
return ENOBUFS;
}
*sid = i;
ixp = ixp_sessions[i];
memset(ixp, 0, sizeof(*ixp));
ixp->ixp_cipher_alg = -1;
ixp->ixp_auth_alg = -1;
ixp->ixp_ctx_id = -1;
INIT_LIST_HEAD(&ixp->ixp_q);
ixp->ixp_ctx.useDifferentSrcAndDestMbufs = 0;
while (cri) {
switch (cri->cri_alg) {
case CRYPTO_DES_CBC:
ixp->ixp_cipher_alg = cri->cri_alg;
ixp->ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_DES;
ixp->ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC;
ixp->ixp_ctx.cipherCtx.cipherKeyLen = (cri->cri_klen + 7) / 8;
ixp->ixp_ctx.cipherCtx.cipherBlockLen = IX_CRYPTO_ACC_DES_BLOCK_64;
ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen =
IX_CRYPTO_ACC_DES_IV_64;
memcpy(ixp->ixp_ctx.cipherCtx.key.cipherKey,
cri->cri_key, (cri->cri_klen + 7) / 8);
break;
case CRYPTO_3DES_CBC:
ixp->ixp_cipher_alg = cri->cri_alg;
ixp->ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_3DES;
ixp->ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC;
ixp->ixp_ctx.cipherCtx.cipherKeyLen = (cri->cri_klen + 7) / 8;
ixp->ixp_ctx.cipherCtx.cipherBlockLen = IX_CRYPTO_ACC_DES_BLOCK_64;
ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen =
IX_CRYPTO_ACC_DES_IV_64;
memcpy(ixp->ixp_ctx.cipherCtx.key.cipherKey,
cri->cri_key, (cri->cri_klen + 7) / 8);
break;
case CRYPTO_RIJNDAEL128_CBC:
ixp->ixp_cipher_alg = cri->cri_alg;
ixp->ixp_ctx.cipherCtx.cipherAlgo = IX_CRYPTO_ACC_CIPHER_AES;
ixp->ixp_ctx.cipherCtx.cipherMode = IX_CRYPTO_ACC_MODE_CBC;
ixp->ixp_ctx.cipherCtx.cipherKeyLen = (cri->cri_klen + 7) / 8;
ixp->ixp_ctx.cipherCtx.cipherBlockLen = 16;
ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen = 16;
memcpy(ixp->ixp_ctx.cipherCtx.key.cipherKey,
cri->cri_key, (cri->cri_klen + 7) / 8);
break;
case CRYPTO_MD5:
case CRYPTO_MD5_HMAC:
ixp->ixp_auth_alg = cri->cri_alg;
ixp->ixp_ctx.authCtx.authAlgo = IX_CRYPTO_ACC_AUTH_MD5;
ixp->ixp_ctx.authCtx.authDigestLen = AUTH_LEN(cri, MD5_HASH_LEN);
ixp->ixp_ctx.authCtx.aadLen = 0;
/* Only MD5_HMAC needs a key */
if (cri->cri_alg == CRYPTO_MD5_HMAC) {
ixp->ixp_ctx.authCtx.authKeyLen = (cri->cri_klen + 7) / 8;
if (ixp->ixp_ctx.authCtx.authKeyLen >
sizeof(ixp->ixp_ctx.authCtx.key.authKey)) {
printk(
"ixp4xx: Invalid key length for MD5_HMAC - %d bits\n",
cri->cri_klen);
ixp_freesession(NULL, i);
return EINVAL;
}
memcpy(ixp->ixp_ctx.authCtx.key.authKey,
cri->cri_key, (cri->cri_klen + 7) / 8);
}
break;
case CRYPTO_SHA1:
case CRYPTO_SHA1_HMAC:
ixp->ixp_auth_alg = cri->cri_alg;
ixp->ixp_ctx.authCtx.authAlgo = IX_CRYPTO_ACC_AUTH_SHA1;
ixp->ixp_ctx.authCtx.authDigestLen = AUTH_LEN(cri, SHA1_HASH_LEN);
ixp->ixp_ctx.authCtx.aadLen = 0;
/* Only SHA1_HMAC needs a key */
if (cri->cri_alg == CRYPTO_SHA1_HMAC) {
ixp->ixp_ctx.authCtx.authKeyLen = (cri->cri_klen + 7) / 8;
if (ixp->ixp_ctx.authCtx.authKeyLen >
sizeof(ixp->ixp_ctx.authCtx.key.authKey)) {
printk(
"ixp4xx: Invalid key length for SHA1_HMAC - %d bits\n",
cri->cri_klen);
ixp_freesession(NULL, i);
return EINVAL;
}
memcpy(ixp->ixp_ctx.authCtx.key.authKey,
cri->cri_key, (cri->cri_klen + 7) / 8);
}
break;
default:
printk("ixp: unknown algo 0x%x\n", cri->cri_alg);
ixp_freesession(NULL, i);
return EINVAL;
}
cri = cri->cri_next;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
INIT_WORK(&ixp->ixp_pending_work, ixp_process_pending_wq);
INIT_WORK(&ixp->ixp_registration_work, ixp_registration_wq);
#else
INIT_WORK(&ixp->ixp_pending_work, ixp_process_pending, ixp);
INIT_WORK(&ixp->ixp_registration_work, ixp_registration, ixp);
#endif
return 0;
}
/*
* Free a session.
*/
static int
ixp_freesession(device_t dev, u_int64_t tid)
{
u_int32_t sid = CRYPTO_SESID2LID(tid);
dprintk("%s()\n", __FUNCTION__);
if (sid > ixp_sesnum || ixp_sessions == NULL ||
ixp_sessions[sid] == NULL) {
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
return EINVAL;
}
/* Silently accept and return */
if (sid == 0)
return 0;
if (ixp_sessions[sid]) {
if (ixp_sessions[sid]->ixp_ctx_id != -1) {
ixCryptoAccCtxUnregister(ixp_sessions[sid]->ixp_ctx_id);
ixp_sessions[sid]->ixp_ctx_id = -1;
}
kfree(ixp_sessions[sid]);
}
ixp_sessions[sid] = NULL;
if (ixp_blocked) {
ixp_blocked = 0;
crypto_unblock(ixp_id, CRYPTO_SYMQ);
}
return 0;
}
/*
* callback for when hash processing is complete
*/
static void
ixp_hash_perform_cb(
UINT32 hash_key_id,
IX_MBUF *bufp,
IxCryptoAccStatus status)
{
struct ixp_q *q;
dprintk("%s(%u, %p, 0x%x)\n", __FUNCTION__, hash_key_id, bufp, status);
if (bufp == NULL) {
printk("ixp: NULL buf in %s\n", __FUNCTION__);
return;
}
q = IX_MBUF_PRIV(bufp);
if (q == NULL) {
printk("ixp: NULL priv in %s\n", __FUNCTION__);
return;
}
if (status == IX_CRYPTO_ACC_STATUS_SUCCESS) {
/* On success, need to copy hash back into original client buffer */
memcpy(q->ixp_hash_dest, q->ixp_hash_src,
(q->ixp_q_data->ixp_auth_alg == CRYPTO_SHA1) ?
SHA1_HASH_LEN : MD5_HASH_LEN);
}
else {
printk("ixp: hash perform failed status=%d\n", status);
q->ixp_q_crp->crp_etype = EINVAL;
}
/* Free internal buffer used for hashing */
kfree(IX_MBUF_MDATA(&q->ixp_q_mbuf));
crypto_done(q->ixp_q_crp);
kmem_cache_free(qcache, q);
}
/*
* setup a request and perform it
*/
static void
ixp_q_process(struct ixp_q *q)
{
IxCryptoAccStatus status;
struct ixp_data *ixp = q->ixp_q_data;
int auth_off = 0;
int auth_len = 0;
int crypt_off = 0;
int crypt_len = 0;
int icv_off = 0;
char *crypt_func;
dprintk("%s(%p)\n", __FUNCTION__, q);
if (q->ixp_q_ccrd) {
if (q->ixp_q_ccrd->crd_flags & CRD_F_ENCRYPT) {
if (q->ixp_q_ccrd->crd_flags & CRD_F_IV_EXPLICIT) {
q->ixp_q_iv = q->ixp_q_ccrd->crd_iv;
} else {
q->ixp_q_iv = q->ixp_q_iv_data;
read_random(q->ixp_q_iv, ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen);
}
if ((q->ixp_q_ccrd->crd_flags & CRD_F_IV_PRESENT) == 0)
crypto_copyback(q->ixp_q_crp->crp_flags, q->ixp_q_crp->crp_buf,
q->ixp_q_ccrd->crd_inject,
ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen,
(caddr_t) q->ixp_q_iv);
} else {
if (q->ixp_q_ccrd->crd_flags & CRD_F_IV_EXPLICIT)
q->ixp_q_iv = q->ixp_q_ccrd->crd_iv;
else {
q->ixp_q_iv = q->ixp_q_iv_data;
crypto_copydata(q->ixp_q_crp->crp_flags, q->ixp_q_crp->crp_buf,
q->ixp_q_ccrd->crd_inject,
ixp->ixp_ctx.cipherCtx.cipherInitialVectorLen,
(caddr_t) q->ixp_q_iv);
}
}
if (q->ixp_q_acrd) {
auth_off = q->ixp_q_acrd->crd_skip;
auth_len = q->ixp_q_acrd->crd_len;
icv_off = q->ixp_q_acrd->crd_inject;
}
crypt_off = q->ixp_q_ccrd->crd_skip;
crypt_len = q->ixp_q_ccrd->crd_len;
} else { /* if (q->ixp_q_acrd) */
auth_off = q->ixp_q_acrd->crd_skip;
auth_len = q->ixp_q_acrd->crd_len;
icv_off = q->ixp_q_acrd->crd_inject;
}
if (q->ixp_q_crp->crp_flags & CRYPTO_F_SKBUF) {
struct sk_buff *skb = (struct sk_buff *) q->ixp_q_crp->crp_buf;
if (skb_shinfo(skb)->nr_frags) {
/*
* DAVIDM fix this limitation one day by using
* a buffer pool and chaining, it is not currently
* needed for current user/kernel space acceleration
*/
printk("ixp: Cannot handle fragmented skb's yet !\n");
q->ixp_q_crp->crp_etype = ENOENT;
goto done;
}
IX_MBUF_MLEN(&q->ixp_q_mbuf) =
IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) = skb->len;
IX_MBUF_MDATA(&q->ixp_q_mbuf) = skb->data;
} else if (q->ixp_q_crp->crp_flags & CRYPTO_F_IOV) {
struct uio *uiop = (struct uio *) q->ixp_q_crp->crp_buf;
if (uiop->uio_iovcnt != 1) {
/*
* DAVIDM fix this limitation one day by using
* a buffer pool and chaining, it is not currently
* needed for current user/kernel space acceleration
*/
printk("ixp: Cannot handle more than 1 iovec yet !\n");
q->ixp_q_crp->crp_etype = ENOENT;
goto done;
}
IX_MBUF_MLEN(&q->ixp_q_mbuf) =
IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) = uiop->uio_iov[0].iov_len;
IX_MBUF_MDATA(&q->ixp_q_mbuf) = uiop->uio_iov[0].iov_base;
} else /* contig buffer */ {
IX_MBUF_MLEN(&q->ixp_q_mbuf) =
IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) = q->ixp_q_crp->crp_ilen;
IX_MBUF_MDATA(&q->ixp_q_mbuf) = q->ixp_q_crp->crp_buf;
}
IX_MBUF_PRIV(&q->ixp_q_mbuf) = q;
if (ixp->ixp_auth_alg == CRYPTO_SHA1 || ixp->ixp_auth_alg == CRYPTO_MD5) {
/*
* For SHA1 and MD5 hash, need to create an internal buffer that is big
* enough to hold the original data + the appropriate padding for the
* hash algorithm.
*/
UINT8 *tbuf = NULL;
IX_MBUF_MLEN(&q->ixp_q_mbuf) = IX_MBUF_PKT_LEN(&q->ixp_q_mbuf) =
((IX_MBUF_MLEN(&q->ixp_q_mbuf) * 8) + 72 + 511) / 8;
tbuf = kmalloc(IX_MBUF_MLEN(&q->ixp_q_mbuf), SLAB_ATOMIC);
if (IX_MBUF_MDATA(&q->ixp_q_mbuf) == NULL) {
printk("ixp: kmalloc(%u, SLAB_ATOMIC) failed\n",
IX_MBUF_MLEN(&q->ixp_q_mbuf));
q->ixp_q_crp->crp_etype = ENOMEM;
goto done;
}
memcpy(tbuf, &(IX_MBUF_MDATA(&q->ixp_q_mbuf))[auth_off], auth_len);
/* Set location in client buffer to copy hash into */
q->ixp_hash_dest =
&(IX_MBUF_MDATA(&q->ixp_q_mbuf))[auth_off + auth_len];
IX_MBUF_MDATA(&q->ixp_q_mbuf) = tbuf;
/* Set location in internal buffer for where hash starts */
q->ixp_hash_src = &(IX_MBUF_MDATA(&q->ixp_q_mbuf))[auth_len];
crypt_func = "ixCryptoAccHashPerform";
status = ixCryptoAccHashPerform(ixp->ixp_ctx.authCtx.authAlgo,
&q->ixp_q_mbuf, ixp_hash_perform_cb, 0, auth_len, auth_len,
&ixp->ixp_hash_key_id);
}
else {
crypt_func = "ixCryptoAccAuthCryptPerform";
status = ixCryptoAccAuthCryptPerform(ixp->ixp_ctx_id, &q->ixp_q_mbuf,
NULL, auth_off, auth_len, crypt_off, crypt_len, icv_off,
q->ixp_q_iv);
}
if (IX_CRYPTO_ACC_STATUS_SUCCESS == status)
return;
if (IX_CRYPTO_ACC_STATUS_QUEUE_FULL == status) {
q->ixp_q_crp->crp_etype = ENOMEM;
goto done;
}
printk("ixp: %s failed %u\n", crypt_func, status);
q->ixp_q_crp->crp_etype = EINVAL;
done:
crypto_done(q->ixp_q_crp);
kmem_cache_free(qcache, q);
}
/*
* because we cannot process the Q from the Register callback
* we do it here on a task Q.
*/
static void
ixp_process_pending(void *arg)
{
struct ixp_data *ixp = arg;
struct ixp_q *q = NULL;
dprintk("%s(%p)\n", __FUNCTION__, arg);
if (!ixp)
return;
while (!list_empty(&ixp->ixp_q)) {
q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list);
list_del(&q->ixp_q_list);
ixp_q_process(q);
}
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
static void
ixp_process_pending_wq(struct work_struct *work)
{
struct ixp_data *ixp = container_of(work, struct ixp_data, ixp_pending_work);
ixp_process_pending(ixp);
}
#endif
/*
* callback for when context registration is complete
*/
static void
ixp_register_cb(UINT32 ctx_id, IX_MBUF *bufp, IxCryptoAccStatus status)
{
int i;
struct ixp_data *ixp;
struct ixp_q *q;
dprintk("%s(%d, %p, %d)\n", __FUNCTION__, ctx_id, bufp, status);
/*
* free any buffer passed in to this routine
*/
if (bufp) {
IX_MBUF_MLEN(bufp) = IX_MBUF_PKT_LEN(bufp) = 0;
kfree(IX_MBUF_MDATA(bufp));
IX_MBUF_MDATA(bufp) = NULL;
}
for (i = 0; i < ixp_sesnum; i++) {
ixp = ixp_sessions[i];
if (ixp && ixp->ixp_ctx_id == ctx_id)
break;
}
if (i >= ixp_sesnum) {
printk("ixp: invalid context id %d\n", ctx_id);
return;
}
if (IX_CRYPTO_ACC_STATUS_WAIT == status) {
/* this is normal to free the first of two buffers */
dprintk("ixp: register not finished yet.\n");
return;
}
if (IX_CRYPTO_ACC_STATUS_SUCCESS != status) {
printk("ixp: register failed 0x%x\n", status);
while (!list_empty(&ixp->ixp_q)) {
q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list);
list_del(&q->ixp_q_list);
q->ixp_q_crp->crp_etype = EINVAL;
crypto_done(q->ixp_q_crp);
kmem_cache_free(qcache, q);
}
return;
}
/*
* we are now registered, we cannot start processing the Q here
* or we get strange errors with AES (DES/3DES seem to be ok).
*/
ixp->ixp_registered = 1;
schedule_work(&ixp->ixp_pending_work);
}
/*
* callback for when data processing is complete
*/
static void
ixp_perform_cb(
UINT32 ctx_id,
IX_MBUF *sbufp,
IX_MBUF *dbufp,
IxCryptoAccStatus status)
{
struct ixp_q *q;
dprintk("%s(%d, %p, %p, 0x%x)\n", __FUNCTION__, ctx_id, sbufp,
dbufp, status);
if (sbufp == NULL) {
printk("ixp: NULL sbuf in ixp_perform_cb\n");
return;
}
q = IX_MBUF_PRIV(sbufp);
if (q == NULL) {
printk("ixp: NULL priv in ixp_perform_cb\n");
return;
}
if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) {
printk("ixp: perform failed status=%d\n", status);
q->ixp_q_crp->crp_etype = EINVAL;
}
crypto_done(q->ixp_q_crp);
kmem_cache_free(qcache, q);
}
/*
* registration is not callable at IRQ time, so we defer
* to a task queue, this routines completes the registration for us
* when the task queue runs
*
* Unfortunately this means we cannot tell OCF that the driver is blocked,
* we do that on the next request.
*/
static void
ixp_registration(void *arg)
{
struct ixp_data *ixp = arg;
struct ixp_q *q = NULL;
IX_MBUF *pri = NULL, *sec = NULL;
int status = IX_CRYPTO_ACC_STATUS_SUCCESS;
if (!ixp) {
printk("ixp: ixp_registration with no arg\n");
return;
}
if (ixp->ixp_ctx_id != -1) {
ixCryptoAccCtxUnregister(ixp->ixp_ctx_id);
ixp->ixp_ctx_id = -1;
}
if (list_empty(&ixp->ixp_q)) {
printk("ixp: ixp_registration with no Q\n");
return;
}
/*
* setup the primary and secondary buffers
*/
q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list);
if (q->ixp_q_acrd) {
pri = &ixp->ixp_pri_mbuf;
sec = &ixp->ixp_sec_mbuf;
IX_MBUF_MLEN(pri) = IX_MBUF_PKT_LEN(pri) = 128;
IX_MBUF_MDATA(pri) = (unsigned char *) kmalloc(128, SLAB_ATOMIC);
IX_MBUF_MLEN(sec) = IX_MBUF_PKT_LEN(sec) = 128;
IX_MBUF_MDATA(sec) = (unsigned char *) kmalloc(128, SLAB_ATOMIC);
}
/* Only need to register if a crypt op or HMAC op */
if (!(ixp->ixp_auth_alg == CRYPTO_SHA1 ||
ixp->ixp_auth_alg == CRYPTO_MD5)) {
status = ixCryptoAccCtxRegister(
&ixp->ixp_ctx,
pri, sec,
ixp_register_cb,
ixp_perform_cb,
&ixp->ixp_ctx_id);
}
else {
/* Otherwise we start processing pending q */
schedule_work(&ixp->ixp_pending_work);
}
if (IX_CRYPTO_ACC_STATUS_SUCCESS == status)
return;
if (IX_CRYPTO_ACC_STATUS_EXCEED_MAX_TUNNELS == status) {
printk("ixp: ixCryptoAccCtxRegister failed (out of tunnels)\n");
ixp_blocked = 1;
/* perhaps we should return EGAIN on queued ops ? */
return;
}
printk("ixp: ixCryptoAccCtxRegister failed %d\n", status);
ixp->ixp_ctx_id = -1;
/*
* everything waiting is toasted
*/
while (!list_empty(&ixp->ixp_q)) {
q = list_entry(ixp->ixp_q.next, struct ixp_q, ixp_q_list);
list_del(&q->ixp_q_list);
q->ixp_q_crp->crp_etype = ENOENT;
crypto_done(q->ixp_q_crp);
kmem_cache_free(qcache, q);
}
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
static void
ixp_registration_wq(struct work_struct *work)
{
struct ixp_data *ixp = container_of(work, struct ixp_data,
ixp_registration_work);
ixp_registration(ixp);
}
#endif
/*
* Process a request.
*/
static int
ixp_process(device_t dev, struct cryptop *crp, int hint)
{
struct ixp_data *ixp;
unsigned int lid;
struct ixp_q *q = NULL;
int status;
dprintk("%s()\n", __FUNCTION__);
/* Sanity check */
if (crp == NULL) {
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
return EINVAL;
}
crp->crp_etype = 0;
if (ixp_blocked)
return ERESTART;
if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
crp->crp_etype = EINVAL;
goto done;
}
/*
* find the session we are using
*/
lid = crp->crp_sid & 0xffffffff;
if (lid >= ixp_sesnum || lid == 0 || ixp_sessions == NULL ||
ixp_sessions[lid] == NULL) {
crp->crp_etype = ENOENT;
dprintk("%s,%d: ENOENT\n", __FILE__, __LINE__);
goto done;
}
ixp = ixp_sessions[lid];
/*
* setup a new request ready for queuing
*/
q = kmem_cache_alloc(qcache, SLAB_ATOMIC);
if (q == NULL) {
dprintk("%s,%d: ENOMEM\n", __FILE__, __LINE__);
crp->crp_etype = ENOMEM;
goto done;
}
/*
* save some cycles by only zeroing the important bits
*/
memset(&q->ixp_q_mbuf, 0, sizeof(q->ixp_q_mbuf));
q->ixp_q_ccrd = NULL;
q->ixp_q_acrd = NULL;
q->ixp_q_crp = crp;
q->ixp_q_data = ixp;
/*
* point the cipher and auth descriptors appropriately
* check that we have something to do
*/
if (crp->crp_desc->crd_alg == ixp->ixp_cipher_alg)
q->ixp_q_ccrd = crp->crp_desc;
else if (crp->crp_desc->crd_alg == ixp->ixp_auth_alg)
q->ixp_q_acrd = crp->crp_desc;
else {
crp->crp_etype = ENOENT;
dprintk("%s,%d: bad desc match: ENOENT\n", __FILE__, __LINE__);
goto done;
}
if (crp->crp_desc->crd_next) {
if (crp->crp_desc->crd_next->crd_alg == ixp->ixp_cipher_alg)
q->ixp_q_ccrd = crp->crp_desc->crd_next;
else if (crp->crp_desc->crd_next->crd_alg == ixp->ixp_auth_alg)
q->ixp_q_acrd = crp->crp_desc->crd_next;
else {
crp->crp_etype = ENOENT;
dprintk("%s,%d: bad desc match: ENOENT\n", __FILE__, __LINE__);
goto done;
}
}
/*
* If there is a direction change for this context then we mark it as
* unregistered and re-register is for the new direction. This is not
* a very expensive operation and currently only tends to happen when
* user-space application are doing benchmarks
*
* DM - we should be checking for pending requests before unregistering.
*/
if (q->ixp_q_ccrd && ixp->ixp_registered &&
ixp->ixp_crd_flags != (q->ixp_q_ccrd->crd_flags & CRD_F_ENCRYPT)) {
dprintk("%s - detected direction change on session\n", __FUNCTION__);
ixp->ixp_registered = 0;
}
/*
* if we are registered, call straight into the perform code
*/
if (ixp->ixp_registered) {
ixp_q_process(q);
return 0;
}
/*
* the only part of the context not set in newsession is the direction
* dependent parts
*/
if (q->ixp_q_ccrd) {
ixp->ixp_crd_flags = (q->ixp_q_ccrd->crd_flags & CRD_F_ENCRYPT);
if (q->ixp_q_ccrd->crd_flags & CRD_F_ENCRYPT) {
ixp->ixp_ctx.operation = q->ixp_q_acrd ?
IX_CRYPTO_ACC_OP_ENCRYPT_AUTH : IX_CRYPTO_ACC_OP_ENCRYPT;
} else {
ixp->ixp_ctx.operation = q->ixp_q_acrd ?
IX_CRYPTO_ACC_OP_AUTH_DECRYPT : IX_CRYPTO_ACC_OP_DECRYPT;
}
} else {
/* q->ixp_q_acrd must be set if we are here */
ixp->ixp_ctx.operation = IX_CRYPTO_ACC_OP_AUTH_CALC;
}
status = list_empty(&ixp->ixp_q);
list_add_tail(&q->ixp_q_list, &ixp->ixp_q);
if (status)
schedule_work(&ixp->ixp_registration_work);
return 0;
done:
if (q)
kmem_cache_free(qcache, q);
crypto_done(crp);
return 0;
}
#ifdef __ixp46X
/*
* key processing support for the ixp465
*/
/*
* copy a BN (LE) into a buffer (BE) an fill out the op appropriately
* assume zeroed and only copy bits that are significant
*/
static int
ixp_copy_ibuf(struct crparam *p, IxCryptoAccPkeEauOperand *op, UINT32 *buf)
{
unsigned char *src = (unsigned char *) p->crp_p;
unsigned char *dst;
int len, bits = p->crp_nbits;
dprintk("%s()\n", __FUNCTION__);
if (bits > MAX_IOP_SIZE * sizeof(UINT32) * 8) {
dprintk("%s - ibuf too big (%d > %d)\n", __FUNCTION__,
bits, MAX_IOP_SIZE * sizeof(UINT32) * 8);
return -1;
}
len = (bits + 31) / 32; /* the number UINT32's needed */
dst = (unsigned char *) &buf[len];
dst--;
while (bits > 0) {
*dst-- = *src++;
bits -= 8;
}
#if 0 /* no need to zero remaining bits as it is done during request alloc */
while (dst > (unsigned char *) buf)
*dst-- = '\0';
#endif
op->pData = buf;
op->dataLen = len;
return 0;
}
/*
* copy out the result, be as forgiving as we can about small output buffers
*/
static int
ixp_copy_obuf(struct crparam *p, IxCryptoAccPkeEauOpResult *op, UINT32 *buf)
{
unsigned char *dst = (unsigned char *) p->crp_p;
unsigned char *src = (unsigned char *) buf;
int len, z, bits = p->crp_nbits;
dprintk("%s()\n", __FUNCTION__);
len = op->dataLen * sizeof(UINT32);
/* skip leading zeroes to be small buffer friendly */
z = 0;
while (z < len && src[z] == '\0')
z++;
src += len;
src--;
len -= z;
while (len > 0 && bits > 0) {
*dst++ = *src--;
len--;
bits -= 8;
}
while (bits > 0) {
*dst++ = '\0';
bits -= 8;
}
if (len > 0) {
dprintk("%s - obuf is %d (z=%d, ob=%d) bytes too small\n",
__FUNCTION__, len, z, p->crp_nbits / 8);
return -1;
}
return 0;
}
/*
* the parameter offsets for exp_mod
*/
#define IXP_PARAM_BASE 0
#define IXP_PARAM_EXP 1
#define IXP_PARAM_MOD 2
#define IXP_PARAM_RES 3
/*
* key processing complete callback, is also used to start processing
* by passing a NULL for pResult
*/
static void
ixp_kperform_cb(
IxCryptoAccPkeEauOperation operation,
IxCryptoAccPkeEauOpResult *pResult,
BOOL carryOrBorrow,
IxCryptoAccStatus status)
{
struct ixp_pkq *q, *tmp;
unsigned long flags;
dprintk("%s(0x%x, %p, %d, 0x%x)\n", __FUNCTION__, operation, pResult,
carryOrBorrow, status);
/* handle a completed request */
if (pResult) {
if (ixp_pk_cur && &ixp_pk_cur->pkq_result == pResult) {
q = ixp_pk_cur;
if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) {
dprintk("%s() - op failed 0x%x\n", __FUNCTION__, status);
q->pkq_krp->krp_status = ERANGE; /* could do better */
} else {
/* copy out the result */
if (ixp_copy_obuf(&q->pkq_krp->krp_param[IXP_PARAM_RES],
&q->pkq_result, q->pkq_obuf))
q->pkq_krp->krp_status = ERANGE;
}
crypto_kdone(q->pkq_krp);
kfree(q);
ixp_pk_cur = NULL;
} else
printk("%s - callback with invalid result pointer\n", __FUNCTION__);
}
spin_lock_irqsave(&ixp_pkq_lock, flags);
if (ixp_pk_cur || list_empty(&ixp_pkq)) {
spin_unlock_irqrestore(&ixp_pkq_lock, flags);
return;
}
list_for_each_entry_safe(q, tmp, &ixp_pkq, pkq_list) {
list_del(&q->pkq_list);
ixp_pk_cur = q;
spin_unlock_irqrestore(&ixp_pkq_lock, flags);
status = ixCryptoAccPkeEauPerform(
IX_CRYPTO_ACC_OP_EAU_MOD_EXP,
&q->pkq_op,
ixp_kperform_cb,
&q->pkq_result);
if (status == IX_CRYPTO_ACC_STATUS_SUCCESS) {
dprintk("%s() - ixCryptoAccPkeEauPerform SUCCESS\n", __FUNCTION__);
return; /* callback will return here for callback */
} else if (status == IX_CRYPTO_ACC_STATUS_RETRY) {
printk("%s() - ixCryptoAccPkeEauPerform RETRY\n", __FUNCTION__);
} else {
printk("%s() - ixCryptoAccPkeEauPerform failed %d\n",
__FUNCTION__, status);
}
q->pkq_krp->krp_status = ERANGE; /* could do better */
crypto_kdone(q->pkq_krp);
kfree(q);
spin_lock_irqsave(&ixp_pkq_lock, flags);
}
spin_unlock_irqrestore(&ixp_pkq_lock, flags);
}
static int
ixp_kprocess(device_t dev, struct cryptkop *krp, int hint)
{
struct ixp_pkq *q;
int rc = 0;
unsigned long flags;
dprintk("%s l1=%d l2=%d l3=%d l4=%d\n", __FUNCTION__,
krp->krp_param[IXP_PARAM_BASE].crp_nbits,
krp->krp_param[IXP_PARAM_EXP].crp_nbits,
krp->krp_param[IXP_PARAM_MOD].crp_nbits,
krp->krp_param[IXP_PARAM_RES].crp_nbits);
if (krp->krp_op != CRK_MOD_EXP) {
krp->krp_status = EOPNOTSUPP;
goto err;
}
q = (struct ixp_pkq *) kmalloc(sizeof(*q), GFP_KERNEL);
if (q == NULL) {
krp->krp_status = ENOMEM;
goto err;
}
/*
* The PKE engine does not appear to zero the output buffer
* appropriately, so we need to do it all here.
*/
memset(q, 0, sizeof(*q));
q->pkq_krp = krp;
INIT_LIST_HEAD(&q->pkq_list);
if (ixp_copy_ibuf(&krp->krp_param[IXP_PARAM_BASE], &q->pkq_op.modExpOpr.M,
q->pkq_ibuf0))
rc = 1;
if (!rc && ixp_copy_ibuf(&krp->krp_param[IXP_PARAM_EXP],
&q->pkq_op.modExpOpr.e, q->pkq_ibuf1))
rc = 2;
if (!rc && ixp_copy_ibuf(&krp->krp_param[IXP_PARAM_MOD],
&q->pkq_op.modExpOpr.N, q->pkq_ibuf2))
rc = 3;
if (rc) {
kfree(q);
krp->krp_status = ERANGE;
goto err;
}
q->pkq_result.pData = q->pkq_obuf;
q->pkq_result.dataLen =
(krp->krp_param[IXP_PARAM_RES].crp_nbits + 31) / 32;
spin_lock_irqsave(&ixp_pkq_lock, flags);
list_add_tail(&q->pkq_list, &ixp_pkq);
spin_unlock_irqrestore(&ixp_pkq_lock, flags);
if (!ixp_pk_cur)
ixp_kperform_cb(0, NULL, 0, 0);
return (0);
err:
crypto_kdone(krp);
return (0);
}
#ifdef CONFIG_OCF_RANDOMHARVEST
/*
* We run the random number generator output through SHA so that it
* is FIPS compliant.
*/
static volatile int sha_done = 0;
static unsigned char sha_digest[20];
static void
ixp_hash_cb(UINT8 *digest, IxCryptoAccStatus status)
{
dprintk("%s(%p, %d)\n", __FUNCTION__, digest, status);
if (sha_digest != digest)
printk("digest error\n");
if (IX_CRYPTO_ACC_STATUS_SUCCESS == status)
sha_done = 1;
else
sha_done = -status;
}
static int
ixp_read_random(void *arg, u_int32_t *buf, int maxwords)
{
IxCryptoAccStatus status;
int i, n, rc;
dprintk("%s(%p, %d)\n", __FUNCTION__, buf, maxwords);
memset(buf, 0, maxwords * sizeof(*buf));
status = ixCryptoAccPkePseudoRandomNumberGet(maxwords, buf);
if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) {
dprintk("%s: ixCryptoAccPkePseudoRandomNumberGet failed %d\n",
__FUNCTION__, status);
return 0;
}
/*
* run the random data through SHA to make it look more random
*/
n = sizeof(sha_digest); /* process digest bytes at a time */
rc = 0;
for (i = 0; i < maxwords; i += n / sizeof(*buf)) {
if ((maxwords - i) * sizeof(*buf) < n)
n = (maxwords - i) * sizeof(*buf);
sha_done = 0;
status = ixCryptoAccPkeHashPerform(IX_CRYPTO_ACC_AUTH_SHA1,
(UINT8 *) &buf[i], n, ixp_hash_cb, sha_digest);
if (status != IX_CRYPTO_ACC_STATUS_SUCCESS) {
dprintk("ixCryptoAccPkeHashPerform failed %d\n", status);
return -EIO;
}
while (!sha_done)
schedule();
if (sha_done < 0) {
dprintk("ixCryptoAccPkeHashPerform failed CB %d\n", -sha_done);
return 0;
}
memcpy(&buf[i], sha_digest, n);
rc += n / sizeof(*buf);;
}
return rc;
}
#endif /* CONFIG_OCF_RANDOMHARVEST */
#endif /* __ixp46X */
/*
* our driver startup and shutdown routines
*/
static int
ixp_init(void)
{
dprintk("%s(%p)\n", __FUNCTION__, ixp_init);
if (ixp_init_crypto && ixCryptoAccInit() != IX_CRYPTO_ACC_STATUS_SUCCESS)
printk("ixCryptoAccInit failed, assuming already initialised!\n");
qcache = kmem_cache_create("ixp4xx_q", sizeof(struct ixp_q), 0,
SLAB_HWCACHE_ALIGN, NULL
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
, NULL
#endif
);
if (!qcache) {
printk("failed to create Qcache\n");
return -ENOENT;
}
memset(&ixpdev, 0, sizeof(ixpdev));
softc_device_init(&ixpdev, "ixp4xx", 0, ixp_methods);
ixp_id = crypto_get_driverid(softc_get_device(&ixpdev),
CRYPTOCAP_F_HARDWARE);
if (ixp_id < 0)
panic("IXP/OCF crypto device cannot initialize!");
#define REGISTER(alg) \
crypto_register(ixp_id,alg,0,0)
REGISTER(CRYPTO_DES_CBC);
REGISTER(CRYPTO_3DES_CBC);
REGISTER(CRYPTO_RIJNDAEL128_CBC);
#ifdef CONFIG_OCF_IXP4XX_SHA1_MD5
REGISTER(CRYPTO_MD5);
REGISTER(CRYPTO_SHA1);
#endif
REGISTER(CRYPTO_MD5_HMAC);
REGISTER(CRYPTO_SHA1_HMAC);
#undef REGISTER
#ifdef __ixp46X
spin_lock_init(&ixp_pkq_lock);
/*
* we do not enable the go fast options here as they can potentially
* allow timing based attacks
*
* http://www.openssl.org/news/secadv_20030219.txt
*/
ixCryptoAccPkeEauExpConfig(0, 0);
crypto_kregister(ixp_id, CRK_MOD_EXP, 0);
#ifdef CONFIG_OCF_RANDOMHARVEST
crypto_rregister(ixp_id, ixp_read_random, NULL);
#endif
#endif
return 0;
}
static void
ixp_exit(void)
{
dprintk("%s()\n", __FUNCTION__);
crypto_unregister_all(ixp_id);
ixp_id = -1;
kmem_cache_destroy(qcache);
qcache = NULL;
}
module_init(ixp_init);
module_exit(ixp_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("David McCullough <dmccullough@cyberguard.com>");
MODULE_DESCRIPTION("ixp (OCF module for IXP4xx crypto)");