bolt/cursor.go

297 lines
7.9 KiB
Go

package bolt
import (
"bytes"
"sort"
)
// Cursor represents an iterator that can traverse over all key/value pairs in a bucket in sorted order.
// Cursors can be obtained from a Transaction and are valid as long as the Transaction is open.
type Cursor struct {
transaction *Transaction
root pgid
stack []elemRef
}
// First moves the cursor to the first item in the bucket and returns its key and value.
// If the bucket is empty then a nil key and value are returned.
func (c *Cursor) First() (key []byte, value []byte) {
c.stack = c.stack[:0]
p, n := c.transaction.pageNode(c.root)
c.stack = append(c.stack, elemRef{page: p, node: n, index: 0})
c.first()
return c.keyValue()
}
// Last moves the cursor to the last item in the bucket and returns its key and value.
// If the bucket is empty then a nil key and value are returned.
func (c *Cursor) Last() (key []byte, value []byte) {
c.stack = c.stack[:0]
p, n := c.transaction.pageNode(c.root)
ref := elemRef{page: p, node: n}
ref.index = ref.count() - 1
c.stack = append(c.stack, ref)
c.last()
return c.keyValue()
}
// Next moves the cursor to the next item in the bucket and returns its key and value.
// If the cursor is at the end of the bucket then a nil key and value are returned.
func (c *Cursor) Next() (key []byte, value []byte) {
// Attempt to move over one element until we're successful.
// Move up the stack as we hit the end of each page in our stack.
for i := len(c.stack) - 1; i >= 0; i-- {
elem := &c.stack[i]
if elem.index < elem.count()-1 {
elem.index++
break
}
c.stack = c.stack[:i]
}
// If we've hit the end then return nil.
if len(c.stack) == 0 {
return nil, nil
}
// Move down the stack to find the first element of the first leaf under this branch.
c.first()
return c.keyValue()
}
// Prev moves the cursor to the previous item in the bucket and returns its key and value.
// If the cursor is at the beginning of the bucket then a nil key and value are returned.
func (c *Cursor) Prev() (key []byte, value []byte) {
// Attempt to move back one element until we're successful.
// Move up the stack as we hit the beginning of each page in our stack.
for i := len(c.stack) - 1; i >= 0; i-- {
elem := &c.stack[i]
if elem.index > 0 {
elem.index--
break
}
c.stack = c.stack[:i]
}
// If we've hit the end then return nil.
if len(c.stack) == 0 {
return nil, nil
}
// Move down the stack to find the last element of the last leaf under this branch.
c.last()
return c.keyValue()
}
// Seek moves the cursor to a given key and returns it.
// If the key does not exist then the next key is used. If no keys
// follow, a nil value is returned.
func (c *Cursor) Seek(seek []byte) (key []byte, value []byte) {
// Start from root page/node and traverse to correct page.
c.stack = c.stack[:0]
c.search(seek, c.root)
ref := &c.stack[len(c.stack)-1]
// If the cursor is pointing to the end of page/node then return nil.
if ref.index >= ref.count() {
return nil, nil
}
return c.keyValue()
}
// first moves the cursor to the first leaf element under the last page in the stack.
func (c *Cursor) first() {
for {
// Exit when we hit a leaf page.
ref := &c.stack[len(c.stack)-1]
if ref.isLeaf() {
break
}
// Keep adding pages pointing to the first element to the stack.
var pgid pgid
if ref.node != nil {
pgid = ref.node.inodes[ref.index].pgid
} else {
pgid = ref.page.branchPageElement(uint16(ref.index)).pgid
}
p, n := c.transaction.pageNode(pgid)
c.stack = append(c.stack, elemRef{page: p, node: n, index: 0})
}
}
// last moves the cursor to the last leaf element under the last page in the stack.
func (c *Cursor) last() {
for {
// Exit when we hit a leaf page.
ref := &c.stack[len(c.stack)-1]
if ref.isLeaf() {
break
}
// Keep adding pages pointing to the last element in the stack.
var pgid pgid
if ref.node != nil {
pgid = ref.node.inodes[ref.index].pgid
} else {
pgid = ref.page.branchPageElement(uint16(ref.index)).pgid
}
p, n := c.transaction.pageNode(pgid)
var nextRef = elemRef{page: p, node: n}
nextRef.index = nextRef.count() - 1
c.stack = append(c.stack, nextRef)
}
}
// search recursively performs a binary search against a given page/node until it finds a given key.
func (c *Cursor) search(key []byte, pgid pgid) {
p, n := c.transaction.pageNode(pgid)
if p != nil {
_assert((p.flags&(branchPageFlag|leafPageFlag)) != 0, "invalid page type: "+p.typ())
}
e := elemRef{page: p, node: n}
c.stack = append(c.stack, e)
// If we're on a leaf page/node then find the specific node.
if e.isLeaf() {
c.nsearch(key)
return
}
if n != nil {
c.searchNode(key, n)
return
}
c.searchPage(key, p)
}
func (c *Cursor) searchNode(key []byte, n *node) {
var exact bool
index := sort.Search(len(n.inodes), func(i int) bool {
// TODO(benbjohnson): Optimize this range search. It's a bit hacky right now.
// sort.Search() finds the lowest index where f() != -1 but we need the highest index.
ret := bytes.Compare(n.inodes[i].key, key)
if ret == 0 {
exact = true
}
return ret != -1
})
if !exact && index > 0 {
index--
}
c.stack[len(c.stack)-1].index = index
// Recursively search to the next page.
c.search(key, n.inodes[index].pgid)
}
func (c *Cursor) searchPage(key []byte, p *page) {
// Binary search for the correct range.
inodes := p.branchPageElements()
var exact bool
index := sort.Search(int(p.count), func(i int) bool {
// TODO(benbjohnson): Optimize this range search. It's a bit hacky right now.
// sort.Search() finds the lowest index where f() != -1 but we need the highest index.
ret := bytes.Compare(inodes[i].key(), key)
if ret == 0 {
exact = true
}
return ret != -1
})
if !exact && index > 0 {
index--
}
c.stack[len(c.stack)-1].index = index
// Recursively search to the next page.
c.search(key, inodes[index].pgid)
}
// nsearch searches the leaf node on the top of the stack for a key.
func (c *Cursor) nsearch(key []byte) {
e := &c.stack[len(c.stack)-1]
p, n := e.page, e.node
// If we have a node then search its inodes.
if n != nil {
index := sort.Search(len(n.inodes), func(i int) bool {
return bytes.Compare(n.inodes[i].key, key) != -1
})
e.index = index
return
}
// If we have a page then search its leaf elements.
inodes := p.leafPageElements()
index := sort.Search(int(p.count), func(i int) bool {
return bytes.Compare(inodes[i].key(), key) != -1
})
e.index = index
}
// keyValue returns the key and value of the current leaf element.
func (c *Cursor) keyValue() ([]byte, []byte) {
ref := &c.stack[len(c.stack)-1]
if ref.index >= ref.count() {
return nil, nil
}
// Retrieve value from node.
if ref.node != nil {
inode := &ref.node.inodes[ref.index]
return inode.key, inode.value
}
// Or retrieve value from page.
elem := ref.page.leafPageElement(uint16(ref.index))
return elem.key(), elem.value()
}
// node returns the node that the cursor is currently positioned on.
func (c *Cursor) node(t *RWTransaction) *node {
_assert(len(c.stack) > 0, "accessing a node with a zero-length cursor stack")
// If the top of the stack is a leaf node then just return it.
if ref := &c.stack[len(c.stack)-1]; ref.node != nil && ref.isLeaf() {
return ref.node
}
// Start from root and traverse down the hierarchy.
var n = c.stack[0].node
if n == nil {
n = t.node(c.stack[0].page.id, nil)
}
for _, ref := range c.stack[:len(c.stack)-1] {
_assert(!n.isLeaf, "expected branch node")
n = n.childAt(int(ref.index))
}
_assert(n.isLeaf, "expected leaf node")
return n
}
// elemRef represents a reference to an element on a given page/node.
type elemRef struct {
page *page
node *node
index int
}
// isLeaf returns whether the ref is pointing at a leaf page/node.
func (r *elemRef) isLeaf() bool {
if r.node != nil {
return r.node.isLeaf
}
return (r.page.flags & leafPageFlag) != 0
}
// count returns the number of inodes or page elements.
func (r *elemRef) count() int {
if r.node != nil {
return len(r.node.inodes)
}
return int(r.page.count)
}