bolt/cursor.go

218 lines
6.6 KiB
Go

package bolt
import (
"bytes"
"sort"
)
// Cursor represents an iterator that can traverse over all key/value pairs in a bucket in sorted order.
// Cursors can be obtained from a Transaction and are valid as long as the Transaction is open.
type Cursor struct {
transaction *Transaction
root pgid
stack []pageElementRef
}
// First moves the cursor to the first item in the bucket and returns its key and value.
// If the bucket is empty then a nil key and value are returned.
func (c *Cursor) First() (key []byte, value []byte) {
if len(c.stack) > 0 {
c.stack = c.stack[:0]
}
p := c.transaction.page(c.root)
c.stack = append(c.stack, pageElementRef{page: p, index: 0})
c.first()
return c.keyValue()
}
// Last moves the cursor to the last item in the bucket and returns its key and value.
// If the bucket is empty then a nil key and value are returned.
func (c *Cursor) Last() (key []byte, value []byte) {
if len(c.stack) > 0 {
c.stack = c.stack[:0]
}
p := c.transaction.page(c.root)
c.stack = append(c.stack, pageElementRef{page: p, index: p.count - 1})
c.last()
return c.keyValue()
}
// Next moves the cursor to the next item in the bucket and returns its key and value.
// If the cursor is at the end of the bucket then a nil key and value are returned.
func (c *Cursor) Next() (key []byte, value []byte) {
// Attempt to move over one element until we're successful.
// Move up the stack as we hit the end of each page in our stack.
for i := len(c.stack) - 1; i >= 0; i-- {
elem := &c.stack[i]
if elem.index < elem.page.count-1 {
elem.index++
break
}
c.stack = c.stack[:i]
}
// If we've hit the end then return nil.
if len(c.stack) == 0 {
return nil, nil
}
// Move down the stack to find the first element of the first leaf under this branch.
c.first()
return c.keyValue()
}
// Prev moves the cursor to the previous item in the bucket and returns its key and value.
// If the cursor is at the beginning of the bucket then a nil key and value are returned.
func (c *Cursor) Prev() (key []byte, value []byte) {
// Attempt to move back one element until we're successful.
// Move up the stack as we hit the beginning of each page in our stack.
for i := len(c.stack) - 1; i >= 0; i-- {
elem := &c.stack[i]
if elem.index > 0 {
elem.index--
break
}
c.stack = c.stack[:i]
}
// If we've hit the end then return nil.
if len(c.stack) == 0 {
return nil, nil
}
// Move down the stack to find the last element of the last leaf under this branch.
c.last()
return c.keyValue()
}
// Seek moves the cursor to a given key and returns it.
// If the key does not exist then the next key is used. If no keys
// follow, a nil value is returned.
func (c *Cursor) Seek(seek []byte) (key []byte, value []byte) {
// Start from root page and traverse to correct page.
c.stack = c.stack[:0]
c.search(seek, c.transaction.page(c.root))
p, index := c.top()
// If the cursor is pointing to the end of page then return nil.
if index == p.count {
return nil, nil
}
return c.element().key(), c.element().value()
}
// first moves the cursor to the first leaf element under the last page in the stack.
func (c *Cursor) first() {
p := c.stack[len(c.stack)-1].page
for {
// Exit when we hit a leaf page.
if (p.flags & leafPageFlag) != 0 {
break
}
// Keep adding pages pointing to the first element to the stack.
p = c.transaction.page(p.branchPageElement(c.stack[len(c.stack)-1].index).pgid)
c.stack = append(c.stack, pageElementRef{page: p, index: 0})
}
}
// last moves the cursor to the last leaf element under the last page in the stack.
func (c *Cursor) last() {
p := c.stack[len(c.stack)-1].page
for {
// Exit when we hit a leaf page.
if (p.flags & leafPageFlag) != 0 {
break
}
// Keep adding pages pointing to the last element in the stack.
p = c.transaction.page(p.branchPageElement(c.stack[len(c.stack)-1].index).pgid)
c.stack = append(c.stack, pageElementRef{page: p, index: p.count - 1})
}
}
// search recursively performs a binary search against a given page until it finds a given key.
func (c *Cursor) search(key []byte, p *page) {
_assert((p.flags&(branchPageFlag|leafPageFlag)) != 0, "invalid page type: "+p.typ())
e := pageElementRef{page: p}
c.stack = append(c.stack, e)
// If we're on a leaf page then find the specific node.
if (p.flags & leafPageFlag) != 0 {
c.nsearch(key, p)
return
}
// Binary search for the correct range.
inodes := p.branchPageElements()
var exact bool
index := sort.Search(int(p.count), func(i int) bool {
// TODO(benbjohnson): Optimize this range search. It's a bit hacky right now.
// sort.Search() finds the lowest index where f() != -1 but we need the highest index.
ret := bytes.Compare(inodes[i].key(), key)
if ret == 0 {
exact = true
}
return ret != -1
})
if !exact && index > 0 {
index--
}
c.stack[len(c.stack)-1].index = uint16(index)
// Recursively search to the next page.
c.search(key, c.transaction.page(inodes[index].pgid))
}
// nsearch searches a leaf node for the index of the node that matches key.
func (c *Cursor) nsearch(key []byte, p *page) {
e := &c.stack[len(c.stack)-1]
// Binary search for the correct leaf node index.
inodes := p.leafPageElements()
index := sort.Search(int(p.count), func(i int) bool {
return bytes.Compare(inodes[i].key(), key) != -1
})
e.index = uint16(index)
}
// top returns the page and leaf node that the cursor is currently pointing at.
func (c *Cursor) top() (*page, uint16) {
ptr := c.stack[len(c.stack)-1]
return ptr.page, ptr.index
}
// element returns the leaf element that the cursor is currently positioned on.
func (c *Cursor) element() *leafPageElement {
ref := c.stack[len(c.stack)-1]
return ref.page.leafPageElement(ref.index)
}
// keyValue returns the key and value of the current leaf element.
func (c *Cursor) keyValue() ([]byte, []byte) {
ref := &c.stack[len(c.stack)-1]
if ref.index >= ref.page.count {
return nil, nil
}
e := ref.page.leafPageElement(ref.index)
return e.key(), e.value()
}
// node returns the node that the cursor is currently positioned on.
func (c *Cursor) node(t *RWTransaction) *node {
_assert(len(c.stack) > 0, "accessing a node with a zero-length cursor stack")
// Start from root and traverse down the hierarchy.
n := t.node(c.stack[0].page.id, nil)
for _, ref := range c.stack[:len(c.stack)-1] {
_assert(!n.isLeaf, "expected branch node")
_assert(ref.page.id == n.pgid, "node/page mismatch a: %d != %d", ref.page.id, n.childAt(int(ref.index)).pgid)
n = n.childAt(int(ref.index))
}
_assert(n.isLeaf, "expected leaf node")
_assert(n.pgid == c.stack[len(c.stack)-1].page.id, "node/page mismatch b: %d != %d", n.pgid, c.stack[len(c.stack)-1].page.id)
return n
}