2014-01-31 18:18:51 +00:00
|
|
|
package bolt
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
|
|
|
"sort"
|
|
|
|
"unsafe"
|
|
|
|
)
|
|
|
|
|
|
|
|
// node represents an in-memory, deserialized page.
|
|
|
|
type node struct {
|
2014-03-09 03:25:37 +00:00
|
|
|
tx *Tx
|
2014-03-09 00:01:49 +00:00
|
|
|
isLeaf bool
|
|
|
|
unbalanced bool
|
|
|
|
key []byte
|
|
|
|
depth int
|
|
|
|
pgid pgid
|
|
|
|
parent *node
|
|
|
|
inodes inodes
|
2014-01-31 18:18:51 +00:00
|
|
|
}
|
|
|
|
|
2014-02-08 05:55:25 +00:00
|
|
|
// minKeys returns the minimum number of inodes this node should have.
|
|
|
|
func (n *node) minKeys() int {
|
|
|
|
if n.isLeaf {
|
|
|
|
return 1
|
|
|
|
}
|
|
|
|
return 2
|
|
|
|
}
|
|
|
|
|
2014-01-31 18:18:51 +00:00
|
|
|
// size returns the size of the node after serialization.
|
|
|
|
func (n *node) size() int {
|
2014-02-12 21:57:27 +00:00
|
|
|
var elementSize = n.pageElementSize()
|
2014-01-31 18:18:51 +00:00
|
|
|
|
2014-02-12 21:57:27 +00:00
|
|
|
var size = pageHeaderSize
|
2014-01-31 18:18:51 +00:00
|
|
|
for _, item := range n.inodes {
|
|
|
|
size += elementSize + len(item.key) + len(item.value)
|
|
|
|
}
|
|
|
|
return size
|
|
|
|
}
|
|
|
|
|
|
|
|
// pageElementSize returns the size of each page element based on the type of node.
|
|
|
|
func (n *node) pageElementSize() int {
|
|
|
|
if n.isLeaf {
|
|
|
|
return leafPageElementSize
|
|
|
|
}
|
|
|
|
return branchPageElementSize
|
|
|
|
}
|
|
|
|
|
|
|
|
// root returns the root node in the tree.
|
|
|
|
func (n *node) root() *node {
|
|
|
|
if n.parent == nil {
|
|
|
|
return n
|
|
|
|
}
|
2014-02-06 23:06:13 +00:00
|
|
|
return n.parent.root()
|
2014-01-31 18:18:51 +00:00
|
|
|
}
|
|
|
|
|
2014-02-07 22:03:29 +00:00
|
|
|
// childAt returns the child node at a given index.
|
2014-02-08 05:55:25 +00:00
|
|
|
func (n *node) childAt(index int) *node {
|
|
|
|
_assert(!n.isLeaf, "invalid childAt(%d) on a leaf node", index)
|
2014-03-09 00:01:49 +00:00
|
|
|
return n.tx.node(n.inodes[index].pgid, n)
|
2014-02-07 22:03:29 +00:00
|
|
|
}
|
|
|
|
|
2014-02-08 05:55:25 +00:00
|
|
|
// childIndex returns the index of a given child node.
|
|
|
|
func (n *node) childIndex(child *node) int {
|
|
|
|
index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, child.key) != -1 })
|
|
|
|
return index
|
|
|
|
}
|
|
|
|
|
|
|
|
// numChildren returns the number of children.
|
|
|
|
func (n *node) numChildren() int {
|
|
|
|
return len(n.inodes)
|
|
|
|
}
|
|
|
|
|
|
|
|
// nextSibling returns the next node with the same parent.
|
|
|
|
func (n *node) nextSibling() *node {
|
|
|
|
if n.parent == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
index := n.parent.childIndex(n)
|
2014-02-09 22:52:19 +00:00
|
|
|
if index >= n.parent.numChildren()-1 {
|
2014-02-08 05:55:25 +00:00
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return n.parent.childAt(index + 1)
|
|
|
|
}
|
|
|
|
|
|
|
|
// prevSibling returns the previous node with the same parent.
|
|
|
|
func (n *node) prevSibling() *node {
|
|
|
|
if n.parent == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
index := n.parent.childIndex(n)
|
|
|
|
if index == 0 {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return n.parent.childAt(index - 1)
|
|
|
|
}
|
|
|
|
|
2014-01-31 18:18:51 +00:00
|
|
|
// put inserts a key/value.
|
|
|
|
func (n *node) put(oldKey, newKey, value []byte, pgid pgid) {
|
|
|
|
// Find insertion index.
|
|
|
|
index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, oldKey) != -1 })
|
|
|
|
|
|
|
|
// Add capacity and shift nodes if we don't have an exact match and need to insert.
|
|
|
|
exact := (len(n.inodes) > 0 && index < len(n.inodes) && bytes.Equal(n.inodes[index].key, oldKey))
|
|
|
|
if !exact {
|
|
|
|
n.inodes = append(n.inodes, inode{})
|
|
|
|
copy(n.inodes[index+1:], n.inodes[index:])
|
|
|
|
}
|
|
|
|
|
|
|
|
inode := &n.inodes[index]
|
|
|
|
inode.key = newKey
|
|
|
|
inode.value = value
|
|
|
|
inode.pgid = pgid
|
|
|
|
}
|
|
|
|
|
2014-02-03 21:33:51 +00:00
|
|
|
// del removes a key from the node.
|
|
|
|
func (n *node) del(key []byte) {
|
|
|
|
// Find index of key.
|
|
|
|
index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, key) != -1 })
|
|
|
|
|
|
|
|
// Exit if the key isn't found.
|
2014-02-16 22:43:35 +00:00
|
|
|
if index >= len(n.inodes) || !bytes.Equal(n.inodes[index].key, key) {
|
2014-02-03 21:33:51 +00:00
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// Delete inode from the node.
|
|
|
|
n.inodes = append(n.inodes[:index], n.inodes[index+1:]...)
|
2014-02-08 05:55:25 +00:00
|
|
|
|
|
|
|
// Mark the node as needing rebalancing.
|
|
|
|
n.unbalanced = true
|
2014-02-03 21:33:51 +00:00
|
|
|
}
|
|
|
|
|
2014-01-31 18:18:51 +00:00
|
|
|
// read initializes the node from a page.
|
|
|
|
func (n *node) read(p *page) {
|
|
|
|
n.pgid = p.id
|
2014-02-12 21:57:27 +00:00
|
|
|
n.isLeaf = ((p.flags & leafPageFlag) != 0)
|
2014-01-31 18:18:51 +00:00
|
|
|
n.inodes = make(inodes, int(p.count))
|
|
|
|
|
|
|
|
for i := 0; i < int(p.count); i++ {
|
|
|
|
inode := &n.inodes[i]
|
|
|
|
if n.isLeaf {
|
|
|
|
elem := p.leafPageElement(uint16(i))
|
|
|
|
inode.key = elem.key()
|
|
|
|
inode.value = elem.value()
|
|
|
|
} else {
|
|
|
|
elem := p.branchPageElement(uint16(i))
|
|
|
|
inode.pgid = elem.pgid
|
|
|
|
inode.key = elem.key()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Save first key so we can find the node in the parent when we spill.
|
|
|
|
if len(n.inodes) > 0 {
|
|
|
|
n.key = n.inodes[0].key
|
|
|
|
} else {
|
|
|
|
n.key = nil
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// write writes the items onto one or more pages.
|
|
|
|
func (n *node) write(p *page) {
|
|
|
|
// Initialize page.
|
|
|
|
if n.isLeaf {
|
2014-02-12 21:57:27 +00:00
|
|
|
p.flags |= leafPageFlag
|
2014-01-31 18:18:51 +00:00
|
|
|
} else {
|
2014-02-12 21:57:27 +00:00
|
|
|
p.flags |= branchPageFlag
|
2014-01-31 18:18:51 +00:00
|
|
|
}
|
|
|
|
p.count = uint16(len(n.inodes))
|
|
|
|
|
|
|
|
// Loop over each item and write it to the page.
|
|
|
|
b := (*[maxAllocSize]byte)(unsafe.Pointer(&p.ptr))[n.pageElementSize()*len(n.inodes):]
|
|
|
|
for i, item := range n.inodes {
|
|
|
|
// Write the page element.
|
|
|
|
if n.isLeaf {
|
|
|
|
elem := p.leafPageElement(uint16(i))
|
|
|
|
elem.pos = uint32(uintptr(unsafe.Pointer(&b[0])) - uintptr(unsafe.Pointer(elem)))
|
|
|
|
elem.ksize = uint32(len(item.key))
|
|
|
|
elem.vsize = uint32(len(item.value))
|
|
|
|
} else {
|
|
|
|
elem := p.branchPageElement(uint16(i))
|
|
|
|
elem.pos = uint32(uintptr(unsafe.Pointer(&b[0])) - uintptr(unsafe.Pointer(elem)))
|
|
|
|
elem.ksize = uint32(len(item.key))
|
|
|
|
elem.pgid = item.pgid
|
|
|
|
}
|
|
|
|
|
|
|
|
// Write data for the element to the end of the page.
|
|
|
|
copy(b[0:], item.key)
|
|
|
|
b = b[len(item.key):]
|
|
|
|
copy(b[0:], item.value)
|
|
|
|
b = b[len(item.value):]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// split divides up the node into appropriately sized nodes.
|
|
|
|
func (n *node) split(pageSize int) []*node {
|
|
|
|
// Ignore the split if the page doesn't have at least enough nodes for
|
|
|
|
// multiple pages or if the data can fit on a single page.
|
|
|
|
if len(n.inodes) <= (minKeysPerPage*2) || n.size() < pageSize {
|
|
|
|
return []*node{n}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set fill threshold to 50%.
|
|
|
|
threshold := pageSize / 2
|
|
|
|
|
|
|
|
// Group into smaller pages and target a given fill size.
|
2014-02-04 22:30:05 +00:00
|
|
|
size := pageHeaderSize
|
|
|
|
inodes := n.inodes
|
|
|
|
current := n
|
|
|
|
current.inodes = nil
|
|
|
|
var nodes []*node
|
2014-01-31 18:18:51 +00:00
|
|
|
|
2014-02-04 22:30:05 +00:00
|
|
|
for i, inode := range inodes {
|
2014-01-31 18:18:51 +00:00
|
|
|
elemSize := n.pageElementSize() + len(inode.key) + len(inode.value)
|
|
|
|
|
2014-02-04 22:30:05 +00:00
|
|
|
if len(current.inodes) >= minKeysPerPage && i < len(inodes)-minKeysPerPage && size+elemSize > threshold {
|
2014-01-31 18:18:51 +00:00
|
|
|
size = pageHeaderSize
|
|
|
|
nodes = append(nodes, current)
|
2014-03-09 00:01:49 +00:00
|
|
|
current = &node{tx: n.tx, isLeaf: n.isLeaf}
|
2014-01-31 18:18:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
size += elemSize
|
|
|
|
current.inodes = append(current.inodes, inode)
|
|
|
|
}
|
|
|
|
nodes = append(nodes, current)
|
|
|
|
|
|
|
|
return nodes
|
|
|
|
}
|
|
|
|
|
2014-02-08 05:55:25 +00:00
|
|
|
// rebalance attempts to combine the node with sibling nodes if the node fill
|
|
|
|
// size is below a threshold or if there are not enough keys.
|
|
|
|
func (n *node) rebalance() {
|
|
|
|
if !n.unbalanced {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
n.unbalanced = false
|
|
|
|
|
|
|
|
// Ignore if node is above threshold (25%) and has enough keys.
|
2014-03-09 00:01:49 +00:00
|
|
|
var threshold = n.tx.db.pageSize / 4
|
2014-02-08 05:55:25 +00:00
|
|
|
if n.size() > threshold && len(n.inodes) > n.minKeys() {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// Root node has special handling.
|
|
|
|
if n.parent == nil {
|
|
|
|
// If root node is a branch and only has one node then collapse it.
|
|
|
|
if !n.isLeaf && len(n.inodes) == 1 {
|
|
|
|
// Move child's children up.
|
2014-03-09 00:01:49 +00:00
|
|
|
child := n.tx.nodes[n.inodes[0].pgid]
|
2014-02-08 05:55:25 +00:00
|
|
|
n.isLeaf = child.isLeaf
|
|
|
|
n.inodes = child.inodes[:]
|
|
|
|
|
|
|
|
// Reparent all child nodes being moved.
|
|
|
|
for _, inode := range n.inodes {
|
2014-03-09 00:01:49 +00:00
|
|
|
if child, ok := n.tx.nodes[inode.pgid]; ok {
|
2014-02-08 05:55:25 +00:00
|
|
|
child.parent = n
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remove old child.
|
|
|
|
child.parent = nil
|
2014-03-09 00:01:49 +00:00
|
|
|
delete(n.tx.nodes, child.pgid)
|
2014-02-08 05:55:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
_assert(n.parent.numChildren() > 1, "parent must have at least 2 children")
|
|
|
|
|
|
|
|
// Destination node is right sibling if idx == 0, otherwise left sibling.
|
|
|
|
var target *node
|
|
|
|
var useNextSibling = (n.parent.childIndex(n) == 0)
|
|
|
|
if useNextSibling {
|
|
|
|
target = n.nextSibling()
|
|
|
|
} else {
|
|
|
|
target = n.prevSibling()
|
|
|
|
}
|
|
|
|
|
|
|
|
// If target node has extra nodes then just move one over.
|
|
|
|
if target.numChildren() > target.minKeys() {
|
|
|
|
if useNextSibling {
|
|
|
|
// Reparent and move node.
|
2014-03-09 00:01:49 +00:00
|
|
|
if child, ok := n.tx.nodes[target.inodes[0].pgid]; ok {
|
2014-02-08 05:55:25 +00:00
|
|
|
child.parent = n
|
|
|
|
}
|
|
|
|
n.inodes = append(n.inodes, target.inodes[0])
|
|
|
|
target.inodes = target.inodes[1:]
|
|
|
|
|
|
|
|
// Update target key on parent.
|
|
|
|
target.parent.put(target.key, target.inodes[0].key, nil, target.pgid)
|
|
|
|
target.key = target.inodes[0].key
|
|
|
|
} else {
|
|
|
|
// Reparent and move node.
|
2014-03-09 00:01:49 +00:00
|
|
|
if child, ok := n.tx.nodes[target.inodes[len(target.inodes)-1].pgid]; ok {
|
2014-02-08 05:55:25 +00:00
|
|
|
child.parent = n
|
|
|
|
}
|
|
|
|
n.inodes = append(n.inodes, inode{})
|
|
|
|
copy(n.inodes[1:], n.inodes)
|
|
|
|
n.inodes[0] = target.inodes[len(target.inodes)-1]
|
|
|
|
target.inodes = target.inodes[:len(target.inodes)-1]
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update parent key for node.
|
|
|
|
n.parent.put(n.key, n.inodes[0].key, nil, n.pgid)
|
|
|
|
n.key = n.inodes[0].key
|
|
|
|
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// If both this node and the target node are too small then merge them.
|
|
|
|
if useNextSibling {
|
|
|
|
// Reparent all child nodes being moved.
|
|
|
|
for _, inode := range target.inodes {
|
2014-03-09 00:01:49 +00:00
|
|
|
if child, ok := n.tx.nodes[inode.pgid]; ok {
|
2014-02-08 05:55:25 +00:00
|
|
|
child.parent = n
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy over inodes from target and remove target.
|
|
|
|
n.inodes = append(n.inodes, target.inodes...)
|
|
|
|
n.parent.del(target.key)
|
2014-03-09 00:01:49 +00:00
|
|
|
delete(n.tx.nodes, target.pgid)
|
2014-02-08 05:55:25 +00:00
|
|
|
} else {
|
|
|
|
// Reparent all child nodes being moved.
|
|
|
|
for _, inode := range n.inodes {
|
2014-03-09 00:01:49 +00:00
|
|
|
if child, ok := n.tx.nodes[inode.pgid]; ok {
|
2014-02-08 05:55:25 +00:00
|
|
|
child.parent = target
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy over inodes to target and remove node.
|
|
|
|
target.inodes = append(target.inodes, n.inodes...)
|
|
|
|
n.parent.del(n.key)
|
|
|
|
n.parent.put(target.key, target.inodes[0].key, nil, target.pgid)
|
2014-03-09 00:01:49 +00:00
|
|
|
delete(n.tx.nodes, n.pgid)
|
2014-02-08 05:55:25 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Either this node or the target node was deleted from the parent so rebalance it.
|
|
|
|
n.parent.rebalance()
|
|
|
|
}
|
|
|
|
|
2014-02-11 19:16:12 +00:00
|
|
|
// dereference causes the node to copy all its inode key/value references to heap memory.
|
|
|
|
// This is required when the mmap is reallocated so inodes are not pointing to stale data.
|
|
|
|
func (n *node) dereference() {
|
|
|
|
key := make([]byte, len(n.key))
|
|
|
|
copy(key, n.key)
|
|
|
|
n.key = key
|
|
|
|
|
2014-02-12 21:57:27 +00:00
|
|
|
for i := range n.inodes {
|
2014-02-11 19:16:12 +00:00
|
|
|
inode := &n.inodes[i]
|
|
|
|
|
|
|
|
key := make([]byte, len(inode.key))
|
|
|
|
copy(key, inode.key)
|
|
|
|
inode.key = key
|
|
|
|
|
|
|
|
value := make([]byte, len(inode.value))
|
|
|
|
copy(value, inode.value)
|
|
|
|
inode.value = value
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-31 18:18:51 +00:00
|
|
|
// nodesByDepth sorts a list of branches by deepest first.
|
|
|
|
type nodesByDepth []*node
|
|
|
|
|
|
|
|
func (s nodesByDepth) Len() int { return len(s) }
|
|
|
|
func (s nodesByDepth) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
|
|
|
|
func (s nodesByDepth) Less(i, j int) bool { return s[i].depth > s[j].depth }
|
|
|
|
|
|
|
|
// inode represents an internal node inside of a node.
|
|
|
|
// It can be used to point to elements in a page or point
|
|
|
|
// to an element which hasn't been added to a page yet.
|
|
|
|
type inode struct {
|
|
|
|
pgid pgid
|
|
|
|
key []byte
|
|
|
|
value []byte
|
|
|
|
}
|
|
|
|
|
|
|
|
type inodes []inode
|